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Abstract

In surrogate modeling, polynomial chaos expansion (PCE) is popularly utilized to represent the random
model responses, which are computationally expensive and usually obtained by deterministic numerical
modeling approaches including finite-element and finite-difference time-domain methods. Recently, efforts
have been made on improving the prediction performance of the PCE-based model and building efficiency
by only selecting the influential basis polynomials (e.g., via the approach of least angle regression). This
paper proposes an approach, named as resampled PCE (rPCE), to further optimize the selection by making
use of the knowledge that the true model is fixed despite the statistical uncertainty inherent to sampling
in the training. By simulating data variation via resampling (k-fold division utilized here) and collecting
the selected polynomials with respect to all resamples, polynomials are ranked mainly according to the
selection frequency. The resampling scheme (the value of k here) matters much and various configurations
are considered and compared. The proposed resampled PCE is implemented with two popular selection
techniques, namely least angle regression and orthogonal matching pursuit, and a combination thereof. The
performance of the proposed algorithm is demonstrated on two analytical examples, a benchmark problem
in structural mechanics, as well as a realistic case study in computational dosimetry.

Keywords:
Surrogate modeling, Sparse polynomial chaos expansion, Resampled polynomial chaos expansion, Data
resampling, Sensitivity analysis, Double cross validation

1. Introduction1

Mathematical modeling is common practice nowadays for better understanding real-world phenomena.2

However, a closed-form solution of the governing equations is unavailable in general and numerical modeling3

schemes, such as finite-difference time-domain (FDTD) [1] and finite element method (FEM) [2], are com-4

monly employed. The computational method can be considered as a black-box code that takes a vector of5

parameters as input and yields a vector of quantities of interest that can be further used to assess the sys-6

tem under consideration. However, the real-world system may not be accurately modeled, one critical factor7

being the uncertainty of input parameters [3], which can be taken into account by setting a probabilistic8

model of these parameters.9

Describing inputs by random variables which follow specific probabilistic density functions (PDFs) [4], the10

propagation of such random inputs through the system yields random outputs and the investigation of such11

uncertainty propagation is one of the major problems in uncertainty quantification (UQ) [5]. Monte Carlo12

simulations (MCS) can be applied/used to run the UQ analysis, however, it becomes intractable when the13

computational cost of a single simulation is high (which corresponds with the cases described here). Surrogate14
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model (a.k.a. metamodel) is popularly utilized as a remedy to emulate the system response. Among various15

approaches, such as Gaussian process (Kriging method) [6], neural networks [7], etc., surrogate modeling16

based on polynomial chaos expansion (PCE) [8, 9, 10, 11, 12] is of interest here due to its advantages in17

both interpretation and versatility.18

Representing the finite-variance random output on a Hilbert space spanned by multivariate basis poly-19

nomials orthogonal to the joint PDF of input variables, the numerical modeling of the system response is20

replaced by the computation of a PCE, while the expansion coefficients can be obtained by two different21

methodologies. For the so-called intrusive methods, taking the spectral finite element method [13] as an22

example, the classical FEM is combined with the Karhunen-Loève expansion of input random fields and23

the coefficients are obtained by a Galerkin scheme which results in a system of deterministic equations24

[14]. In contrast, without modifying the underlying code, hence as non-intrusive methods, coefficients can25

be obtained based on an experimental design (ED) by two popularly utilized approaches. While minimiz-26

ing the mean square error of data discrepancy leads to the solution of regression method [15], projection27

method [16, 17] exploits the orthogonality of basis functions, the expansion coefficient being the solution of28

multidimensional integrations which can computed by quadrature methods.29

A PCE, as an infinite series, should be truncated for computational purpose. How to perform this30

truncation optimally is the major issue, which is addressed in this paper. In the literature, a maximum31

value is commonly set to the total degree of multivariate polynomials [18]. However, the number of basis32

polynomials, as well as the required ED size, dramatically increases with the number of input variables,33

which is known as the curse-of-dimensionality. Thus, the so-called sparse PCE [19, 20, 21, 22] has been34

developed by only including the most influential polynomials in the truncation. Measuring this influence35

by correlation, the classical greedy algorithms, orthogonal matching pursuit (OMP) [23] and least angle36

regression (LARS) [24], have been utilized to rank the polynomials.37

This contribution is aimed at stabilizing the constructed sparse PCE model with respect to small changes38

in the training data. Bagging (a.k.a. bootstrap aggregating) [25] is a popular approach, especially for39

decision tree methods, to stabilize the modeling approach by training multiple regression models based40

on bootstrap resamples [26] and taking the final prediction as the mean of all predictions. In the study41

of variable selection, rather than treating the resamples independently in the construction of regression42

models, the so-called inclusion frequency [27] (or inclusion fraction [28]) is computed as the criterion for the43

importance of a variable. With the knowledge that resamples are perturbed versions of the same original44

data, the truly important variables should be included in the built model for most bootstrap resamples since45

all models should reflect the same underlying data structure. The utilization of inclusion frequency improves46

the replication stability of selected variables [27, 29].47

In this paper, the idea of inclusion frequency is applied to the construction of a sparse PCE model. Based48

on LARS or OMP, multiple PCE models are constructed based on resamples and involved basis polynomials49

are ranked according to the inclusion frequency. The replication stability of selected polynomials in the final50

model is expected to be enhanced. Since the PCE model is highly determined by the basis, the stability of51

the built model would be increased as well. Such construction method of a sparse PCE model is named as52

resampled PCE (rPCE).53

Improvements and adjustments are made in rPCE based on the application procedure of inclusion fre-54

quency on variable selection. First, recent work in [30] shows subsampling [31] is superior to bootstrapping55

in the ability of distinguishing important and redundant variables and in the favor of sparse models. Remark56

that subsampling consists of randomly drawing part of samples without replacement while bootstrapping57

approach generates observations of the same size as the original data but with replacement. Here, an effi-58

cient subsampling technique, k-fold division, is applied, where the original data is divided into k parts and59

a resampling data set is composed of any k − 1 parts. This procedure ensures the original data is fully60

explored with k resamples. In variable selection, variables are roughly labeled “important” or “redundant”61

by comparing the associated inclusion frequency with a cut-off value, the choice of which is still an open62

problem [32]. In rPCE, while the basis polynomials are ranked by inclusion frequency, the number of in-63

cluded polynomials in the final model is decided by cross validation. Moreover, for polynomials with the64

same inclusion frequency, the associated cross-validation errors are taken as an extra criterion for further65

ranking. Such ranking approach provides the possibility to combine different basis pursuit methods. Efforts66
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trying to merge the selection results of LARS and OMP are made.67

This paper itself is organized as follows. A general framework of the PCE-based surrogate modeling68

is introduced in Section 2. Section 3 gives the concept of the full and sparse PCE truncation, where69

the building processes based on LARS and OMP are briefly described, respectively. The methodology of70

rPCE is illustrated in Section 4. Resampling data through the random division into k parts, based on the71

generated candidate polynomials by LARS and/or OMP, the importance of polynomials is evaluated through72

the inclusion frequency. The value of k matters and the determination strategy is discussed in Section 5,73

where the strategy to select the source of candidate polynomials (LARS, OMP, or their combination) is74

also presented. The improved performances in prediction and sensitivity analysis by rPCE are shown via75

application to two classical analytical functions, one finite-element model and one finite-difference-time-76

domain model in Section 6. Conclusions and perspectives follow in Section 7.77

2. Surrogate model based on polynomial chaos expansion78

2.1. Probabilistic modeling79

Consider a physical model represented by a deterministic function y = M (x), where x ∈ RM and80

y ∈ RQ, M , Q being the number of input and output quantities, respectively. The uncertainty of inputs and81

the propagation to responses lead to the description of x and y as random vectors, X and Y . Here, since82

each component of Y can be separately analyzed in statistical learning, only cases with scalar response, i.e.,83

Q = 1, are considered for simplicity.84

Describing the random vector X by the joint probability density function (PDF) pX and assuming that
Y has a finite variance, the latter belongs to a Hilbert space L2(RM ,BM ,PX), BM being the Borel σ-algebra
of the event space RM and PX being the probability measure of X. The Hilbert space is equipped with the
following inner product

〈f, g〉 = E [f(X)g(X)] =

∫
X
f(x)g(x)pX(x)dx, (1)

and can be represented by a complete set of orthogonal basis functions.85

2.2. Polynomial chaos expansion86

Polynomial chaos expansion is a spectral representation of Y taking polynomials as basis functions,

Y =
∑
α∈NM

βαψα(X), (2)

where α is a vector of non-negative integers indicating the order of multivariate polynomials ψα and βα is87

the corresponding expansion coefficient.88

The construction of ψα(X) is briefly recalled now [8, 11]. Assuming that the input random variables are
independent, the multivariate polynomials is a tensor product of univariate polynomials παi

, i.e.,

ψα(X) = π(1)
α1

(X1)× . . .× π(M)
αM

(XM ), (3)

where π
(i)
αi ’s are univariate orthonormal polynomials with respect to the PDF of the i-th parameter Xi,89

with degree αi (e.g., Hermite polynomials for Gaussian distributions). This methodology is referred to as90

generalized PCE (gPCE) [11, 12]. For PDFs not included in gPCE, a nonlinear mapping of input variables91

to the known ones can be made with the technique of isoprobabilistic transformation [33, 34] or specific92

orthogonal polynomials are computed numerically via the Stieltjes procedure [35].93

The PCE coefficients βα are obtained in a non-intrusive way by the regression approach. A data set
{x(n), n = 1, . . . , N} sampled from the input PDF pX and the corresponding response {y(n) = M(x(n))}
compose altogether the ED. With notations of column vector y = [y(n)], β = [βα] and matrixψ = [ψα(x(n))],
the PCE coefficients can be obtained from

β̂ = arg min
β
||y −ψβ||22, (4)

3



which yields the ordinary least square (OLS) [36] solution as the normal equation

β̂ =
(
ψTψ

)−1
ψTy, (5)

the superscript “T” denoting the transpose operation. Remark that overfitting problems may be suffered94

for the OLS solution but can be avoided by implementing regularization [22, 37] techniques, as provided by95

the LARS algorithm described later on.96

Remark that, although only cases with independent inputs are considered in the above analysis, it is97

possible to describe the mutual dependence by a copula [38] and use Rosenblatt transformation [33] to cast98

the problem as a function of auxiliary independent variables.99

2.3. Estimation of prediction performance100

The model assessment is often performed by Monte Carlo simulations with a large test dataset, which is
independent from the experimental design. Denote M̂ as the surrogate model, the input vector and response

of the n-th test data as x
(n)
test and y

(n)
test, respectively. The performance of the constructed model is assessed

by computing the mean square error of data discrepancy

εtest =
1

Ntest

Ntest∑
n=1

(
M(x

(n)
test)− M̂(x

(n)
test)

)2
. (6)

For an easier interpretation of εtest, the associated coefficient of determination R2
test is computed by

R2
test = 1− εtest

Var(ytest)
, (7)

where Var(ytest) =
∑Ntest

n=1 (y
(n)
test − ȳtest)2/(Ntest − 1) and ȳtest =

∑Ntest

n=1 y
(n)
test/Ntest. Therefore, the closer101

R2
test is to one, the more accurate is the prediction by M̂.102

However, in scenarios with high computational cost for a single simulation, it is usually intractable to have
a large test dataset. Then, the same data as for training are often reused for model assessment. However,
the underestimation of the generalization error is well-known in the case of overfitting [18]. Cross-validation
was thus proposed and is commonly advocated [39, 40]. Here, leave-one-out cross-validation (LOOCV) is
applied and the corresponding cross-validation error reads:

εLOO =
1

N

N∑
n=1

(
M(x(n))− M̂−(n)(x(n))

)2
, (8)

where M̂−(n) denotes the surrogate model trained by leaving the n-th data out. Remark that εLOO is also
known as predicted residual of squares (PRESS) or jacknife error [41] and it can be computed fast in single
training process [18] by

εLOO =
1

N

N∑
n=1

(
M(x(n))− M̂(x(n))

1− hn

)2

, (9)

where hn is the n-th diagonal element of the matrix ψ
(
ψTψ

)−1
ψT .103

3. Surrogate modeling based on full PCE and sparse PCE104

The accurate PCE of the true model is an infinite series and needs a truncation for the sake of compu-
tation. From Eq. (2), one sees that truncating a PCE is actually selecting a subset of NM for α such that
the system response can be represented by the associated polynomials at a sufficient accuracy. Assuming
the selected α vectors compose the set A, the truncated PCE can be written as

M̂(X) =
∑
α∈A

βαψα(X). (10)
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Setting a maximum value to the total degree of polynomials leads to the so-called full PCE model, which105

suffers from the curse-of-dimensionality [42], meaning that the cardinality of A sharply increases with the106

number of input parameters, as explained below. While the problem of curse-of-dimensionality can be107

moderated by the algorithm of Smolyak sparse quadrature [43], recently least angle regression (LARS)108

[20, 44] and orthogonal matching pursuit (OMP) [23, 44] have been used to downsize the truncation and109

achieve the so-called sparse PCE model.110

3.1. Full PCE model111

A is commonly selected by setting a maximum to the total degree of multivariate polynomials, i.e.,112

Afull = {α ∈ NM ,
∑M
i=1 αi ≤ p}, p a positive integer. The PCE-based surrogate model with this setup113

is named in the sequel as the full PCE model. However, the cardinality of Afull, denoted by Pfull, equals114 (
p+M
p

)
and polynomially increases with the value of p and M . Moreover, to ensure the well-conditioning of115

the information matrix ψ in Eq. (5), the ED size N should be larger than Pfull. As a result, the resulting116

curse-of-dimensionality prevents the application of the full PCE model in scenarios with large p and M .117

3.2. Sparse PCE model118

The problem of curse-of-dimensionality during the construction of full PCE models is addressed by119

constructing the so-called sparse PCE models, where A is downsized through the use of greedy algorithms,120

so that only the most influential polynomials are included in the truncated PCE.121

For p = 1, . . . , pmax,

1. Afull = {α ∈ NM ,
∑M
i=1 αi ≤ p} and set active set Aa0 = ∅;

2. Rank basis polynomials in {ψα,α ∈ Apfull} by LARS, OMP, or rPCE. The α corresponding with
the first Jmax most influential basis polynomials compose the set {αj , j = 1, . . . , Jmax}.
3. For j = 1, . . . , Jmax,

Update Aaj = Aaj−1 ∪αj . Based on ψAa
j
, compute βj as the OLS solution and associated εjLOO.

End

4. J = arg minj{εjLOO} and εp,min
LOO = εJLOO. When p ≥ 3, if εp,min

LOO > εp−1,min
LOO > εp−2,min

LOO , stop the
model-construction process and output the PCE model corresponding with ψAa

J
.

End

Table 1: Procedures of constructing a sparse PCE model, Jmax = min{N − 1, card(Afull)}.

Table 1 presents the procedures to construct a sparse PCE model. Based on candidate α from the full122

PCE model, i.e., α ∈ Afull, the associated basis polynomials are ranked (e.g., by correlation with response123

data y for OMP in Table A.1) and the first Jmax most influential ones are selected by OMP (refer to algorithm124

in Table A.1) or LARS (refer to Table A.2), Jmax being the maximum number of included polynomials in125

the final constructed PCE model and set as min{N − 1, card(Afull)} (otherwise the least-square problem126

becomes ill-posed).127

Assessing the model performance by leave-one-out cross-validation, the optimal number of selected poly-128

nomials, J , corresponds with the PCE model with the minimal εLOO, the computation of which follows (9),129

where only the surrogate model constructed with the whole set of data is required.130

The optimal value for the total degree of polynomials follows an early-stopping criterion. Setting the131

maximum value for p, a progressive increase stops when the minimal εLOO increase with two consequent p.132

4. Surrogate modeling based on resampled PCE133

During replications with resampled training data, different PCE truncations are obtained by LARS or134

OMP and the inclusion frequency of involved polynomials can be computed. Resampled PCE (rPCE) is135
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proposed to refine standard PCE truncation schemes by making use of the inclusion frequency. Cross-136

validation error associated with each polynomial is an additional factor to further rank polynomials with137

the same inclusion frequency. Efforts to combine selection results by LARS and OMP to further improve138

the performance of rPCE are also presented.139

4.1. Resampled PCE based on LARS or OMP140

Inclusion frequency is defined as the percentage of replications [27] in which a given basis polynomial is141

selected by LARS or OMP. The variation of training data is simulated by the subsampling technique, k-fold142

division, considering its efficiency in exploiting the information of original data, i.e., the training process143

makes use of all data in k replications.144

Dividing the whole set of data into k subsets, all with approximately same size. Of k subsets, the l-th145

subset is left out and the remaining k − 1 subsets are used for the PCE construction. Varying l from 1146

to k, one has k PCE models built by LARS/OMP and the associated active sets are denoted by AaP,(l),147

l = 1, . . . , k. The subscript “P” and superscript “a” are ignored in AaP,(l) to be A(l) in the followings.148

To search for the most frequent α indices within the k different sets A(l), l = 1, . . . , k, one can merge the149

latter into a multiset AMul = {A(1), . . . ,A(k)}, the superscript “Mul” denoting a multiset (rather than set),150

which allows for multiple instances for each α. Then the selection frequency of α in the k building processes151

is equal to the number of its duplicates in AMul. Denote A as the set (thus no duplicate elements) composed152

of elements in AMul. The selection frequency corresponding with each of element in A is an integer in the153

interval [1, k] and saved in the vector sf . The inclusion frequency is computed as the normalized frequency,154

i.e., sf/k.155

For applications wherein the idea of inclusion frequency has been applied, the final model keeps com-156

ponents (e.g., influential variables for the variable-selection problem [27]) for which the inclusion frequency157

exceeds the cutpoint ν. The value of ν impacts much on the stability and complexity of the final model but158

is usually arbitrarily taken [30, 32], and no conclusive method seems available for an optimal choice of ν159

[27, 29]. To avoid this problem, based on the ranked polynomials, the total number of included polynomials160

(rather than the cutpoint ν) in the final model is chosen by cross validation following the procedures in161

Table 1.162

However, during the running of rPCE, different multi-indices α might have the same frequency, which163

introduces some uncertainty in the ranking of polynomials. To avoid this uncertainty, one more factor,164

namely the effect of each basis polynomial on εLOO, is considered.165

From the LARS/OMP procedures, one can see that the correlated polynomials are sequentially added166

into the active set, thus the increment of εLOO by adding αj into Aaj−1 equals ∆εjLOO = εjLOO − ε
j−1
LOO for167

j ≥ 1, where ε0LOO is set as 0. Thus, each α in AMul corresponds with a ∆εLOO.168

Add the superscript “(l)” to the notation standing for the quantity obtained by leaving the l-th subset
out from model construction. Then, the so-called error score se can be computed as the mean of all terms

∆ε
(l),j
LOO mapping to the same element of A, i.e.,

sie =
1

sif∆εmax
LOO

∑
{(l),j|α(l),j=αi}

∆ε
(l),j
LOO, i = 1, . . . , card{A}. (11)

where the superscript “i” stands for the i-th element of a vector or set. The normalization by ∆εmax
LOO, the

maximum element of |∆ε(l),jLOO|, is to confine the value of sie between −1 and 1 such that the ranking of
polynomials by the total score

s = sf + se, (12)

is mainly affected by sf in rPCE. Remark that sf is used instead of inclusion frequency (the normalized sf )169

and is subsequently named frequency score.170

4.2. Resampled PCE combining LARS and OMP171

The way to rank polynomials in rPCE allows the possibility to combine the results by LARS and OMP.172

Following the procedures in Section 4.1, AMul and EMul (multiset of ∆ε
(l),j
LOO) can be obtained by LARS173

6



and OMP separately, denoted by AMul,LARS, EMul,LARS and AMul,OMP, EMul,OMP, respectively. Then,174

merging results by LARS and OMP into a single multiset, AMul = {AMul,LARS,AMul,OMP} and EMul =175

{EMul,LARS,EMul,OMP}, from which A and the associated total score s can be computed. Then, the basis176

polynomials associated with A are ranked according to s and the construction of a sparse PCE model follows177

procedures in Table 1.178

5. Parameter settings179

5.1. Resampling scheme180

The k-fold division is used to simulate the data variation in rPCE and the value of k matters on the181

performance. A tradeoff lies behind the determination of k. With a small k (e.g., k = 2), a large portion182

(half) of data is apart from the building process. As a result, some information of the true system might183

be lost or not accurately learned by the surrogate model and the selected polynomials may not be truly184

influential. On the other side, a large k, (e.g., k = N) cannot sufficiently simulate the data statistical185

variation and the selected polynomials in the construction of the k different PCEs might have a high186

correlation. This way, the polynomials selected by rPCE would be almost the same as those with LARS or187

OMP and the prior knowledge, from which rPCE is to benefit, cannot be well exploited.188

The proposed strategy is to merge AMul obtained for different values of k. Considering that the validation189

error on the data left out is used to estimate the prediction performance in Section 5.2 and values of190

3, 5, 10, 20, N (leave-one-out), are usually recommended [39, 45, 46] for k-fold cross validation, rPCE will191

run based on the multiset AMul = [AMul
3 ,AMul

5 ,AMul
10 ,AMul

20 ,AMul
N ], where the subscript of AMul

q corresponds192

with the value of k. Data variation is fully simulated via k = 3, 5 and the bias error is small considering193

that in average about 0.86N resamples (without replacement) are used to generate candidate polynomials.194

It seems not easy to optimize the setting of k, especially considering that the optimal value may differ w.r.t.195

scenarios. However, the proposed setting is revealed robust in the various application examples.196

With respect to a set of k values, i.e., k = {3, 5, 10, 20, N}, the total score can be computed based on
sf,k and se,k, the subscript “k” indicating the quantity for a specific value of k. Denote A as the copy of
AMul but without element duplication. For each α in A, its selection frequency can be computed by

f i =
∑

k={3,5,10,20,N}

sif,k, i = 1, . . . , card(A), (13)

where the superscript “i” stands for the i-th element of a vector and sif,k equals zero if the i-th α of A is not197

in AMul
k . Since sif,k is upper bounded by k, the polynomials selected with small values of k (e.g., elements198

in AMul
3 ) will have small values of f i and be less likely to have high ranks in rPCE.199

To solve this problem, instead of (13), the frequency score is computed as a summation of weighted sif,k:

sif =
∑

k={3,5,10,20,N}

sif,k
lcm(3, 20, N)

k
, i = 1, . . . , card(A), (14)

where lcm(3, 20, N) computes the least common multiple of 3, 20, N (same for 3, 5, 10, 20, N). The weights200

give rise to the same maximum value of the summands in (14). Consequently, the candidate polynomials201

w.r.t. different values of k are equally considered in rPCE.202

Finally, the set of k values, i.e., {3, 5, 10, 20, N}, needs an adjustment for a small N . For instance, k can203

only be 3, 5, 10, N when N = 15.204

The computation of error score follows as:

sie =
1

f i

∑
k={3,5,10,20,N}

sie,k, i = 1, . . . , card{A}, (15)

where sie,k equals zero if the i-th α of A is not in AMul
k .205
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5.2. Source of candidate polynomials206

Section 4 presents the rPCE based on candidate polynomials generated by three sources, LARS, OMP or207

their combination, and one needs to decide which source is the optimal option. The polynomials commonly208

and frequently selected by two different approaches are believed influential and more likely to be included209

in rPCE. However, if one approach has a much worse performance than the other, the combination scheme210

would not be recommended, since the candidate polynomials generated by the worse approach might deteri-211

orate the performance of rPCE. Therefore, if LARS is much better than OMP, only candidate polynomials212

by LARS participate into the ranking in rPCE, and vice versa. Otherwise, the combination scheme is used.213

The criterion of “much better” should be properly set. Assuming a large set of validation data is available,214

as illustrated in Section 2.3, R2
test can be computed as the unbiased estimation of the prediction performance.215

Here, the comparison of two building approaches is conducted with the analysis of the distribution of R2
test.216

Varying the training data, a sequence of surrogate models is built and the associated R2
test values are217

computed. Representing R2
test,LARS and R2

test,OMP as the sets of R2
test values obtained by LARS and OMP218

respectively, the first and third quartile of these two sets are computed and denoted by QLARS
1 , QOMP

1 ,219

QLARS
3 , QOMP

3 . Then, if QLARS
1 > QOMP

3 , one considers that LARS is much better than OMP, and vice220

versa. Otherwise, LARS and OMP are considered with similar performances and the combination scheme221

would be adopted.222

However, again a large set of validation data is usually not available due to the high computational costs.223

Here, R2
test is approximated through the validation on the data left out in the k-fold division. With different224

values of k and l, the validations generate a set of determination coefficient R2
k,(l) as the approximations to225

R2
test, l = 1, . . . , k, k ∈ {3, 5, 10, 20, N}. Denoting R2

LARS and R2
OMP as the sets of R2

k,(l) values obtained by226

LARS and OMP, the distribution of sets R2
test is then simulated by R2

LARS and R2
OMP. Remark that two227

layers of cross validations now have been operated in rPCE. The outer cross validation is just illustrated to228

simulate the distribution of R2
LARS and R2

OMP. The inner one is embedded in the running of LARS and OMP229

to compute εLOO in Table A.1 and A.2. The two-layer cross validation here is indeed an realization of the230

known double-cross-validation (DCV) [47] or cross model validation (CMV) [45, 48]. The related literature231

shows the unbiased estimation of R2
test by the determination coefficient from the outer cross-validation errors,232

i.e., R2
k,(l).233

The procedures to rank basis polynomials by rPCE are summarized in Fig. 1. Then, the construction234

of sparse PCE models follows the steps in Table 1.235

Benefiting from the obtained PCE model, the global sensitivity analysis, which measures the impacts236

of input variables to the response, can be conducted via the computation of Sobol’ indices [49, 50] for237

independent variables or Kucherenko indices [51] for dependent cases by Monte-Carlo simulations. Note238

that in the case of independent inputs, Sobol’ indices are readily available from PCE coefficients, as shown239

in [52].240

6. Application examples241

The knowledge that the influential polynomials are to be frequently selected during replications is first242

checked on a specially designed function, the true basis polynomials of which are known. Then, to present the243

performance of surrogate modeling based on rPCE and the comparisons to LARS and OMP, two benchmark244

functions (with dimension M = 3 and M = 8, respectively), a finite-element model (with M = 10) and245

a finite-difference-time-domain model (with M = 4) are analyzed. The PCE models based on LARS and246

OMP are obtained with the Matlab package UQLab (www.uqlab.com) [53, 54], where the maximum degree247

of multivariate polynomials p is set as 20. Using resampling, UQLab provides the candidate polynomials248

to rPCE. Remark that if no specific configurations are given in the following examples, resampled PCE is249

performed with the suggested configurations in Section 5, i.e., optimized source (LARS, OMP, or both) of250

candidate polynomials and candidate polynomials from k = {3, 5, 10, 20, N}.251

Latin-Hypercube sampling [55] is used to sample the input random variables. Since cases with a small252

ED are concerned in this paper, the size of ED N is chosen between 10 and 50 here. As mentioned in Section253

2.2, dependent variables can be analyzed after the transformation into the corresponding independent ones254
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for 𝑙 = 1,2,… , 𝑘 

Unique elements in 𝔸𝑘
Mul,LARS(OMP)

 compose 𝔸𝑘
LARS(OMP)

 . For elements in 𝔸𝑘
LARS(OMP)

, 

count the selection frequency in 𝔸𝑘
Mul,LARS(OMP)

 , denoted by 𝒔𝑓,𝑘
LARS(OMP)

.  With more 

information in Δ𝔼𝑘
Mul,LARS(OMP)

, calculate error score 𝒔𝑒,𝑘
LARS(OMP)

 with (15).  

If 𝑄3
LARS > 𝑄1

OMP, 𝔸Mul =  𝔸𝑘
LARS , 𝕤𝑓 =  𝒔𝑓,𝑘

LARS , 𝕤𝑒 =  𝒔𝑒,𝑘
LARS . 

If 𝑄3
OMP > 𝑄1

LARS, 𝔸Mul =  𝔸𝑘
OMP , 𝕤𝑓 =  𝒔𝑓,𝑘

OMP , 𝕤𝑒 = *𝒔𝑒,𝑘
OMP+. 

Otherwise, 𝔸Mul =  𝔸𝑘
LARS, 𝔸𝑘

OMP , 𝕤𝑓 =  𝒔𝑓,𝑘
LARS, 𝒔𝑓,𝑘

OMP , 𝕤𝑒 = *𝒔𝑒,𝑘
LARS, 𝒔𝑒,𝑘

OMP+. 

Unique elements in 𝔸Mul  compose 𝔸 . Denote 𝒇 as selection 

frequency for elements of  𝔸 in 𝔸Mul. Compute frequency score 

𝐬𝑓 with (18) based on 𝕤𝑓and error score 𝐬𝑒 with (19) based on 𝕤𝑒. 

ℝLARS(OMP)
2 =  ℝ𝑘,LARS(OMP)

2  . Compute 1
st
 and 3

rd
 quartile 

of ℝLARS(OMP)
2 , denoted by 𝑄1

LARS(OMP), 𝑄3
LARS(OMP)

 

Validation on  𝔻(𝑙) (the subset left out) yields 𝑅𝑘,(𝑙),LARS(OMP)
2 .  

 

Set the ED 𝔻 =   𝒙(𝑛), 𝒚(𝑛) , 𝑛 = 1,… ,𝑁   

Divide ED into 𝑘 subsets 𝔻(𝑙), 𝑙 = 1,2, … , 𝑘. 

𝔸𝑘
Mul,LARS(OMP)

=  𝔸𝑘,(𝑙)
LARS(OMP)

 , Δ𝔼𝑘
Mul,LARS(OMP)

=  Δ𝔼𝑘,(𝑙)
LARS(OMP)

 , 

ℝ𝑘,LARS(OMP)
2 =  𝑅𝑘,(𝑙),LARS(OMP)

2  , 𝑙 ∈ *1,2,… , 𝑘+. 

Leaving 𝑙-th subset out, based on the remaining data, construct a surrogate model 

based on LARS(OMP) following the algorithm in Table 1. Denote the set of 

selected 𝛼 and corresponding increment of 𝜖LOO by 𝔸𝑘,(𝑙)
LARS(OMP)

, Δ𝔼𝑘,(𝑙)
LARS(OMP)

.  

for 𝑘 = 3,5,10,20,𝑁 

Rank 𝛼 in 𝔸 according to the total score 𝐬 = 𝐬𝑓 + 𝐬𝑒. 

 

Fig. 1: Flow chart for ranking basis polynomials based on resampled PCE, where steps enclosed by dashed lines are with the
suggested configurations in Section 5.

through the generalized Nataf transformation, so only examples with independent variables are presented255

in this section and the global sensitivity is analyzed with the computation of Sobol’ indices.256
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6.1. Summation of multivariate polynomials257

To show that the influential polynomials associated with the true model are frequently selected, the
surrogate modeling of the following expression,

Y = 1 +X1 +X1X2 +X1X
2
2 +X1X

3
2 , (16)

which is a summation of five multivariate polynomials (including the constant term), is conducted. X1 and258

X2 are independent variables that follow the Gaussian distributions N (0, 1) and N (6, 1), respectively. OMP259

is used to build a sparse PCE model with 12 data points for training and 104 data for independent testing.260

A total of 100 PCE constructions are made to check the selection frequency of polynomials.261
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R
2 te

st

(b)

Fig. 2: Example 1: Summation of multivariate polynomials - (a) the selection frequency of α by OMP and (b) the associated
R2

test in all replications

Due to the Gaussian distribution of input variables, Hermite polynomials are used to compose the262

basis, where the bivariate polynomials are indexed by α = (α1, α2). The constant term corresponds with263

α = (0, 0), while the other four terms in Eq. (16) are with (1, 0), (1, 1), (1, 2), (1, 3), respectively. Labeling264

α by integers, the selection frequency during the 100 PCE constructions is plotted in Fig. 2(a), where the265

dashed lines indicate the five true α indices. Remark that, the selection frequency is smaller than 2 when266

the labels are larger than 45 and only the results with labels ≤ 45 are displayed for a better visualization.267

As observed, although the true indices of α are not always selected, they are the most frequent ones during268

replications. Making use of this knowledge and selecting the most frequent α (also the associated polynomial)269

may improve the performance of the obtained PCE model and avoid the outliers (for example the 98-th270

replication with R2
test = 0.51 in Fig. 2(b), where X2, X1, X3

1 are selected as the basis).271

6.2. Ishigami function272

The Ishigami function, which is defined by

Y = sinX1 + a sin2X2 + bX4
3 sinX1, (17)

is widely used for benchmarking in uncertainty and sensitivity analysis. The parameters are set to a = 7,273

b = 0.1 and the input random variables Xi, i = 1, 2, 3, are independent and uniformly distributed over274

[−π, π]. Legendre polynomials are thus used as the basis according to the principle of the generalized PCE.275

First, 50 data points are used for building the surrogate model and 104 points for estimating the prediction276

performance. The analysis is repeated 100 times in order to investigate the statistical uncertainty of different277

modeling approaches. The prediction of all validation data (106 data over 100 replications) by the surrogate278

models built based on LARS, OMP and rPCE is shown in Fig. 3, where y stands for the true value, ŷ for the279

predicted one, and the solid line indicates the case when ŷ exactly equals y. As observed, although rPCE280
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(a) rPCE (R2
test = 0.9971) (b) LARS (R2

test = 0.8724) (c) OMP (R2
test = 0.8790)

Fig. 3: Ishigami function - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP with 50 data points (100
replications).
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Fig. 4: Ishigami function - optimal total order of polynomials selected by LARS and OMP in 100 replications.

and OMP provide unbiased estimations of the Ishigami function, OMP suffers from more outliers and a281

higher variance. LARS tends to have larger predictions (relative to the true values) when y < 0 and smaller282

predictions when y > 8. Meanwhile, the prediction variance of LARS is not as small as rPCE.283

The reason for different performances of surrogate modeling based on LARS and OMP may be seen from284

Fig. 4. The PCE models are with higher orders when constructed based on OMP than based on LARS.285

The larger value of the total order p leads to a bigger polynomial basis and thus a more flexible surrogate286

model, which tends to have less biased but high-variance predictions.287

As mentioned in Section 5, statistical uncertainty is emulated via the k-fold division in rPCE and the288

value of k matters. The suggested configuration of rPCE is combining the polynomial-selection results with289

k = {3, 5, 10, 20, N}. To show the effects of k, R2
test is computed at each replication and 100 values of R2

test290

yield the box plots of Fig. 5, where k = 1 indicates the surrogate modeling with the whole set of training291

data but without the refinement by rPCE and “all k” denotes the rPCE results by combining results with292

different values of k. As observed, when k = 1, although the interquartile range (IQR), i.e., the span between293

the first quartile to the third quartile, of LARS is larger than that of OMP, more outliers appear with OMP294

and the minimum R2
test is even smaller than −1.5. With rPCE, except the case of k = 3, improvements can295

be observed from the reduced outliers and/or prediction variance. The combination of LARS and OMP,296

denoted by “LARS+OMP” (see Section 4.2), seems to have advantages over the rPCE based on LARS or297

OMP and the advantages are more obvious with cases k = 3 and 5.298
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Fig. 5: Ishigami function - box plots of R2
test using different values of k in k-fold division with 50 data points (100 replications).

Table 2: Ishigami function - mean of R2
test over 100

replications with 50 data points (100 replications).

LARS OMP LARS+OMP

k = 1 0.8723 0.8788
k = 3 0.7890 0.7734 0.8935
k = 5 0.9281 0.9566 0.9817
k = 10 0.9542 0.9972 0.9974
k = 20 0.9630 0.9919 0.9969
k = N 0.9686 0.9918 0.9978
all k 0.9619 0.9947 0.9971
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Fig. 6: Ishigami function - mean of R2
test versus different

values of N (100 replications).

As quantitative comparisons, Table 2 gives the mean of R2
test over 100 replications. Generally, OMP is299

better than LARS. However, the advantage of OMP is not large and, as a result, the combination of LARS300

and OMP in rPCE generates better surrogate models. Remark that the means in Table 2 are obtained by301

fixing the value of k and the source of candidate polynomials (LARS, OMP, or LARS+OMP) during all302

replications. Selecting the “all k” option and optimizing the polynomial source at each replication with the303

suggested configuration in Section 5, the obtained mean of R2
test equals 0.9972, only 6× 10−4 smaller than304

the highest value when k = N with LARS+OMP.305

Simulations with N = 20, 30, 40 are also operated with the same configurations and the means of R2
test306

are plotted as the line graph in Fig. 6, which shows the better performance of rPCE compared to LARS307

and OMP in the cases with small EDs.308
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Fig. 7: Ishigami function - the estimation error of Sobol’ indices with 50 data points (100 replications).

Reference rPCE LARS OMP

S1 0.3139 0.3141 0.3553 0.3017
S2 0.4424 0.4422 0.4152 0.4239
S3 0.0000 0.0000 0.0114 0.0028
S1,2 0.0000 0.0000 0.0017 0.0052
S2,3 0.0000 0.0001 0.0096 0.0042
S1,3 0.2437 0.2435 0.2019 0.2363
S1,2,3 0.0000 0.0001 0.0049 0.0258

Table 3: Ishigami function - mean of Sobol’ indices 50 data points (100 replications).

The Sobol’ sensitivity indices can be analytically computed according to

D =
a2

8
+
bπ4

5
+
b2π8

18
+

1

2
,

D1 =
bπ4

5
+
b2π8

50
+

1

2
,

D2 =
a2

8
, D1,3 =

8b2π8

225
,

D3 = D1,2 = D2,3 = D1,2,3 = 0.

(18)

Taking the analytical solution as the reference, the estimation error of the Sobol’ indices by the PCE-based
surrogate model is computed by

∆Si = SPCE
i − Sref

i , (19)

where the superscripts of S indicate the generation approach. With N = 50 and 100 replications, the box309

plots of all ∆Si are shown in Fig. 7, where only values between −0.12 and 0.1 are presented for a better view310

and several outliers are absent. The variance of ∆Si is relatively large with LARS when the Sobol’ indices311

are non zero, i.e., ∆S1, ∆S2, ∆S1,3, and the outliers are efficiently avoided by rPCE. The mean of Si is312

given by Table 3, from which the superiority of rPCE in the sensitivity analysis of the Ishigami function is313

obviously observed. The accuracy of rPCE for estimating Sobol’ indices is in the order of 10−4 when using314

50 data points in the experimental design.315
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6.3. Borehole function316

Name Distribution Bounds Description

rw (m) N (0.10, 0.0161812) [0.05, 0.15] radius of borehole
r (m) Lognormal(7.71, 1.0056) [100, 50000] radius of influence
Tu (m2/yr) Uniform [63070, 115600] transmissivity of upper aquifer
Hu (m) Uniform [990, 1110] potentiometric head of upper aquifer
Tl (m2/yr) Uniform [63.1, 116] transmissivity of lower aquifer
Hl (m) Uniform [700, 820] potentiometric head of lower aquifer
L (m) Uniform [1120, 1680] length of borehole
Kw (m/yr) Uniform [1500, 15000] hydraulic conductivity of borehole

Table 4: Borehole function - description and distribution of input variables [56].

(a) rPCE (R2
test = 0.9723) (b) LARS (R2

test = 0.9517) (c) OMP (R2
test = 0.1472)

Fig. 8: Borehole function - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP with 40 data points (100
replications).

The Borehole function with expression

Y =
2πTu(Hu −Hl)

ln(r/rw) (1 + Tu/Tl) + 2LTu/r2wKw
(20)

models the water flow through a borehole and is a benchmark for emulation and prediction tests. This317

function has 8 independent variables, the description and distribution of which are presented in Table 4,318

where the range of kw is set as [1 500, 15 000], rather than the usual [9 855, 12 045], to make this function319

more nonlinear and non-additive. For the construction of multivariate polynomials, Hermite polynomials320

are used for rw and r (after an isoprobabilistic transformation into a standard normal variable) whereas321

Legendre polynomials are used for the other variables.322

Making use of 40 data points in the model training and 104 points for validation at each replication, the323

prediction of validation data obtained from 100 replications is shown in Fig. 8. As seen, the PCE models324

constructed by the three methods are unbiased approximations of the Borehole function when y < 150. The325

underestimation when y > 150 is due to the small portion (1.63 percents for all replications) of data in this326

range. In prediction variance, rPCE is much better than OMP and slightly superior to LARS. The latter327

may be explained by observing the box plots in Fig. 9.328

The poor performance with OMP may be explained from the procedures for constructing sparse PCE329

models in Table 1. One sees that leave-one-out cross validation error εLOO is used for tuning two hyperpa-330

rameters, the total order p and the number of included polynomials J . p is decided by an early-stopping331
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Fig. 9: Borehole function - box plots of R2
test using different values of k with 40 data points (100 replications).
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Fig. 10: Borehole function - optimal total order of polynomials selected by LARS and OMP in 100 replications.

strategy based on the minimum value of εLOO, i.e., εmin
LOO, which is obtained during the tuning of J . Since the332

estimation of leave-one-out cross validation is with a high variance [47] (compared with e.g., 10-fold cross-333

validation) and small values of εLOO are preferred, the resulted εmin
LOO tends to be optimistic for the model334

assessment. However, the optimistic εmin
LOO is then used to tune the value of p. The biased model-assessment335

by εmin
LOO may lead to an improper value for p. With OMP, obviously the optimal value for p is overvalued336

as shown by Fig. 10 and thus the prediction is with a high variance as already seen in Fig. 8 and 9.337

Building the PCE model with the whole set of data, i.e., k = 1, the third quartile of R2
test with LARS is338

obviously larger than the first quartile with OMP. As explained in Section 5.2, the candidate polynomials will339

be generated by LARS in rPCE, rather than OMP and LARS+OMP, and the results in Fig. 9 provide good340

arguments for this strategy. As seen, the performance of OMP is remarkably improved after the refinement341

by rPCE. However, no matter the value of k, OMP is still the worst polynomial selection scheme for rPCE342

and LARS seems to be the best option, except that LARS+OMP is slightly better than LARS when taking343

the “all k” option.344

Similar phenomena maybe more clearly observed from Table 5. The mean of R2
test with LARS is signif-345

icantly larger than the one with OMP and consequently the rPCE based on LARS is preferred. Applying346

this strategy and automatically selecting the candidate-polynomial source at each replication, the obtained347

mean of R2
test = 0.9724. Fig. 11 provides more results when N ∈ {20, 30, 40, 50}. Since OMP has been348
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Table 5: Borehole function - mean of R2
test with 40

data points (100 replications).

LARS OMP LARS+OMP

k = 1 0.9517 0.1467
k = 3 0.9072 0.5852 0.8859
k = 5 0.9451 0.6434 0.9239
k = 10 0.9673 0.7293 0.9587
k = 20 0.9736 0.7506 0.9704
k = N 0.9743 0.7633 0.9697
all k 0.9719 0.8112 0.9723
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Fig. 11: Borehole function - mean of R2
test versus different

values of N (100 replications).

shown much worse than rPCE and LARS, its associated line graph is not displayed for a clear view of the349

comparison between LARS and rPCE. The improvements are reached with rPCE in general except for the350

case of N = 20.351

Reference rPCE LARS OMP

rw 0.3127 0.3072 0.2962 0.4127
r 0.0000 0.0010 0.0023 0.1967
Tu 0.0000 0.0010 0.0015 0.1635
Hu 0.0487 0.0418 0.0420 0.1995
Tl 0.0000 0.0011 0.0018 0.1802
Hl 0.0487 0.0431 0.0427 0.1751
L 0.0472 0.0423 0.0427 0.2026
Kw 0.6369 0.6376 0.6322 0.6259∑

1.0942 1.0751 1.0614 2.1562

Table 6: Borehole function - mean of the total Sobol’ indices with 40 data points (100 replications).

Global sensitivity analysis is then considered and the total Sobol’ indices are computed from the various352

PC expansions. The reference values are obtained by the Monte Carlo method with 107 data and presented353

in Table 6. The importance of variables r, Tu and Tl can be neglected and the response uncertainty mainly354

comes from the variation of rw and Kw. The same conclusions can be drawn from the estimation results by355

rPCE and LARS. The summation of reference values is close to 1, which indicates weak variable interactions.356

However, the estimation by OMP leads to the opposite conclusion. The stochastic property of the estimation357

deviation ∆ST is revealed by Fig. 12. The estimation variance by OMP is large, especially when the true358

value of ST is small, and rPCE outperforms LARS in terms of the estimation variance and the control of359

outliers.360

6.4. Maximum deflection of a truss structure361

In Fig. 13, six vertical loads denoted by P1 ∼ P6 are put on a truss structure composed of 23 bars,362

the cross-sectional area and Young’s modulus of which are respectively denoted by A and E, the subscripts363

“h” and “o” standing for the horizontal and oblique bars. The response quantity of interest, the mid-span364

deflection V , is computed with the finite-element method.365

To analyze the uncertainty of the response, the input parameters are modeled by ten independent random366

variables following the distributions in Table 7. Transforming the input variables into standard normal ones367
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Fig. 12: Borehole function - the estimation error of total Sobol’ indices with 40 data points (100 replications).

Fig. 13: Sketch of a truss structure made of 23 bars [20].

Variable Distribution Mean Std Description

Eh, Eo (Pa) Lognormal 2.1× 1011 2.1× 1010 Young’s moduli
Ah (m2) Lognormal 2.0× 10−3 2.0× 10−4 cross-section area of horizontal bars
Ao (m2) Lognormal 1.0× 10−3 1.0× 10−4 cross-section area of oblique bars
P1 ∼ P6 (N) Gumbel 5.0× 104 7.5× 103 vertical loads

Table 7: Truss deflection - description and distribution of input variables [20].

with the isoprobabilistic transformation, LARS, OMP and rPCE surrogate models are built with basis368

composed of Hermite polynomials.369

With N = 50 and 104 data for validation at each replication, Fig. 14 shows the prediction results by the370

surrogate models over 100 replications and the solid line indicates the true values of V . OMP definitely fails371

in this scenario. Although the predictions are unbiased, the variance is high due to the too much flexibility372

of the PCE model built by OMP. In contrast, LARS and rPCE achieve a much better trade-off between373

the variance and bias. Moreover, rPCE is slightly superior to LARS in variance and the number of outliers.374

The poor prediction performance when V < −0.11 is a consequence of a small portion (0.78 percent for all375

replications) of data in this range.376

Based on the validation data, R2
test is computed at each replication and the distribution of R2

test over 100377

replications is given in Fig. 15. The results with k = 1 indicate the running of LARS and OMP with the378

whole set of data, thus no refinement of the basis by rPCE and “all k” means that rPCE is run based on379
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(a) rPCE (R2
test = 0.9770) (b) LARS (R2

test = 0.9631) (c) OMP (R2
test = −6.2257)

Fig. 14: Truss deflection - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP with 50 data points (100
replications).
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Fig. 15: Truss deflection - box plots of R2
test using different values of k with 50 data points (100 replications).

Table 8: Truss deflection - mean of R2
test with 50 data

points (100 replications).

LARS OMP LARS+OMP

k = 1 0.9631 -6.2248
k = 3 0.9651 0.3873 0.9641
k = 5 0.9658 0.7915 0.9660
k = 10 0.9692 0.8273 0.9693
k = 20 0.9726 0.8721 0.9735
k = N 0.9735 0.8974 0.9741
all k 0.9744 0.9315 0.9762
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R
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Fig. 16: Truss deflection - mean of R2
test versus different

values of N (100 replications).
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the combination of candidate polynomials generated with k = [3, 5, 10, 20, N ]. Although the performance380

of OMP is much enhanced with the application of rPCE, LARS is still better than OMP, whatever the381

value of k. The rPCE model combining LARS and OMP seems to have the same performance with the382

rPCE model based on LARS itself. Table 8 presents the associated mean of R2
test. As seen, the highest383

mean appears with LARS+OMP when all k values are considered, but, with the same configurations, the384

difference between LARS and LARS+OMP is only 0.0018. Optimizing the selection of candidate polynomials385

at each replication, as displayed in Fig. 16, the mean value reaches 0.9770 for the “all k” option. The slight386

superiority of rPCE to LARS is also seen with N = 20, 30, 40.387

Reference rPCE LARS OMP

Eh 0.367 0.3713 0.3748 0.4295
Eo 0.010 0.0121 0.0135 0.2290
Ah 0.388 0.3695 0.3715 0.4037
Ao 0.014 0.0127 0.0135 0.2291
P1 0.004 0.0046 0.0057 0.2105
P2 0.031 0.0359 0.0365 0.2251
P3 0.075 0.0750 0.0759 0.2808
P4 0.079 0.0756 0.0751 0.2557
P5 0.035 0.0355 0.0361 0.2271
P6 0.005 0.0048 0.0061 0.1891∑

1.008 0.9969 1.0086 2.6795

Table 9: Truss deflection - mean of the total Sobol’ indices with 50 data points (100 replications).

Global sensitivity analysis is conducted by computing the total Sobol’ indices based on the PCE coef-388

ficients. The reference values listed in Table 9 are obtained with 5.5 × 106 Monte Carlo simulations [20].389

Since the characteristics of the horizontal bars impact more the displacement at midspan than the oblique390

ones, the total Sobol’ indices of Eh and Ah are much larger than those of Eo and Ao. Moreover, due to the391

same type of probabilistic distribution and the fact that the products EhAh (resp. EoAo) are the physically392

meaningful quantities in the analysis, Eh and Ah (resp. Eo and Ao) have similar importance to the response.393

Considering the variables of Pi, i = 1, . . . , 6, Pi and P7−i play the same role due to the geometric symmetry394

of the structure and greater sensitivities are observed for loads closer to the midspan. The above conclusions395

are clearly supported by the estimations of rPCE and LARS. In contrast, the largely biased estimation by396

OMP might give a wrong understanding of the physical phenomena. For instance, one may falsely conclude397

that the actually negligible interactions among inputs have great effects on the midspan deflection, since the398

sum of the total Sobol’ indices obtained by OMP is much larger than 1.399

The distribution of the prediction error of total Sobol’ indices ∆ST is given in Fig. 17. In addition to400

the largely biased and scattered OMP, rPCE and LARS has similar ∆ST distribution with relatively small401

variances.402

6.5. Estimation of specific absorption rate403

The population is surrounded by a increasing number of wireless local area networks (WLAN) and the404

electromagnetic exposure of human body by WLAN access points needs to be estimated to make sure the405

exposure level is under the limit [57]. Here, an indoor down-link scenario is considered, as sketched in406

Fig. 18. A high-resolution model of a 8-year girl (1.36 m high), named as “Eartha”, from the Virtual407

Classroom [58], is standing inside a 4× 3× 2 m3 room, which is equipped with a WLAN source operating408

at 2.4 GHz. The field emitted by the source is measured using the StarLab near-field-measurement system,409

which is based on spherical wave expansion [59], by Microwave Vision Group (MVG R©). With an in-house410

finite-difference-time-domain (FDTD) code, the whole-body specific absorption rate (SAR) [60], which is411

the system response here, is computed as the ratio of the total power absorbed in the body to the mass of412

the human model and with the unit mW/kg.413
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Fig. 17: Truss deflection - the estimation error of total Sobol’ indices with 50 data points (100 replications).

Fig. 18: Sketch of the human-exposure estimation in an indoor down-link scenario.

The parameters considered are the position of the emitting source and the human model, whose coor-414

dinates are denoted by (xs, ys, zs) and (xp, yp, zp), respectively. zp is set as 0, since we consider that the415

human model is standing on the ground. The human orientation θp, which is defined as the angle between416

the direction faced by the human model and x-axis, may matter and is taken into account.The reflection by417

the walls, ceiling and ground is neglected in the simulation and the WLAN source is attached to the walls.418

Thus, six parameters are involved. xs, ys, zs, xp, yp are assumed to be uniformly distributed over [0.3, 3.7],419

[0.3, 2.7], [0.25, 2], [0.05, 3.95], [0.05, 2.95] in meters and θp over [0, 360) in degrees, where the lower bound420

value 0.3 m is the minimum distance between the human model and the wall, 0.25 m is the minimum height421

of the source and 0.05 m is the minimum distance of the WLAN source to the wall.422

The number of input variables can be reduced via a coordinate transformation. Without the reflection423

by the walls, the system response is actually driven by the relative position between the source and the424

human model. The relative position is represented in the (x, y) plane. In the local coordinate system of the425

source, as shown in Fig. 18, position and orientation of the human model are denoted by polar coordinates426

(rps , φ
p
s) and θps . Thus, four parameters rps , φps , θ

p
s , and zs are used in the following uncertainty analysis.427

Sampling 350 points from the input space with the Latin-Hypercube sampling method, the prediction428

performance of the obtained surrogate models is estimated with the leave-many-out approach, where 10429

data are randomly chosen from the experimental design for validation and an approximation of R2
test is430

yielded by repeating this process 100 times. Consequently, with the remaining 340 data, surrogate models431
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(a) rPCE (R2
test = 0.9102) (b) LARS (R2

test = 0.8688) (c) OMP (R2
test = 0.7269)

Fig. 19: SAR estimation - prediction of validation data by (a) rPCE, (b) LARS and (c) OMP with 340 data points (100
replications).
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Fig. 20: SAR estimation - box plots of R2
test with different values of k (100 replications).

are obtained with LARS, OMP and rPCE. Then, a validation set of size 103 is computed and the results432

are shown in Fig. 19. As seen, the whole-body SAR is smaller than 0.2 for most of cases (90 percents for433

all replications) in this scenario. However, the three approaches can provide unbiased estimations when the434

SAR value is larger than 0.2, in addition to the the superiority of rPCE to LARS and OMP in variance435

and suppression of outliers. The associated box plots of R2
test is given in Fig. 20. The refinement by rPCE436

reduces the variance of modeling by LARS and OMP with different values of k, except for the case with437

OMP and k = 3. The combination of LARS and OMP seems to be the best option for rPCE and actually is438

selected by the suggested scheme in Section 4.2 during all replications (although three options are available439

at each replication), since LARS has the same-level performances with OMP. Table 10 shows the mean of440

R2
test.441

The total Sobol’ indices are computed based on the PCE coefficients and the mean values are presented442

in Table 11. As seen, the whole-body human exposure is mainly impacted by the relative distance rps and443

the height of the source zs has a smaller influence. The small value w.r.t. the relative angle between the444

human model and the source, φps , might be explained by looking at the contours of electric-field intensity in445

Fig. 21, where the WLAN source locates at the center of a wall and field values are sampled in the (xs, ys)446

plane with zs = 0. As observed, the dependency of wave strength on radiation directions is weak. The447
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Table 10: SAR estimation - mean of R2
test with 340

data points (100 replications).

LARS OMP LARS+OMP

k = 1 0.8799 0.7500
k = 3 0.9085 0.8186 0.9046
k = 5 0.9067 0.8771 0.9182
k = 10 0.8995 0.8854 0.9171
k = 20 0.9033 0.8628 0.9157
k = N 0.8995 0.8521 0.8893
all k 0.9068 0.8794 0.9178

Table 11: SAR estimation - mean of
the total Sobol’ indices with 340 data
points (100 replications).

rPCE LARS OMP

rps 0.9809 0.9714 0.9761
φps 0.0128 0.0357 0.0984
zs 0.2175 0.1954 0.2925
θps 0.0098 0.0316 0.0743∑

1.2210 1.2341 1.4412

(a) (b)

Fig. 21: SAR estimation - contour of electric-field intensity (a) in the (x, y) plane and (b) its representation in the polar
coordinate system, zs = 0.
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Fig. 22: SAR estimation - the prediction of whole-body SAR with 340 data points (100 replications).

human orientation θps affects the distribution of SAR in the human body. However, as the mean value of448

this distribution, the whole-body SAR is not much affected by θps . The sum of the total Sobol’ indices in449
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Table 11 is larger than 1 and the excess values indicate that zs impacts the response mainly through its450

interaction with rps . Such an interaction can be viewed from the map of predicted SAR in Fig. 22, where451

φps , θ
p
s are fixed to zero and rps , zs are uniformly sampled over [0.25, 1], [0.25, 2], respectively. The amplitude452

of each pixel in the map is a mean of 100 predictions by the built PCE models during all replications. The453

three approaches provide similar results.454
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Fig. 23: SAR estimation - the estimation of first-order and second-order Sobol’ indices with 340 data points (100 replications).

Considering the height of the human model is 1.36 m, tissues mainly locate at the heights between 0.4 m455

≤ zs ≤ 1.0 m. One observes that the whole-body SAR is rather small when the source is farther from this456

influential region of the human model. rps and zs model the distance between the source and this influential457

region together and their interactions happen. The distribution of the estimated first-order and second-order458

Sobol’ indices is proposed in Fig. 23, which presents that rps and its interaction with zs contribute the most459

to the uncertainty of the response.460

6.6. Example with varied input dimension461

To investigate the effects of the dimension of input on the modeling performance, the following test
function [53] is used,

y = 3 +
1

M

M∑
k=1

k(x3k − 5xk) + ln

(
1

3M

M∑
k=1

k(x2k + x4k)

)
+ x1x

2
2 − x3x5 + x2x4 + xM−4 + xM−4x

2
M , (21)

where M denotes the number of variables, which are independent and uniformly distributed in the range of462

[1, 2]. To increase the non-linearity, the range of x20 (when M ≥ 20) is changed as [1, 3].463

The value of M changes from 11 to 41 with a step 5 and the size of experimental design N is fixed as 200464

independently of M . For a statistical assessment of the modeling performance (accuracy and efficiency), 50465

replications are performed and 103 data are used for the independent test at each replication. Remark that,466

due to randomness of the LHS method, different training and test datasets are used in replications.467

From the methodology of rPCE, one knows that the computational cost is proportional to the number468

of resampled datasets. In Section 5.1, the suggested (not obliged) setting of k is a set of values, i.e.,469

k = {3, 5, 10, 20, N}. As a result, the corresponding computational cost would be high when the ED size N470

is large. Here, a lighter setting of k, k = {3, 5, 10, 20}, is applied and improved modeling performances are471

still observed as presented by the following results. For the configuration of UQLab, which the running of472

LARS and OMP is based on, the maximum value of total degree p is set as 5.473
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Fig. 24: Example with varied dimension - box plots of R2
test with different values of M (50 replications).

The effects of M on the modeling accuracy can be observed from the distribution of R2
test in Fig. 24.474

When M equals 11 and 16, accurate models are constructed with the three approaches, although outliers475

appear with OMP and M = 16. As the dimension of input increases, the modeling accuracy becomes476

poorer in both variance and bias. While LARS performs much better than OMP when M ≥ 21, substantial477

advantages of rPCE (with suggested configurations) are observed. When M ∈ {31, 36, 41}, the mean value478

of R2
test with rPCE is larger than the value with LARS and OMP, and the variance of rPCE is also superior479

to the other two approaches.480

M=11 M=16 M=21 M=26 M=31 M=36 M=41

k = 1
LARS 0.9998 0.9995 0.9573 0.9679 0.8985 0.8260 0.7761
OMP 0.9998 0.9634 0.6940 0.6679 0.4832 0.3308 0.1536

k = 3
LARS 0.9997 0.9996 0.9422 0.9249 0.8646 0.8322 0.8125
OMP 0.9998 0.8072 0.7810 0.7737 0.6514 0.5358 0.3870
L+O 0.9998 0.9996 0.8929 0.8771 0.7810 0.7262 0.6805

k = 5
LARS 0.9998 0.9995 0.9600 0.9726 0.8899 0.8574 0.8351
OMP 0.9999 0.9552 0.8171 0.7915 0.6935 0.5894 0.4826
L+O 0.9999 0.9996 0.9511 0.9651 0.8630 0.8110 0.7681

k = 10
LARS 0.9999 0.9995 0.9714 0.9945 0.9316 0.8724 0.8445
OMP 0.9999 0.9963 0.8395 0.8194 0.7252 0.6239 0.5340
L+O 0.9999 0.9998 0.9668 0.9937 0.9210 0.8557 0.8193

k = 20
LARS 0.9999 0.9995 0.9824 0.9971 0.9523 0.8947 0.8714
OMP 0.9999 0.9999 0.8392 0.8195 0.7197 0.6149 0.5165
L+O 0.9999 0.9999 0.9784 0.9971 0.9404 0.8692 0.8391

all k
LARS 0.9999 0.9996 0.9765 0.9965 0.9437 0.8904 0.8725
OMP 0.9999 0.9987 0.8423 0.8248 0.7316 0.6191 0.5011
L+O 0.9999 0.9998 0.9738 0.9961 0.9371 0.8790 0.8604

Table 12: Example with varied dimension - mean of R2
test with varied values of k and M (50 replications), “L+O” denoting

the combination of LARS and OMP.

From the mean value of R2
test (w.r.t. 50 replications) in Table 12, one finds the effects of varied M on481

rPCE with different configurations. Remark that the cases with k = 1 correspond with the modeling results482
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based on LARS or OMP without the refinement by rPCE and the other cases are results of rPCE with483

different configurations. “all k” here means the combination of selection results with k = {3, 5, 10, 20}. As484

seen, when M ≥ 21 and k is configured as 10, 20, or “all k”, significant improvements are observed. When485

only OMP is applied, the mean value of R2
test increases from 0.6940 to 0.8423 when M = 21. With LARS,486

the mean value increases from 0.7761 to 0.8725 when M = 41. Remark that these two peak values are487

reached with the configuration of “all k”. Concerning on the source of candidate polynomials, since LARS488

performs much better than OMP, rPCE makes use of the selection results by LARS more often than OMP489

or their combination. Consequently, rPCE with the suggested setting (denoted by “L+O” in Table 12), is490

slightly (not significantly) inferior to the setting only based on LARS in modeling accuracy.491
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Fig. 25: Example with varied dimension - computational time versus varied values of k and M (50 replications).

With a laptop (dual cores, clock speeds 2.6 GHz, memory 16 GB), the computational time of rPCE is492

shown in Fig. 25. Effects of k and M are studied by fixing M = 31 and k = 10, respectively. Remark that493

this figure gives the total time cost for each configuration, i.e., for a specific value of k, the total time for494

constructing k PCE models is given. As observed, since about two thirds of the dataset is used for model495

construction, the computation time with k = 3 is only slightly longer than (rather than three times as) with496

k = 1. As the value of k increases, since the size of training datasets and the number of model constructions497

gets larger, the computational time increases fast. Moreover, in general the computational cost with OMP498

is higher than that with LARS. Similar phenomena are observed when the value of M increases. When499

M = 41, the maximum time cost on running both LARS and OMP is below 18 minutes which is usually500

much shorter than the time cost on getting new samples (e.g., ≈ 3 hours are required for getting a new501

sample in the example of Section 6.5).502

7. Conclusions503

A new polynomial selection approach, called resampled PCE, has been investigated herein to refine the504

ranking of importance of candidate polynomials in the context of sparse polynomial chaos expansions. Based505

on the selected polynomials by LARS and OMP, with the simulation of data variation by resampling, both506

the selection frequency and the increment on cross-validation error associated with each basis polynomial507

are arguments in the computation of a total score used in the ranking process. With the PCE model based508

on rPCE, sensitivity analysis is conveniently performed via the analytical computation of the Sobol’ indices509

based on the expansion coefficients.510

Two factors impact the performance of rPCE. First, the data resampling is conducted by dividing the511

whole set of data into k similar-sized subsets. The value of k needs to be optimized and set as a combination512

of good candidates {3, 5, 10, 20, N}. Second, the candidate polynomials can be generated by LARS, OMP513

or both. If LARS performs much better than OMP, the resulting selection of polynomials is based on514

LARS, and vice versa. Otherwise, both the polynomials selected by LARS and OMP would all be treated515

as candidates in rPCE.516
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The performance of rPCE, LARS and OMP is tested on two analytical functions, the maximum deflection517

of a truss structure and the estimation of the whole-body SAR (specific absorption rate). In terms of518

prediction and sensitivity analysis, OMP-based PCE modeling seems the worst among these three methods,519

especially when the size of ED is small. In contrast, the LARS-based approach generally generates a better520

model and the refinements by rPCE are obvious in terms of prediction variance and the number of outliers.521

In any case, rPCE performs as least as well as LARS for global sensitivity analysis.522

Although the size of ED is fixed here, the samples can be automatically enriched to reach a certain523

accuracy in a specific estimation (e.g., moments) [61, 20, 62, 63]. Moreover, since the building processes524

with multiple resamples are independent in rPCE, the technique of parallel computations can be applied to525

ensure the building efficiency of rPCE at the same level with LARS or OMP.526

In resampled PCE, a high computational cost may be suffered, especially with the suggested setting527

of k, i.e., k = {3, 5, 10, 20, N} and a large N . As shown by the flow chart in Fig. 1, the possible high528

computational cost is due to the loop about k and l. However, one should realize that the loop about k and529

l are not necessarily performed in sequence and can proceed in parallel. All resampled datasets with different530

values of k can be first easily generated with LHS method. Since the surrogate modeling with respect to531

different sets of resamples is separable, techniques of parallel computation (e.g., computation with GPU and532

distributed computation) can be applied. Moreover, the suggested setting is not compulsory in the running533

of resampled PCE. Actually, from the results in Section 6, we can see the improved modeling performance534

has been observed with k = 10, 20, or k = {3, 5, 10, 20}, even better performances can be obtained if with535

the suggested setting. Thus, if the additional computational cost is considered high (especially relative to536

the cost of obtaining new data), 10 or 20 would be suggested for the setting of k.537

In forthcoming investigations, more complex scenarios (e.g., electromagnetic dosimetry for human models538

in the telecommunications network [64, 65, 66]) are to be analyzed, where a high-order PCE model is often539

required and the classical approaches easily sink into the overfitting problem. Resampled PCE has the540

potential to avoid this problem. The refined selection of polynomials reduces the possibility of including541

redundant or irrelevant basis polynomials in the expansion, thus would have better chances to reach a model542

with a proper complexity. Here, rPCE combines two forward basis pursuit approaches and the improvements543

may be slight due to similar selected polynomials. The combination of different kinds of approaches (e.g.544

forward selection, backward elimination [67, 19] and sparsity-based approach [22]) is open to investigation.545

Appendix A. Ranking basis polynomials based on LARS or OMP546

1. Initialization: residual R0 = y, active set Aa0 = ∅, candidate set Ac0 = Afull.
2. For j = 1, . . . , Pmax = min{N − 1, card(Afull)},

1) Find the basis most correlated with Rj−1, αj = arg maxα∈Ac
j−1

∣∣RT
j−1ψα

∣∣.
2) Update Aaj = Aaj−1 ∪αj and Acj = Acj−1 \αj .
3) With ψAa

j
, compute βj as the OLS solution.

4) Update residual Rj = y −ψTAa
j
βj .

End

Table A.1: Ranking basis polynomials based on orthogonal matching pursuit (OMP).

The PCE model based on orthogonal matching pursuit (OMP) is iteratively built and the iterative547

procedure is summarized in Table A.1. At each iteration, the influence of each polynomial term ψα is548

measured by its correlation with the data residual R (the initial value being y). The α corresponding549

with the most correlated basis term ψα becomes a member of the active set Aa. Then, computing the550

basis function ψAa supported by the active set, the associated coefficients are obtained by minimizing the551

least-square error and R is updated as the new residual. The most influential polynomials are sequentially552

selected by repeating the procedure above.553
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1. Initialization: residual R0 = y, active set Aa0 = ∅, candidate set Ac0 = Afull;
2. For j = 1, . . . , Pmax = min{N − 1, card(Afull)},

If j equals 1, define u1 = ψα1
, α1 = arg maxα∈Ac

0

∣∣RT
0 ψα

∣∣, and update Aa1 = {α1}, Ac1 = Ac0 \α1.
Otherwise,
1) update Rj−1 = Rj−2 + γj−1uj−1, γj−1 the smallest step length when Rj−1 has the same
correlation with a basis polynomial (denoted by ψαj

, αj ∈ Acj−1) as those with all polynomials
in ψAa

j−1
.

2) update Aaj = Aaj−1 ∪αj and Acj = Acj−1 \αj .
3) compute the equiangular vector of all polynomials in ψAa

j
as uj .

End

Table A.2: Ranking basis polynomials based on least angle regression (LARS).

Least angle regression (LARS) is a less greedy version of traditional forward selection methods. It is554

known that different flavors of LARS yield efficient solutions of LASSO [37] (which constrains both the data555

discrepancy by ordinary least square and the sparsity of regression coefficients by `1-norm) and forward556

stagewise linear regression [68] (another promising model-selection method), respectively.557

The iterative algorithm of sparse PCE modeling based on LARS (originally proposed in [20]) is given in558

Table A.2, where details on how to compute step length γj−1 and equiangular vector uj can be found in [24].559

As seen from this short summary, the building process is similar with the one based on OMP, except that560

from the second iteration since the residual R evolves along the equiangular directions of basis functions561

other than along basis functions themselves.562
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