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Abstract. The generalized additive model (GAM) is a standard sta-
tistical methodology and is frequently used in various fields of applied
data analysis where the response variable is non-normal, e.g., integer
valued, and the explanatory variables are continuous, typically normally
distributed. Standard assumptions of this model, among others, are that
the explanatory variables are independent and identically distributed
vectors which are not multicollinear. To handle the multicollinearity and
serial dependence together a new hybrid model, called GAM-PCA-VAR
model, was proposed in [17] which is the combination of GAM with
the principal component analysis (PCA) and the vector autoregressive
(VAR) model. In this paper, some properties of the GAM-PCA-VAR
model are discussed theoretically and verified by simulation. A real data
set is also analysed with the aim to describe the association between
respiratory disease and air pollution concentrations.

Keywords: air pollution, generalized additive model, multicollinearity,
principal component analysis, time series, vector autoregressive model

1 Introduction

In the recent literature of time series, there has been an outstanding growth
in models proposed for data that do not satisfy the Gaussian assumption. This
is mainly the case when the response variable under study is a count series
or an integer valued series. Procedures developed to analyse this kind of data
comprises, for example, observation driven models, see [3] and [6], integer valued
autoregressive (INAR) processes, see [1] and [2], or non-Gaussian state space
models, see [8] and [10].

This paper is based on the talk “An application of the GAM-PCA-VAR model to
respiratory disease and air pollution data” given by the first author.



Particularly in health and environmental studies, where the response variable
is typically a count time series, the generalized additive model (GAM) has been
widely used to associate the dependent series, such as the number of respiratory
or cardiovascular diseases to some pollutant or climate variables, see, for exam-
ple, [5], [13], [14], [16], [17] and [18] among others. Therefore, in general, the
researches related to the study of the association between pollution and adverse
health effects usually consider only one pollutant. This simple model choice may
be due to the fact that the pollutants are linearly time correlated variables, see
the discussion and references in the recent paper [17].

Recently, it has become common practice to use principal component analysis
(PCA) in regression models to reduce the dimensionality of an independent set
of data, especially the pollutants, which in some instances can include a large
number of variables. The PCA is highly indicated to this purpose, as it can
handle the multicollinearity problem that can cause biased regression estimates,
see, for example, [21].

Nevertheless, use of PCA in the time series context can bring some mis-
specifications in the fit of the GAM model, as this technique requires that the
data should be independent. This problem arises due to the fact that the princi-
pal components are linear combinations of the variables. In this context, as the
covariates are time series, the autocorrelation present in the observations are
promptly transferred to the principal components, see [20].

One solution to this issue was recently proposed by [17], see, also, [18], who
introduced a model which combines GAM, PCA and the vector autoregressive
(VAR) process. The authors suggest to apply the VAR model to the covariates, in
order to eliminate the serial correlation and produce white noise processes, which
in turn will be used to build the principal components in the PCA. The new
variables obtained in the PCA are finally used as covariates in the GAM model,
originating the so called GAM-PCA-VAR model. In their work, the authors have
focused on presenting the model and showing its superiority compared to the
sole use of GAM or the GAM-PCA procedures, but have not deepened on the
theoretical properties of the model.

Thus, to cover this gap, this work aims to state and prove some properties
of the GAM-PCA-VAR model, as well as to perform some simulation study to
check the results for small samples.

The paper is organized as follows. Section 2 presents the main statistical
model, GAM-PCA-VAR, addressed here and its related models as GAM, PCA
and VAR, in some detail. In Section 3 the theoretical results are proved for the
main model. Section 4 discusses the simulation results and Section 5 is devoted
to the analysis of a real data set. Section 6 concludes the work.

2 The GAM-PCA-VAR model

The generalized additive model (GAM), see [11] and [19], with a Poisson marginal
distribution is typically used to relate a non-negative integer valued response
variable Y with a set of covariates or explanatory variables X1, . . . , Xp. In GAM



the expected value µ = E(Y ) of the response variable depends on the covariates
via the formula

g(µ) = β0 +

p∑
i=1

fi(Xi),

where g denotes the link function, β0 is the intercept parameter and fi’s are func-
tions with a specified parametric form, e.g., they are linear functions fi(x) = βix,
βi ∈ R, i = 1, . . . , p, or non-parametric, e.g., they are simple smoothing functions
like splines or moving averages. The unknown parameters β0 and fi, i = 1, . . . , p
can be estimated by various algorithms, e.g., backfitting or restricted maximum
likelihood (REML) method. However, if the data observed for variables Y and
Xi, i = 1, . . . , p, form a time series the observations cannot be considered as a
result of independent experiments and the covariates present strong interdepen-
dence, e.g., multicollinearity or concurvity, the standard fitting methods result
in remarkable bias, see, e.g., [7] and [17].

Let {Yt} ≡ {Yt}t∈Z be a count time series, i.e., it is composed of non-negative
integer valued random variables. We suppose that the explanatory variables form
a zero-mean stationary vector time series {Xt} ≡ {Xt}t∈Z of dimension p, i.e.,
Xt = (X1t, . . . , Xpt)

> where> denotes the transpose, with the covariance matrix
ΣX = E(XtX

>
t ). Let Ft denote the σ-algebra which contains the available

information up to time t for all t ∈ Z from the point of view of the response
variable, e.g., Xt is Ft−1-measurable. The GAM-PCA-VAR model is introduced
in [17] as a probabilistic latent variable model. In this paper, we define this model
in a more general form as

Yt | Ft−1 ∼ Poi(µt), (1)

Xt = ΦXt−1 +AZt (2)

with link

g(µt) = β0 +

p∑
i=1

∞∑
j=0

fij(Zi(t−j)), (3)

where Poi(·) denotes the Poisson distribution, the latent variables {Zt}, Zt =
(Z1t, . . . , Zpt)

>, form a zero-mean Gaussian vector white noise process of dimen-
sion p with diagonal variance matrix Λ = diag{λ1, . . . , λp}, where λ1 ≥ λ2 ≥
. . . ≥ λp, A is an orthogonal matrix of dimension p×p, Φ is a matrix of dimension
p×p, g is a known link function, β0 denotes the intercept, and fij ’s are unknown
functions. For a zero-mean Gaussian vector white noise process {Zt} with covari-
ance matrix Σ we shall use the notation {Zt} ∼ GWN(Σ). See also [4, Definition
11.1.2]. Clearly, for all i, the univariate time series {Zit} ∼ GWN(λi), and {Zit}
is mutually independent from {Zjt} for all j 6= i. We assume that all the eigen-
values of Φ are less than 1 in modulus which implies that equation (2) has a
unique stationary causal solution. In the case of a Poisson distributed response
variable the two widely used link functions are the identity link, g(z) = z, and
the canonical logarithmic link, g(z) = log z. The set (β0, {fij}, A, Λ, Φ) forms
the parameters of the GAM-PCA-VAR model to be estimated. We remark that



in the case of canonical logarithmic link function no additional assumption is
needed for the parameters, while in the case of identity link function all the
parameters in equation (3), i.e., β0 and fij ’s, have to be non-negative. It should
be also emphasized that the underlying intensity process {µt} of {Yt} is also a
time series with a complex dependence structure, and µt is Ft−1-measurable for
all t ∈ Z. One can see that the time series {Xt} of covariates depends on {Zt}
by formula Xt =

∑∞
k=0 Φ

kAZt−k for all t, see [4, Example 11.3.1].

The dependence of the response time series {Yt} from the explanatory vector
time series {Xt} in the GAM-PCA-VAR model can be described by three trans-
formation steps. Clearly, by equation (2), the latent variable can be expressed
as Zt = A>Ut, where Ut := Xt − ΦXt−1 for all t. Thus, as the first step, the
intermediate vector times series {Ut} is derived from filtering {Xt} by a VAR(1)
filter. One can see that {Ut} ∼ GWN(ΣU ) where ΣU := AΛA>. Then, as the
second step, the latent vector time series {Zt} as principal component (PC) vec-
tor is derived by principal component transformation of the intermediate vector
white noise {Ut}. The transformation matrix of the PCA is given by the spectral
decomposition of ΣU . Finally, as the third step, the standard GAM with link
(3) is fitting for the response time series {Yt} using the latent vector time series
{Zt}. The impact of the VAR(1) filter in the first step is to eliminate the serial
correlation present in the original covariates. On the other hand, the impact of
the PCA in the second step is to eliminate the correlation in the state space of
the original covariates. Hence, the result of these two consecutive transforma-
tions is the latent vector time series {Zt} whose components, Zit, i = 1, . . . , p,
t ∈ Z, are independent Gaussian variables both in space and time. In the case
of logarithmic link function, large positive values in a coordinate of the latent
variable indicate locally high influence according to this latent factor. On the
contrary, large negative values indicate negligible influence on the response, see,
for example, [20]. The order of models in the acronym GAM-PCA-VAR corre-
sponds to these steps starting with the third one and finishing with the first
one.

The GAM-PCA-VAR model contains several submodels with particular de-
pendence structure. If Φ = 0 then the VAR equation (2) is simplified to a prin-
cipal component transformation. In this case, we suppose that there is no serial
correlation and we only have to handle the correlation in the state space of co-
variates. We have two transformation steps: PCA and GAM. This kind of models
is called GAM-PCA model that is intensively studied nowadays, see, e.g., [15]
and [22]. Beside the full PCA when all PCs are involved into the GAM, we can
fit a restricted PCA model by defining fij = 0 for all i > r and j ≥ 0 where
r < p. In this case, the first rth PCs are applied as covariates in the GAM step.
If the matrices in VAR(1) model (2) have the following block structures

Φ =

[
Φq 0
0 0

]
, A =

[
Aq 0
0 Ip−q

]
,

where the eigenvalues of the q× q matrix Φq are less than one in modulus, Aq is
an orthogonal matrix of dimension q×q (q ≤ p), and fi1(z) = βiz with βi ∈ R for



i = 1, . . . , r (r ≤ q), fi1 is a general smoothing function for i = q+1, . . . , p, fij =
0 otherwise, then we obtain the model that was studied in [17] and applied in the
data analysis of Section 5. In this model it is supposed that the set of covariates
can be partitioned into two sets: (X1, . . . , Xq) are normal covariates, e.g., the
pollutant variables in the terminology of Section 5, while (Xq+1, . . . , Xp) are
so-called confounding variables as trend, seasonality, etc. The normal covariates
satisfy a q-dimensional VAR(1) model, however, instead of the all coordinates
of the innovation, only its first rth PCs are involved into the GAM taking into
consideration that the covariates present strong inter-correlation. Finally, we
note that our model can be further generalized by replacing equation (2) by
the more general VARMA or VARIMA or their seasonal variants (SVARMA or
SVARIMA) models.

Since the latent variables {Zt} form a Gaussian vector time series, given a
sample (X1, Y1), . . . , (Xn, Yn), the log-likelihood can be expressed in an explicit
form, see [17] for a particular case. Because this log-likelihood is rather com-
plicated a three-stage estimation method is proposed. Firstly, VAR(1) model is
fitted to the original covariates by applying standard time series techniques.
Secondly, PCA is applied for the residuals defined by Ẑt = Xt − Φ̂Xt−1,

t = 2, . . . , n, where Φ̂ denotes the estimated autoregressive coefficient matrix
in the fitted VAR(1) model. Thirdly, GAM model is fitted using the PCs. The
approach discussed above is similar to the principal component regression, see,
e.g., [12, Chapter 8], and it can be considered as a three-stage non-linear re-
gression method.

The first two steps of the above proposed parameter estimation method for
GAM-PCA-VAR model can be interpreted as consecutive orthogonalizations,
firstly in time and then in the state space of covariates. In [17, Remark] we
argued that the order of VAR filter and PCA can not be interchanged because the
orthogonalization in the state space does not eliminate the serial correlation and,
as the necessary next step, the orthogonalization in time by VAR filter bring back
the inter-correlation between the covariates. In what follows, we demonstrate this
phenomena by giving a simple example. Let {Xt} be a zero-mean causal VAR(1)
process defined by

Xt = ΨXt−1 +Wt,

where {Wt} is a zero-mean vector white noise process with variance matrix ΣW .
Suppose that the variance matrix ΣX of {Xt} is diagonal, i.e., the coordinates
of {Xt} can be interpreted as PCs after PCA. Then ΣW is not necessarily
a diagonal matrix, which implies that a VAR(1) filter may result in an inter-
correlated white noise. Namely, consider the following parameters ΣW = AΛA>

and Ψ = ASA>, where Λ and S are diagonal matrices and A is an orthogonal
matrix. In other words, we suppose that the orthogonal matrix A in the spectral
decomposition of ΣW diagonalizes the autoregressive coefficient matrix as well.
Then, we have, by formula (11.1.13) in [4], that

ΣX =

∞∑
j=0

Ψ jΣW (Ψ>)j =

∞∑
j=0

ASjΛSjA> = Adiag

{
λi

1− s2i

}
A>.



Let σ2 > maxi{λi} arbitrary and define si :=
√

1− λi/σ2 for all i. Clearly, Ψ is a
causal matrix since all its eigenvalues are less than 1 in modulus and ΣX = σ2I,
i.e., the coordinates of {Xt} are uncorrelated. However, the innovation variance
matrix ΣW can be arbitrary proving that the application of VAR filter for a non-
intercorrelated vector time series can give inter-correlated vector white noise in
its coordinates.

Now, we present some particular examples of GAM-PCA-VAR models.

Example 1. One of the simplest GAM-PCA-VAR models is the model with di-
mension p = 1 and log-linear link function. In this case, there is only one covariate
{Xt}, and the VAR equation (2) is an AR(1) model

Xt = φXt−1 + Zt, (4)

where |φ| < 1 which guarantees the existence of a unique stationary causal
solution, {Zt} ∼ GWN(λ), λ > 0. We remark that A = 1 in equation (2) in
order for the model to be identifiable. The link is log-linear expressed as

logµt = β0 + β1Zt. (5)

The parameter set of this model is (β0, β1, λ, φ) with parameter space R2×R+×
(−1, 1). In this model, there is no dimension reduction. Clearly, Zt = Xt−φXt−1,
thus the response depends on the covariate through the link

logµt = γ0 + γ1Xt + γ2Xt−1, (6)

where there is a one-to-one correspondence between the parameter sets (β0, β1, φ)
and (γ0, γ1, γ2) defined by the equations γ0 = β0, γ1 = β1 and γ2 = −φβ1
provided φ 6= 0. However, if we fit the standard GAM by using the link (6) with
covariates Xt and Xt−1 at time t, we take no count of the interdependence in
time series {Xt} which can result in biased and inconsistent estimators of the
GAM parameters.

Example 2. Define a particular two-dimensional (p = 2) GAM-PCA-VAR model
with logarithmic link function in the following way. The two-dimensional covari-
ate vector process {Xt}, Xt = (X1t, X2t)

>, satisfies the VAR(1) model[
X1t

X2t

]
=

[
φ1 0
0 φ2

] [
X1(t−1)
X2(t−1)

]
+

[
cosϕ − sinϕ
sinϕ cosϕ

] [
Z1t

Z2t

]
,

where |φ1| < 1, |φ2| < 1 and {Zit} ∼ GWN(λi) with λi > 0, i = 1, 2, which are
independent from each other. Note that the set of two-dimensional orthogonal
matrices, A, can be parametrized by an angle parameter ϕ ∈ [0, 2π). We assume
that the link is

logµt = β0 + β1Z1t.

The parameter set of this model is (β0, β1, ϕ, λ1, λ2, φ1, φ2) and the parameter
space is R2 × [0, 2π) × R2

+ × (−1, 1)2. Note that, in this model, there is a PCA
step as a dimension reduction since only the first coordinate {Z1t} of the vector



innovation is involved into the GAM as covariate. One can see that the response
depends on the covariates through the link

logµt = γ0 + γ1X1t + γ2X2t + γ3X1(t−1) + γ4X2(t−1),

where γ0 = β0, γ1 = β1 cosϕ, γ2 = β1 sinϕ, γ3 = −β1φ1 cosϕ and γ4 =
−β1φ2 sinϕ. Thus, the intensity process {µt} depends on all coordinates of Xt

and Xt−1. Clearly, there is a one-to-one correspondence between the two param-
eter sets (β0, β1, ϕ, φ1, φ2) and (γ0, γ1, γ2, γ3, γ4).

Example 3. A seasonal one-dimensional GAM-PCA-VAR model with linear link
function can be defined in the following way. Suppose that the one-dimensional
covariate process {Xt} satisfies the SARs(1) model:

Xt = φXt−s + Zt,

where |φ| < 1, {Zt} ∼ GWN(λ) with λ > 0 and s ∈ Z+ denotes the seasonal
period. The link is linear and is given by

µt = β0 + β1f(Zt),

where f : R → R+ is a known function and β0, β1 ∈ R+ are parameters. The
parameter set of this model is (β0, β1, λ, φ) with parameter space R3

+ × (−1, 1).
The response variable depends on the original covariates through the link

µt = β0 + β1f(Xt − φXt−s).

If the function f is sufficiently smooth we have by approximation f(Xt−φXt−s) ≈
f(Xt)− φf ′(Xt)Xt−s, and then

µt = γ0 + γ1f1(Xt) + γ2f2(Xt, Xt−s), (7)

where f1, f2 are known functions and γ0 = β0, γ1 = β1 and γ2 = −β1φ. Thus, the
response depends on the original covariate and its s-step lagged series through
the standard GAM. However, the covariates in equation (7) are clearly depen-
dent.

3 Theoretical results

In this section, we prove some theoretical results for particular classes of GAM-
PCA-VAR models. Consider the log-linear model defined by the link

logµt = β0 +

p∑
i=1

∞∑
j=0

βijZi(t−j), (8)

where β0, βij ∈ R, i = 1, . . . , p, j ∈ Z+. The first proposition is about the
existence of log-linear GAM-PCA-VAR models.



Proposition 1. Suppose that σ2 :=
∑p
i=1 λi

∑∞
j=0 β

2
ij is finite. Then the GAM-

PCA-VAR model with log-linear link (8) has solution {(Yt,Xt)} which is a
strictly stationary process and E(Yt) = E(µt) = exp(β0 + σ2/2) for all t ∈ Z.

Proof. By conditioning we have that

E(Yt) = E(E(Yt | Ft−1)) = E(µt) = E(exp(logµt)) = exp(β0 + σ2/2) (9)

is finite since, by equation (8), logµt ∼ N (β0, σ
2), i.e., µt has a lognormal

distribution, and the moment generating function of ξ ∼ N (β0, σ
2) is given by

Mξ(t) := E(exp(tξ)) = exp(β0t+(σt)2/2). Thus, the non-negative integer valued
random variable Yt is finite with probability one for all t ∈ Z. The vector time
series {Zt} forms a Gaussian white noise. Hence it is strictly stationary process
with backshift operator B(Zt) = Zt−1 for all t ∈ Z. Since both stochastic
processes {Yt} and {Xt} depend on {Zt} through time-invariant functionals, we
have the strict stationarity of {(Yt,Xt)} and B(Xt) = Xt−1, B(Yt) = Yt−1 for
all t ∈ Z. ut

In the next proposition, we prove that all moments of the log-linear GAM-
PCA-VAR model are finite.

Proposition 2. Suppose that σ2 defined in Proposition 1 is finite. Then all
moments of the stochastic process {(Yt,Xt)} are finite. In particular, we have,
for all t ∈ Z,

Var(Yt) = exp(2β0 + σ2)(exp(σ2)− 1 + exp(−β0 − σ2/2)),

Var(µt) = exp(2β0 + σ2)(exp(σ2)− 1).

Proof. Let r ∈ N. Define the rth factorial of a non-negative integer k as k[r] :=
k(k − 1) · · · (k − r + 1) and let k[0] := 1. For the rth factorial moment of Yt we
have by conditioning that

E(Y
[r]
t ) =

∞∑
k=0

k[r]P(Yt = k) = E
∞∑
k=0

k[r]P(Yt = k | Ft−1)

=E
∞∑
k=r

µkt
(k − r)!

e−µt = E(µrt )

for all t ∈ Z. Similarly to (9), we have that the factorial moments are finite, since

E(Y
[r]
t ) = E(µrt ) = E(exp(r logµt)) = exp{β0r + (σr)2/2}. (10)

Since the higher order moments can be expressed by the factorial moment via
the formula

E(Y r) =

r∑
j=0

S(r, j)E(Y [j]),

where S(r, j)’s denotes Stirling numbers of the second kind, the finiteness of
all higher order moments follows easily. Since {Xt} is a Gaussian process all



its moments are finite. Finally, the existence of mixed moments follows by the
Cauchy-Schwarz inequality.

From Equation (10), we have

Var(µt) =E(µ2
t )− E2(µt) = exp(2β0 + (2σ)2/2)− exp(2β0 + σ2)

= exp(2β0 + σ2)(exp(σ2)− 1).

Finally, the formula for Var(Yt) can be derived by

Var(Yt) = E(Var(Yt | Ft−1)) + Var(E(Yt | Ft−1)) = E(µt) + Var(µt). ut

The existence of all moments for the log-linear GAM-PCA-VAR process is
to be compared with the same result for the integer valued GARCH, so-called
INGARCH, process, see [9, Proposition 6]. This implies that the log-linear GAM-
PCA-VAR process possesses second and higher order structures, e.g., the auto-
correlation function, the spectral density function, the cumulants and the higher
order spectra exist. Let ρY denotes the autocorrelation function of the time series
{Yt}.

Proposition 3. For the auto- and cross-correlation functions of the GAM-
PCA-VAR process {(Yt,Xt)} with intensity process {µt}, we have ρY (h) =
cY ρ(h), ρµ(h) = cµρ(h) and ρY µ(h) = cY µρ(h) where

ρ(h) := exp

 p∑
i=1

λi

∞∑
j=0

βi(j+|h|)βij

− 1, h ∈ Z \ {0},

and the constants cY , cµ, cY µ are defined by

cY := (exp(σ2)−1+exp(−β0−σ2/2))−1, cµ := (exp(σ2)−1)−1, cY µ :=
√
cY cµ.

Moreover, Cov(Yt+h,Xt) = Cov(µt+h,Xt) = E(Yt+hXt) = E(µt+hXt) = C(h)
with

C(h) := exp(β0 + σ2/2)×

{∑∞
k=0 Φ

kA(λ ◦ βh+k) if h ≥ 0,∑∞
k=0 Φ

k−hA(λ ◦ βk) if h ≤ 0,
(11)

where λ := (λ1, . . . , λp)
>, βj := (β1j , . . . , βpj)

>, j ∈ Z+, and ◦ denotes the
entrywise (Hadamard) product.

Proof. Let h ∈ N. One can see that for the intensity process we have µt+h =

µ
(1)
th µ

(2)
th where

logµ
(1)
th := β0 +

p∑
i=1

h∑
j=1

βi(h−j)Zi(t+j), logµ
(2)
th :=

p∑
i=1

∞∑
j=0

βi(j+h)Zi(t−j).



Clearly, µ
(1)
th is independent of Ft−1 and Yt, while µ

(2)
th is Ft−1-measurable. Hence,

we have by conditioning that

E(Yt+hYt) =E(YtE(Yt+h | Ft+h−1)) = E(µt+hYt) = E(µ
(1)
th µ

(2)
th Yt)

=E(µ
(1)
th )E(µ

(2)
th E(Yt | Ft−1)) = E(µ

(1)
th )E(µ

(2)
th µt) = E(µt+hµt)

since µt is independent of µ
(1)
th . This gives the result for h > 0. On the other

hand, for all h > 0, again by conditioning, E(Yt+hµt) = E(µt+hµt). Thus

Cov(Yt+h, Yt) = Cov(µt+h, µt) = Cov(Yt+h, µt), h ∈ Z \ {0}.

Since
E(µt+hµt) = E(µ

(1)
th µ

(2)
th µt) = E(µ

(1)
th )E(µ

(2)
th µt)

similarly to equation (9) we have

E(µt+hµt) = exp

2β0 +
1

2

p∑
i=1

λi

h−1∑
j=0

β2
ij +

∞∑
j=0

(βi(j+h) + βij)
2


= exp

 p∑
i=1

λi

∞∑
j=0

βi(j+h)βij

E(µt+h)E(µt).

Thus, the first part of the proposition follows by Proposition 2.
Next we prove the formula (11) for the cross-correlations of response and

covariate variables. Clearly, by conditioning, E(Yt+hXt) = E(µt+hXt) for all

h ∈ Z+. On the other hand, for all t ∈ Z, h ∈ Z+, we have Xt+h = X
(1)
th +X

(2)
th

where

X
(1)
th :=

h∑
k=1

Φh−kAZt+k, X
(2)
th :=

∞∑
k=0

Φh+kAZt−k.

One can see that X
(1)
th is independent of Ft−1 and Yt, while X

(2)
th is Ft−1-

measurable. Thus, we have that

E(Xt+hYt) =E((X
(1)
th +X

(2)
th )Yt) = E(X

(1)
th )E(Yt) + E(X

(2)
th E(Yt | Ft−1))

=E(X
(1)
th )E(µt) + E(X

(2)
th µt) = E(Xt+hµt).

Hence E(Yt+hXt) = E(µt+hXt) for all h ∈ Z and it is enough to compute the
cross-correlation between {Xt} and {µt}. Let h ≥ 0. For all ` ∈ {1, . . . , p},
k ∈ Z+ let Ih`k := {1, . . . , p} × Z+ \ (`, k + h) and define the random variables

log ξth`k := β0 +
∑

(i,j)∈Ih`k

βijZi(t+h−j), log ηth`k := β`(k+h)Z`(t−k).

Then µt+h = ξth`kη
th
`k , where the factors in this decompostion are independent.

Since E(µt+hXt) =
∑∞
k=0 Φ

kAE(µt+hZt−k) and, using the fact that for Z ∼
N (0, λ) and β ∈ R we have E(Z exp(βZ)) = βλ exp(λβ2/2),

E(µt+hZ`(t−k)) = E(ξth`kη
th
`kZ`(t−k)) = E(ξth`k)E(ηth`kZ`(t−k)) = E(µt+h)β`(k+h)λ`,



we obtain the formula (11). The proof is similar in the case of h < 0. ut

Remark 1. It is easy to see that if βij = βji for all i, j, then the function ρ is

given by ρ(h) = exp(
∑p
i=1 λiβ

|h|
i /(1−β2

i ))−1, h ∈ Z. If βi’s are all positive then
ρ is positive everywhere and we have autocorrelation functions which are similar
to what is displayed in Figure 1. For the one-dimensional model in Example 1 we
have the cross-correlation function (CCF) C(h) = exp(β0 + λβ2

1/2)λβ1φ
−h for

h ≤ 0 and C(h) = 0 for h > 0. If φ > 0 then, according to positive or negative
β1, we obtain everywhere positive or negative CCFs. For example, see the CCFs
in Figure 2 between the response (Admissions) and pollutants CO, NO2 that
are positive and the CCFs between the response (Admissions) and O3, SO2 that
are negative at every lag, respectively.

Consider another widely used link function, the linear one, and define the
linear GAM-PCA-VAR model by the link

µt = β0 +

p∑
i=1

∞∑
j=0

βijf(Zi(t−j)), (12)

where β0, βij ∈ R+, i = 1, . . . , p, j ∈ Z+ are parameters and f : R → R+ is a
known function, e.g., f(z) = exp(z). Let ϕ(x |λ) denote the probability density
function of the normal distribution with mean 0 and variance λ.

Proposition 4. Suppose that, for all i = 1, . . . , p,
∑∞
j=0 βij < ∞ and τi :=∫∞

−∞ f(x)ϕ(x |λi)dx < ∞. Then the GAM-PCA-VAR model with linear link
(12) has a strictly stationary solution {(Yt,Xt)}. Moreover, E(Yt) = E(µt) =
β0 +

∑p
i=1 τi

∑∞
j=0 βij.

Proof. The proof is similar to the proof of Proposition 1. ut

Clearly, the assumptions of Proposition 4 do not necessarily garantee the
existence of higher order moments of linear GAM-PCA-VAR process. Indeed,
the rth order moment E(Y rt ) is finite if and only

∫∞
−∞ fr(x)ϕ(x |λi)dx < ∞ for

all i where r ≥ 1.

4 Simulation study

In order to evaluate the effect on the parameter estimation of a GAM model in
the presence of temporal correlation in the covariate {Xt}, a simulation study
was conducted. The data were generated according to the model discussed in
Example 1. Three estimation methods were considered: the standard GAM with
only one covariate where the estimated parameters were β0 and β1 (M1); the
standard GAM with two covariates, the original one and its 1-step lagged se-
ries, where the estimated parameters were β0, β1, β2 and φ = −β2/β1 (M2); the
full GAM-PCA-VAR model by the procedure described in Section 2 where all
parameters β0, β1, φ, λ were estimated (M3).



For the model discussed in Example 1 the data were generated under β0 =
0.2, β1 = 1, λ = 2 and three scenarios were considered as φ = −0.7, 0.3, 0.9 to
model strong negative, small positive and strong positive correlations, respec-
tively. In order to model the impact due to some unobservable variables, e.g.,
environmental ones in the context of the next section, independent N (0, 0.1)
distributed random variables were added to the predictor of logµt for all t ∈ Z.
The sample size n = 1000 and the number of Monte Carlo simulations was equal
to 100. The empirical values of mean, bias and mean square error (MSE) are
displayed in Table 1. All results were obtained by using R-code.

Table 1. Simulation results for model in Example 1

Estimation method φ Parameter Mean Bias MSE

M1: GAM with Xt −0.7 β0 = 0.2 0.699 0.499 0.253
β1 = 1 0.507 -0.492 0.244

M2: GAM with Xt, Xt−1 β0 = 0.2 0.204 0.004 0.001
β1 = 1 0.999 -0.001 0.0002
φ = −0.7 -0.7 0 0.0001

M3: GAM-PCA-VAR β0 = 0.2 0.205 0.005 0.001
β1 = 1 0.999 -0.001 0.0002
φ = −0.7 -0.695 0.004 0.0005
λ = 2 2.003 0.003 0.008

M1: GAM with Xt 0.3 β0 = 0.2 0.302 0.102 0.012
β1 = 1 0.905 -0.095 0.009

M2: GAM with Xt, Xt−1 β0 = 0.2 0.209 0.009 0.001
β1 = 1 0.998 -0.002 0.0002
φ = 0.3 0.3 0 0.0002

M3: GAM-PCA-VAR β0 = 0.2 0.209 0.009 0.001
β1 = 1 0.999 -0.001 0.0002
φ = 0.3 0.306 0.006 0.0008
λ = 2 1.995 -0.005 0.009

M1: GAM with Xt 0.9 β0 = 0.2 1.002 0.802 0.651
β1 = 1 0.191 -0.809 0.655

M2: GAM with Xt, Xt−1 β0 = 0.2 0.2 0 0.001
β1 = 1 1 0 0.0002
φ = 0.9 0.899 -0.001 0

M3: GAM-PCA-VAR β0 = 0.2 0.203 0.003 0.001
β1 = 1 1 0 0.0002
φ = 0.9 0.899 -0.001 0.0001
λ = 2 2.007 0.007 0.0086

In the case of standard GAM estimation (M1) it can be seen that the es-
timate of β1 is heavily affected by the autocorrelation structure present in the
covariate, by presenting a negative bias which increases in absolute value as |ϕ|
increases. The estimated MSE also increases substantially with |ϕ|. On the other
hand, it can also be seen that the fitted standard GAM model tends to severely



overestimate β0. Contrarily, the estimation methods M2 and M3 work equally
well, the estimates of the parameters are very close to the true values with no-
ticeably small MSE. The undoubted advantage of method M3 against M2 is that
an AR(1) model is also fitted for the covariate where the innovation variance λ
is estimated and which can be applied later in the prediction. In this procedure
firstly the covariate variable is predicted by equation (4) and then the response
variable is predicted by the GAM using the link (5).

5 Application to air pollution data

In this study, the number of hospital admissions (Admissions) for respiratory
diseases (RD) as response variable was obtained from the main childrens emer-
gency department in the Vitória Metropolitan Area (called Hospital Infantil
Nossa Senhora da Gloria), ES, Brazil. The following atmospheric pollutants as
covariates were studied: particulate material (PM10), sulphur dioxide (SO2), ni-
trogen dioxide (NO2), ozone (O3) and carbon monoxide (CO). For details, e.g.,
descriptive statistics and basic time series plots, see [17]. The data analysed in
this section can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

The graphs of the sampling functions of the autocorrelations and partial
autocorrelations in Figure 1 show that the series of the number of hospital ad-
missions for RD possesses seasonal behaviour, which was to be expected for
this phenomena. Another characteristic observed in the series was an apparently
weak stationarity. Similar graphs for the pollutant series can be found in [17].
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Fig. 1. Sample autocorrelation function (ACF) and partial autocorrelation function
(PACF) of the response variable.

Figure 2 shows the sample cross-correlation functions (CCF) between the
response and pollutant covariates. As we discussed in Remark 1 four CCF’s
among them present similar behaviour: the impact of pollutants CO and NO2 is
positive while the impact of SO2 and O3 are negative to the response variable
at every lag. This observation is consistent with the PCA result presented in
[17], see Table 5, where CO and NO2 form a joint cluster for PC1. On the other
hand, all CCF’s possess seasonal behaviour as well.
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Fig. 2. Sample cross-correlation function (CCF) of the response and pollutant vari-
ables.

Figure 3 shows the sample cross-correlation functions (CCF) between the
response variable and the first three PCs derived from applying PCA for the
vector of pollutants. In Section 3.2 of [17], see Table 5 there, one can see that
the first three components correspond to 83.2% of the total variability. The
temporal behaviour of the PCs is also presented in the autocorrelation plots
of [17, Figure 4]. The autocorrelations and the cross-correlations displayed here
presented heavy seasonality as well. On the other hand, the shape of the CCFs
for the response and PCs can also be classifed into similar groups to the CCFs
in Figure 2. The CCF of PC1 is similar to the one of the PM10. The CCF of
PC2 displays only negative correlations similar to SO2 and O3, while the CCF
of PC3 (Figure 3) displays only positive correlations, see CO and NO2 in Figure
2.

In order to filter the vigorous seasonality both in the response and pollu-
tant variables, seasonal ARMA filters with a 7-day period were applied. The
pollutant vector time series and the one-dimensional response time series were
filtered by SVAR7(1) and SARMA7(1, 1) processes, respectively. The residuals
obtained by these filters indicate remaining significant correlations, see the CCFs
between these residuals in Figure 4. The significant cross-correlations and their
respective lags are presented in Table 2. Clearly, the correlations which belong
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Fig. 3. Sample cross-correlation function (CCF) of the response and first three PCs.

to the negative lags are spurious. However, the correlations which belong to the
positive lags measure the true impact of a covariate. For example, there are sig-
nificant correlations at lag 2 for pollutants PM10, NO2 and CO equally which
could mean that the influence of these pollutants to the response indicates 2
days delay. Contrarily, the influence of the pollutants SO2 and O3 presents far
delays.

Table 2. Significant cross-correlations and their respective lags between the response
and pollutants after the filtering

RD×SO2 RD×NO2

Lag -19 -14 -6 12 23 -12 2 4 14 22
Value -0.063 -0.062 -0.042 -0.047 -0.051 -0.044 -0.050 0.048 0.053 -0.044

RD×PM10 RD×CO RD×O3

Lag 2 23 -12 2 6 9 25
Value -0.044 -0.043 -0.053 -0.048 0.045 0.054 -0.055

Figure 5 shows the sample CCF between the residuals of the response variable
and the first three PCs after the filtering. The significant cross-correlations and
its respective lags are presented in Table 3. It should be emphasized that there
are strong coincidences in the lags between Table 2 and 3. For example, the
lag 2 in PC1 corresponds to the pollutants PM10, NO2 and CO, the lag 6 in
PC1 corresponds to the pollutant CO, while lag 25 in PC1 corresponds to the
pollutant O3. The lag 12 in PC2 corresponds to the pollutant SO2. Finally, the
lag 14 corresponds to the pollutant NO2 and the lag 23 to the pollutants SO2 and
NO2. These correspondences are compatible with the clustering derived in [17,
Table 7]. The fitted GAM-PCA-VAR model with its goodness-of-fit measures
are reported in [17] as well. We note that in this fitted model fij = 0 was chosen
for all j > 0. In view of the above results the GAM-PCA-VAR model with link

logµt = β0 +

p∑
i=1

∑
j∈Ii

fij(Zi(t−j))
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Fig. 4. Sample cross-correlation function (CCF) between the response and pollutant
variables after the filtering.

can also be a possible candidate, where Ii denotes the set of lags which belong
to the significant cross-correlation between the residuals of the response and the
ith PC. This model can be fitted by using the procedure described in Section 2.
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Fig. 5. Sample cross-correlation function (CCF) between the response and PCs after
the filtering.



Table 3. Significant cross-correlations and their respective lags between the response
variable RD and PCs after the filtering

RD×PC1 RD×PC2 RD×PC3

Lag -14 -12 2 6 25 -5 -2 5 12 1 14 23
Value -0.051 -0.046 -0.057 0.046 0.043 -0.048 -0.046 0.048 -0.047 0.042 -0.078 -0.045

6 Conclusions

A hybrid called GAM-PCA-VAR model composed by three statistical tools, the
VAR model, PCA and the GAM, with Poisson marginal distribution, was devel-
oped in a more general framework than in [17]. A three-stage estimation method
was proposed and studied by simulation for some examples. Some theoretical
properties were also proved. The model was applied to describe the dependence
between the number of hospital admissions for respiratory diseases and air pol-
lutant covariates.

An extension of the proposed estimation method for the GAM-PCA-VAR
model by a variable selection procedure which ensures that only the significant
PCs with their respective lags are involved into the model will be pursed in
future works.
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