
HAL Id: hal-01890134
https://centralesupelec.hal.science/hal-01890134

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A time synchronization protocol for A664-P7
Frédéric Boulanger, Dominique Marcadet, Martin Rayrole, Benoît Valiron,

Safouan Taha

To cite this version:
Frédéric Boulanger, Dominique Marcadet, Martin Rayrole, Benoît Valiron, Safouan Taha. A time
synchronization protocol for A664-P7. Digital Avionics Systems Conference, Sep 2018, London, United
Kingdom. �hal-01890134�

https://centralesupelec.hal.science/hal-01890134
https://hal.archives-ouvertes.fr


A time synchronization protocol for A664-P7
Frédéric Boulanger∗, Dominique Marcadet∗, Martin Rayrole†, Safouan Taha∗ and Benoît Valiron∗

∗LRI, CentraleSupélec, Université Paris Saclay, Gif-Sur-Yvette, France. Email: firstname.lastname@lri.fr
†Thales Avionics, Vélizy, France. Email: Martin.Rayrole@fr.thalesgroup.com

Abstract—The norm for A664-P7 networks used in avionic
does not offer any mean of defining a common time reference to
the various applications running on end-systems. In this paper,
we propose an algorithm to provide such a time reference. To
support the proposal, we implemented the algorithm and ran
experiments with OMNeT++ to explore the robustness of the
approach.

Index Terms—A664-P7, Time-synchronization, Asynchronous

I. INTRODUCTION

The AME platform (Avionique Modulaire Étendue, i.e.
“Extended Modular Avionics”) is an embedded computer
architecture made of computers and various heterogeneous
communication media and services. The objective of the plat-
form is to provide support for certified avionic functionalities.
The network part of this architecture conforms to the ARINC-
664 Part 7 standard, also known as AFDX (Avionics Full
Duplex Switched Ethernet).

An A664-P7 network consists of switches, end-systems
and ethernet links. Virtual links are statically configured over
this network: they are one-to-many multicast communications
links giving guaranties on available bandwidth and maximum
delays. However, the standard does not define any way of
providing the various applications running on end-systems
with a common time reference.

This paper proposes and experiments such a time reference
and describes its architecture, protocol and algorithms. In the
literature, a realistic A664-P7 network consists of about 100
end-systems, 10 switches and 900 virtual links. This is our
baseline for this work.

Several constraints should be imposed on a distributed time
reference function for A664-P7. Firstly, it should be using the
existing network and hardware: this means for example that
packets cannot be timestamped by switches, which requires
specialized hardware. Then, the protocol has to be deadlock-
free, even in case of failure of one element. The synchro-
nization algorithm has moreover to guarantee the convergence
of the time references of the end-systems. Finally, for safety
and robustness reasons, the protocol will be insulated from
any external time reference. The initial expectations of the
function are: the function should be operational within 200ms
after starting, it should maintain a reasonable time precision,
and the function should be able to run for 48 hours without
resetting the clock.

Research partially funded by CORAIL project of CORAC (Conseil pour la
Recherche Aéronautique Civile).

A. Existing, implemented proposals

Time synchronization protocols usually consider two classes
of nodes in the network: servers and clients. Servers are
expected to keep among them a uniform notion of time that
clients are able to access through specific protocol primitives.
One of the main difficulty in these protocols is to ensure the
synchronization between the servers. There are several ways of
ensuring this synchronization. Some protocols such as NTP [1]
make use of external time references such as GPS or atomic
clocks. Other protocols such as PTP [2], SynUTC [3] and
the SAE AS6802 [4] standard assume the use of switches
and bridges able to timestamp packets. Finally, an alternative
approach consists in integrating the time protocol directly into
the protocol, as with TTP [5] or FlexRay [6].

Each of these implemented solutions fails short with respect
to at least one of our constraints. The NTP protocol is ruled
out because it requires precise external clocks, and all the
other approaches asks either for specialized hardware or for
dedicated networks.

B. Our solution

At the origin of all existing synchronization protocols is
an algorithm that does not come with a concrete protocol
implementation: the Welch-Lynch algorithm [7]. As a purely
theoretical algorithm, it offers a solution to the synchronization
of distributed clocks and it abstracts most of the problems. The
core task of the algorithm is to maintain the convergence of
the clocks and to ensure some precision.

Our proposal for time synchronization in an A664-P7 net-
work is based on the Welch-Lynch algorithm for the core
time synchronization among the servers. We propose a setting
where servers are in charge of setting up the time reference,
keeping it up to date (using the Welch-Lynch algorithm), and
communicating it to clients. The role of a client is to deliver
the time reference obtained from the servers to applications
running on the same end-system. Our study shows that the
expected precision of 100µs cannot be obtained in worst-
case scenarios on a 100 Mb/s network, but the results are
however useful in an avionics context. In order to validate
our proposal, we modeled A664-P7 and the proposed time
reference function within OMNeT++. We ran simulations on
a realistic network instance. Our experiments show that our
proposal satisfies the constraints, offering a solution to the
problem of time synchronization in A664-P7 networks with
standard hardware.



II. CONTEXT

This section presents the problem we address.

A. The A664-P7 Network

Aeronautical Radio, Incorporated (ARINC), held by Rock-
well Collins since 2013, is a company providing communi-
cation systems for several industrial applications, including
avionics.

ARINC standards are developed by the Airlines Electronic
Engineering Committee (AEEC). The ARINC 664 standard
defines an avionic bus with a deterministic Ethernet protocol.
It consists in 8 sections [8]:

1) Systems Concepts and Overview
2) Ethernet Physical and Data Link Layer Specification
3) Internet-Based Protocols and Services
4) Internet-Based Address Structure & Assigned Numbers
5) Network Domain Characteristics and Interconnection
6) Reserved
7) Avionics Full-Duplex Switched Ethernet Network
8) Interoperation with Non-IP Protocols and Services

An A664-P7 network is built from end-systems, switches and
Ethernet links. It is also called AFDX, for Avionic Full Duplex
Switch Ethernet.

Ethernet links are full-duplex. Links and switches are re-
dundant, as shown in Figure 1, width red and blue switches
and links. Communications are unidirectional, from a source
end-system to one or several destination end-systems. These
logical communication paths are abstracted away using the
notion of virtual link (VL), specifying the characteristics of
the communication occurring on the path. Such characteristics
include for instance the maximal size of a transmitted frame,
and the minimal time between each frame. The configuration
of the network is completely static, in order to guarantee the
absence of collisions, bringing determinacy to the system.

B. Dimensions of the Problem

The algorithm we present in this paper is meant to be used
in the A664-P7 network of an airplane. The literature provides
the following dimensioning parameters for such a network:
• in [9] the authors propose parameters for a realistic

network: 104 end-systems, 8 switches, 974 virtual links,
6501 latency constraints. The characteristics of the net-
work are summarized in Table I.

• in [10], Grieu describes a network proposed by Airbus,
considered to be representative of the complexity of the
network of the A380 airliner. The described network
consists in about 50 end-systems and 8 switches. There
are 500 communication links, each with between 1 and
5 destination end-systems. Most of them transport small
packets of about 20 bytes. The period of emission of
these packets is about 30 milliseconds. A handful of
links are different and consists in larger packets (several
hundreds of bytes), emitted with a periodicity of about
one millisecond.

• in [11], [12], the authors provide a graphical representa-
tion of the A664 network of the A380 that we used for
making Figure 1.

Flight Control

CockpitE
ng

in
es

E
ngines

Energy

Fu
el

Fuel

Cabin

Fig. 1. Structure of the A664-P7 network of the A380

C. Requirements for a clock synchronization algorithm

The objective of this paper is to propose a clock synchro-
nization algorithm for the A664-P7 network. The postulate is
that a plane in operation should not have to uniquely rely on
an external clock to synchronize the internal end-systems of
the network: the algorithm should be able to work in isolation.

In a purely distributed system, every node needs to commu-
nicate with every other node. For the number of end-systems
we are considering, the number of broadcasts sent on the
network will incur a high load on the equipments. In order to
prevent an increase in the number of packets as the number of
end-system grows, we aim at a protocol with servers delivering
time to clients. In this setting, only the servers are going to
synchronize in a distributed manner. To ensure robustness,
there should be more than one server: these servers should
therefore be able to synchronize their internal time with each
others.

The clocks of two end-systems might differ in two ways:
there can be a difference in the origin of the time of these
two clocks, and the two clocks might not have the exact same
frequency. The corrections to apply to the clocks of the end-
systems to derive a common reference time depend on how
this time reference is used. There are two typical use-cases:



TABLE I
DIMENSIONS OF A REALISTIC A664-P7 NETWORK

VL destinations BAG Max. Packet Size Traversed Switches Latency
Minimum 1 2 ms 100 bytes 1 1 ms
Average 6.6 60 ms 380 bytes 1.3 10.04 ms

Maximum 84 128 ms 1500 bytes 4 30 ms

(1) to timestamp data or messages, and (2) to measure time
durations between events. If a discrepancy is found between
the ideal time and the local time of the server, this discrepancy
must be corrected progressively so that the order of message
timestamps match the order of the messages: time cannot
decrease. Similarly, a discrepancy between ideal time and
physical time of end-systems needs to be adjusted slowly to
keep a good precision in the measure of time durations.

It is therefore necessary to separate the time synchronization
algorithm into two distinct phases:

1) an initialization phase, during which the servers can
make aggressive corrections to their local clocks in or-
der to identify the initial parameters: drift (difference
in frequency) and origin of time, in order to establish
the temporal reference. If an external reference time is
available (a GPS for example), one can also possibly
choose as servers the end-systems with the most stable
physical clock.

2) an operational phase, during which corrections are ap-
plied in a smooth way in order to preserve the absolute
order of dates and the precision of time durations. In this
phase, a server requiring a too large correction could be
considered as faulty and eliminated from the set of time
servers.

In general, the requirements for the function are as follows:
R1 The function must establish a time reference.
R2 The function must deliver the time reference to any

avionic program that needs it.
R3 The function must function within the environment speci-

fied by ARINC 664. The redundancy of the network must
be transparent to the function.

R4 The function must recover from the dysfunction or a
failure of one of the equipments it relies on.
The failure of a switch or of an ethernet link is already
covered by the redundancy of the network. The function
must however recover from the failure of an end-system.

R5 The function must not require the modification of network
equipment. It must be deployable on existing backends.
In particular, solutions requiring time-stamping at the
level of switches are not an option.

R6 The function must be resilient to a reboot at any time.
R7 On the other hand, the function must be able to function

without reboot for enough time to cover any kind of
mission.

R8 In operational mode, the time reference established by a
server must be strictly increasing.

R9 Each server is on its own end-system, and each server has
its own VL to communicate with the other servers and

with the clients.
R10 There must be at least 3 servers, and the function must

be able to run with one server failure.
R11 the required precision must be attained no later than the

end of the initialization mode.
R12 If a server detects that another server sends faulty data, it

must definitively discard the data from this server when
building its temporal reference.

R13 There must be at most one client per end-system.
R14 Each client must receive time from at least 2 servers. It

establishes its client-time from the received server-times.
R15 The client-time must be strictly increasing.
R16 The server precision is smaller or equal to 100µs.
R17 The client precision is smaller or equal to 100µs.
R18 The duration of the initialization mode is at most 200 ms.

The synchronization protocol that we chose for the servers is
inspired from existing protocols, and in particular it is based on
the Welch-Lynch algorithm, presented in subsection II-D. Our
protocol is adapted to the A664-P7 architecture, in particular to
the existence of two links of communication. If the bandwidth
is guaranteed by A664-P7, this does not necessarily gives
guarantees on the symmetry of the latency, an important factor
in the estimation of the difference between local clocks.

D. The Welch-Lynch Algorithm

The academic reference on distributed clocks synchroniza-
tion was published in 1988 by Welch and Lynch [7]. The
algorithm proposes a fault-tolerant algorithm allowing Byzan-
tine failures: faulty devices can have arbitrary behavior. The
algorithm maintains the clocks of n systems in approximate
synchronization provided that no more than one third of them
are faulty.

The algorithm is periodic with period P . The behavior is
quasi-synchronous, and all nodes behave the same (there is no
distinction between slave and master, or client and server).

• For each time T = k × P : broadcast a SYNC packet to
each of the other nodes.

• Wait a time ∆. Compute the correction to apply using the
mean of the reception time of the SYNC packets from
the other nodes.

• Continuously, in parallel: note the emission and reception
time of each received SYNC packet.

The SYNC packets are not timestamped: the date is implicitly
taken as T = k × P . The parameters P and ∆ are fixed
and chosen depending on the desired properties of the system:
jitter, drift, etc.

The algorithm ensures the following properties:



• Agreement. The difference between the clocks of two
non-faulty nodes in the network is bounded.

• Validity. The clocks of non-faulty nodes are within a
linear envelope of the real time.

III. OUR PROPOSAL

The function is composed of clients, servers and controllers.
Servers and clients are partitions in the sense of ARINC-653.
Servers are in charge of establishing and keeping a common
time reference, and to deliver it to clients. The role of a client
is to give access to the time reference to programs running on
the same end-system. For this, the clients receive information
about the time reference from the servers. Controllers are in
charge of the command of the function and the management
of failures. There is always a client and a controller on an
end-system. Servers are only present on a limited number of
end-systems. The typical number of servers is 4, and 3 is a
minimum. A typical network contains about a hundred of end-
systems. Since the number of servers is small, each server will
broadcast its information to all the clients.

Communication between clients and servers is done using
VLs. Each server communicates with every other server to
establish and maintain the time reference, using one particular
VL. The same VL is used to broadcast the time reference to
the clients. Finally, the communication between a client and
its controller is done using the functionalities of the operating
system running on the end-system.

To minimize the dispersion of transmission delays, the
packets used to construct, maintain and communicate the time
reference through VLs have a fixed length. They consists of:

• A versioning number and the type of the packet: INIT or
TIME. Each information is coded on 4 bits.

• A notification for the controller, coded on one byte.
• A date: the time reference of the server sending the

packet, coded on 8 bytes.

The rationale for the date is as follows. We do not use floating-
point numbers because of the accumulation of rounding errors.
32 bit integers can store a bit more than 71 minutes counted in
micro-seconds, which is not enough. 64 bit integers can store
more than 290 years in nano-seconds, which is enough for our
needs, hence the 8 bytes for the time reference.

Because the network is very deterministic, transmission
delays between servers, and between servers and clients can be
characterized with some precision. This is statically estimated
from the network architecture and it is mainly based on the
number of switches the transmission goes across.

Note that for a client (and for a server), there are several
times to be kept in parallel:

• The time reference, inferred from the data received from
the servers (currentTime).

• The time given by the hardware clock of the end-system
(localTime).

• The “real” time, to which no one has access.

A. Operating Modes
1) Initial Mode: In this mode, each server sends INIT

packets to signal that it is in this mode. The sending period
of these messages is noted serverActivationPeriod.

A server leaves the initial mode when it has re-
ceived either numberOfServers − 1 INIT packets (in
this case the whole function was in initial mode), or
numberOfServersQuorum TIME packets (in which case
the whole function is in operational mode). In the case where
both conditions are true, the second one prevails. Each server
estimates the reference time on the other servers from the
time reference it receives from them, the local time at which
it received their packet, and the estimated transmission time.

In the case where the function is in the initial mode, each
server in initial mode sets its reference time when it switches
to the operational mode to the maximum value of its current
time and the estimated times of all other servers.

In the case where the function is in the operational mode, a
server in initial mode sets its reference time when it switches
to the operational mode to the average of the estimated times
of all the other servers.

In initial mode, each client waits to receive
numberOfServersQuorum TIME packets before entering
operational mode, where the client will be activated with a
clientActivationPeriod period.

2) Operational Mode: A server in operational mode sends
TIME packets to maintain and broadcast the time reference.
As in initial mode, these messages are send periodically every
serverActivationPeriod.

Tcur
(t) = αTloc

(t) + β
Tcu

r
(t)

=
α
′ T lo

c
(t)

+
β
′

Tloc(t0) Tloc(t0) + ∆serv

Tcur(t0)

Fig. 2. Computation of currentTime (Tcur)

To meet the R8 requirement (in operational mode, the
currentTime of a server is strictly increasing) and R15
(the client currentTime must be strictly increasing), the
currentTime() function, which computes the current ref-
erence time for a server or client x from its local time, is piece-
wise linear with an always positive slope. There are two pa-
rameters, coefficient (the slope) and offset (the inter-
cept) that are updated at each activation and then kept constant
during one period as illustrated in Figure 2, on which, for the
sake of brevity, x.currentTime is Tcur, x.localTime is



Tloc, and the parameters x.coefficient and x.offset
are α and β. ∆serv is the serverActivationPeriod.

B. Algorithms
Each server and client have some attributes and methods:
• localTime(): the time provided by the hardware clock
• offset: the current offset used by currentTime()
• coefficient: the current coefficient used by
currentTime()

• currentTime(): the reference time computed as
shown in Figure 2.

Some constants are needed:
• numberOfServers: the total number of servers.
• numberOfServersQuorum: the number of opera-

tional servers needed for the function to be operational.
• serverActivationPeriod: the period of activation

of the servers.
• clientActivationPeriod: the period of activation

of the clients.
• maximumTimeDifference: the maximum accepted

difference between the current time and the time esti-
mated from packet timestamps.

• minimumDelay(s,x): the minimum transmission de-
lay between a sender s and a destination x.

Each packet received by a server or client end-system is
stored with its time of arrival.

1) Algorithm for servers in initial mode: When a server is
booting, or re-booting, two cases are possible:
• The whole function might be starting. In this case, the

function is in initial state and the servers must establish
the time reference.

• The whole function has already (re)booted. In this case,
the server must acquire the current reference time from
the other servers.

The algorithm for servers in initial mode is as follows.
At (re)boot:
• Initialization of the current time at 0:
coefficient = 1.0

offset = −localTime()

Then, with period serverActivationPeriod.
(a) Get and send to the controller all packets received since

the last activation phase on the command VLs.
(b) Get all packets received since the last activation phase on

the synchronization VLs.
(c) Discard all packets coming from links marked as to be

ignored.
(d) Transmit to the controller the notifications of the received

packets.
(e) Inform the controller of the synchronization VLs from

which the server received either more than one packet,
or a packet of unknown type (neither INIT nor TIME) or
with a bogus timestamp.

(f) Execute the commands received from the controller.
Commands can deal with the configuration (several are
allowed simultaneously):

• DISABLE vl_id: ignore packets coming from the
given VL.

• ENABLE vl_id: take into account the packets com-
ing from the given VL.

Other commands control the execution (only one is
allowed at each activation period):
• RESTART: continue (or restart after STOP) the com-

plete execution of the algorithm.
• STOP: stop sending packets and stay in initial mode

without modifying the parameters.
• TERMINATE: definitely terminate and stop interacting

with the controller.
(g) Send an INIT packet containing currentTime().
(h) Finally, two cases:

• if numberOfServersQuorum TIME packets have
been received since (re)boot and the function is in
operational mode, for each TIME packet containing the
timestamp hi received at local time ti, we estimate the
current time of the server si which sent the packet as:

tsi = hi + minimumDelay(si, s)

+ localTime() − ti (1)

The offset of the server is set to the mean of these
estimations, minus the local time. Only the last packet
received from a given server is kept.

• if numberOfServers − 1 INIT packets have been
received since (re)boot and the function is in initial
mode, the algorithm is the same as in operational mode,
but the offset of the server is set to the max of the
estimated times instead of the mean.

Ultimately, in both cases the server goes to operational
mode at the next activation.

2) Algorithm for servers in operational mode: : every
serverActivationPeriod, the server performs the fol-
lowing tasks:

(a) some housekeeping: same as items (a) to (e) in the initial
mode algorithm.

(b) Inform the controller if less than numberOfServers−
1 TIME packets with valid timestamps have been re-
ceived.

(c) Execute the commands received from the controller.
These are the same as in item (f) in the initial mode
algorithm.

(d) Update internal parameters with the received TIME
packets. First, compute the current reference time
referenceTime as the mean of the local current time
and the estimated current times of the other servers
(which are computed with Equation 1).

(e) Update the coefficient and offset parameters of
the server according to Equations 2, 3, and 4 below, and
send a TIME packet containing currentTime().

newCoefficient = 1 +
referenceTime− currentTime()

serverActivationPeriod
(2)



offset += localTime()

× (coefficient− newCoefficient) (3)
coefficient = newcoefficient (4)

3) Algorithm for clients in initial mode: During function
initialization, clients acts as if they had received a STOP com-
mand from the controller. Each client waits for a RESTART
command to execute its algorithm in nominal mode.

Then, with a period of clientActivationPeriod:

(a) Gather all packets received since the last activation.
(b) Discard packets from links to ignore and packets of type

INIT.
(c) Notify the controller of VLs with bogus behaviors: more

than one packet received, unknown packet type, or neg-
ative timestamp.

(d) Execute configuration and execution commands. These
are the same as for servers.

(e) If numberOfServersQuorum TIME packets have
been received:
• Compute offset and coefficient as for servers

in initial mode (see III-B1).
• Notify the operating system that the time reference

service is available.
• Switch to operational mode at the next activation

period.

4) Algorithm for clients in operational mode: With period
clientActivationPeriod:

(a) Perform the housekeeping items (a) to (c) of the previous
algorithm.

(b) Inform the controller if less than numberOfServers
- 1 TIME packets with valid timestamps have been
received.

(c) Execute configuration and execution commands.
(d) Update internal parameters with the received TIME

packets. First, compute the current reference time
referenceTime as the mean of the estimated times of
the servers using the formula in Equation 1. Then update
the offset and parameters according to equations
5, 6, and 7 below.
In this step the difference between a server and a client
is that the latter does not consider its current time when
computing the mean of the estimated times of the servers.

newCoefficient = 1 +
referenceTime− currentTime()

clientActivationPeriod
(5)

offset += localTime()

× (coefficient− newCoefficient) (6)
coefficient = newcoefficient (7)

Fig. 3. A664 EndSystem

IV. EXPERIMENTS

In order to validate our proposal, we modeled A664-P7
and the proposed time reference function within OMNeT++.
In this section, we will first describe the OMNeT++ models
implementing our proposed reference time service (including
servers, clients, network and protocols). Then, we will detail
the results of experiments on a realistic network instance.

A. Setup

A664 architecture: An A664 system consists of nodes
(A664Node) interconnected by Ethernet links. A node is
either a terminal device (EndSystem) or a switch.

As shown in Figure 3, a node has one or more Ethernet
ports, this parameter is noted numberOfEthernetPorts.
A terminal device has a value of 1 for this parameter. We
distinguish input ports (ethernetInputs) from output
ports (ethernetOutputs). For each input port, a node
has a Dispatcher responsible for processing an incoming
packet on the Ethernet link connected to this port. Similarly,
for each output port, a node has a scheduler (the OMNeT++
moduleinterface : IScheduler) responsible for sending the
packets on the Ethernet link connected to this port.

A terminal device has a unique scheduler
(EndSystemScheduler), a local clock (mod-
uleinterface IClock) and 0 or more modules
(PartitionRegulatorReceiverBundle) including:
• A moduleinterface IPartition in charge of manipu-

lating packets.



Fig. 4. A664 Switch

• A Regulator which is connected to the scheduler and
which manages the virtual link used for the packets sent
by this partition.

• A Receiver which is connected to the Dispatcher
and which filters packets according to the virtual link
numbers (parameter virtualLinkNumbers). The re-
ceiver is responsible for timestamping the incoming pack-
ets and to keep them until the corresponding partition is
activated.

In order to allow a partition to transmit without delay, the
scheduler of the A664 end-system determines at startup a static
scheduling of the use of the Ethernet link by the virtual links.
Hence, we can anticipate and prepare a time packet embedding
the exact departure time to avoid a latency that would weaken
the precision.

Packets A664Packet exchanged in an A664 network carry
the corresponding virtual link number and priority.

As illustrated in Figure 4, a switch has specific schedulers
(SwitchScheduler), and a router that, depending on a
routing table, will route the packets (and duplicate them if
necessary). Such schedulers take into account the priorities of
the virtual links to decide which packet to send first. However,
they are not preemptive: once the sending of a packet has
started, it will not be preempted for sending a packet of higher
priority.

Clocks: Each terminal device has a local clock. Three
clocks were implemented:
• PerfectClock is a perfect clock (it provides the

simulation time of OMNeT++), without parameters.
• FixDriftClock is a clock with a fixed drift; this is

determined randomly at startup using the driftMin and
driftMax parameters. A reasonable driftMax value
is 50 ppm (parts-per-million).

• ChangingDriftClock is a clock with a drift that
dynamically changes according to the period indicated
by the changeDriftPeriod parameter; the chosen
value is random between the driftMin and driftMax
parameters.

Time reference function: A specific type of packets,
TimeReferencePacket, subtype of A664Packet is
used by the protocol. It has a version number (on 1 byte),
a type (on 1 byte) and a time represented by the OMNeT++
type simtime_t on 8 bytes.

A time reference server is modeled by a
TimeReferenceServerPartition that is responsible
for computing and giving access to the server’s current
reference time based on received packets. It is also
responsible for managing the state of the server (and therefore
the type of packets sent). A time reference client is modeled
by a TimeReferenceClientPartition. Each partition
has a minimumDelays table to get the minimum transfer
time of a packet coming from another server.

To simulate a reboot of a server, the corresponding partition
uses minimumResetTime and maximumResetTime pa-
rameters in order to, if they are not zero, compute a random
time after which the partition restarts. Also, for simulating a
server failure, the partition uses the minimumFreezeTime
and maximumFreezeTime parameters in order to, if they
are not zero, compute a random time at which the partition
will send packets containing the same time value.

Finally, RandomTransmittingPartition was imple-
mented for a random broadcast of packets. Each packet is
sent with a probability set by the frequency parameter,
and its size is determined randomly using the sizeMin and
sizeMax parameters .

A380 simulation: The simulations and corresponding mea-
surements are performed on a network similar to the network
of the A380 introduced in Figure 1. It consists of 9 inter-
connected switches with 2 or 3 end-systems on each switch;
each of these devices is either a time reference client, a time
reference server (ts_1, ts_2, ts_3 and ts_4) or an end-
system with a RandomTransmittingPartition. The
connections are 100 Mb/s Ethernet links. The precision of the
simulation time was configured to one nanosecond.

The mbl_2 device has 7 additional random broadcast par-
titions, making a total of 8. These 8 partitions are configured
with a maximum packet size and minimum periodicity. The
simultaneous activation of the 8 partitions almost saturates an
Ethernet link of 100Mb/s. The virtual links coming from this
device are such that this saturation influences the exchanges
between servers ts_2 and ts_1, increasing transmission de-
lays. The different simulation configurations we ran, activated
0, 2, 4, 6 or 8 of these partitions in order to simulate the
different load cases of the network. The diagram in Figure 5



Fig. 5. A380 simulation

shows the whole structure together with the virtual links used
by the random broadcast partitions.

B. Results

We experimented many configurations for which we mea-
sured, every 10 ms:
• referenceTimeAverage: the reference time that is

the average of all servers corrected current times.
• referenceTimeMaximumDifference: the maxi-

mum difference between servers current times, this preci-
sion measurement will be drawn in blue in the following
graphs.

• clientsWorstPrecision: the biggest
difference between a client corrected time and
referenceTimeAverage, drawn in red.

The activation period for server and client partitions is
128ms. The maximumTimeDifference parameter is set
to 1ms. The time packets have a size of 30 bytes, their
transmission on a 100Mb/s Ethernet link lasts 2.4µs.

Perfect clocks with random traffic: In this first configura-
tion, all servers and clients have perfect clocks. We activate the
random transmission partitions of all terminal devices (except
partitions 2 to 8 of mbl_2 which would completely saturate
the network). Time packets are sometimes delayed, despite
their high priority.

In this case, Figure 6 reveals an excellent precision of 3µs
for servers and 7µs for clients.

Fix drift clocks with random traffic: We keep a random
traffic but we consider that servers clocks have fix drifts. The
clock of ts_1 has a drift of -40ppm, ts_2 of -50ppm, ts_3
of 30ppm and that of ts_4 is 10ppm.

Fig. 6. Perfect clocks with random traffic

From Figure 7, we notice that because of the servers clocks
drifts, we loose much precision. In this case, we have a
precision of 120µs for servers and 90µs for clients.

Fig. 7. Fix drift clocks with random traffic

Fix drift clocks with medium traffic: We keep Fix drift
clocks and we activate 4 of the 8 partitions of mbl_2 creating
a 50% load on the corresponding virtual link. In such a
configuration a time packet can be delayed by 350µs. From
Figure 8, we observe that the chaotic aspect introduced by
the traffic dominates the one of drifts. In this case, we have a
precision of 250µs for servers and 200µs for clients.

Fig. 8. Fix drift clocks with medium traffic



Fix drift clocks with max traffic: We activate all transmitting
partitions of mbl_2 to saturate the network. This configura-
tion must give the worst case precision measurements. From
Figure 9, we observe that the precision is unchanged, with
a worst case precision of 250µs for servers and 200µs for
clients. However, it is clear that the average precision is worse.

Fig. 9. Fix drift clocks with max traffic

V. DISCUSSION

1) Worst case precision: The precision of 100µs cannot be
reached in the worst case on a 100 Mb/s bus due to the jitter
variations in packets exchanged by servers. Indeed, a packet
received by a switch may be sent with a fixed and known
processing time to next or last node. But, even with a high
priority, it may also have to wait when an other packet is
already being transmitted on the link to the destination. With
a maximum A664-P7 frame size equal to 1538 bytes, it means
that the insertion of a TIME packet on an ethernet link by a
switch, even if it is the only one with a high priority, may
be postponed up to 123.04µs on a 100 Mb/s ethernet link.
Considering a case where all packets received by a time server
have been delayed by around 120µs for each switch passed
through, it is clear that this particular time server will compute
its new reference time with an error well above 100µs, the
exact computation of this error being only possible on a known
network configuration.

2) Improvements: The version of the algorithm presented
in this article computes the slope and intersect of the
currentTime() function in order to fix the current time as
fast as possible. However, this can lead to wrong fixes when a
packet has been delayed in the switches and is older than we
believe. This can also lead to a “vibrating” currentTime()
function which alternates between a large and a small slope.

To solve this issue, we developed a version of the algorithm
in which the slope and intersect are computed using linear
regression over the last k steps. For k = 1, there is no
change, the new slope and intersect are computed from the
previous ones. When k is too large, the function is too slow
to fix the current time. However, for k around 5, the average
precision is improved. For instance, on a 1 Gb/s network,
the average precision went from 11.7µs to 4.2µs with linear
regression. In the same time, the worst case precision was only

improved from 34µs to 24µs. Another improvement consists
in computing a first linear regression, then computing it again
while ignoring the data from the servers that are too far from
the first computed line. This eliminates packets that have been
delayed too much, or which come from servers with an altered
current time. This improved the average precision to 0.2µs in
our case, but it did not change the worst case precision.

This improvement was not integrated in the final version
of the function because it made the algorithm more complex
without much improving of the worst case precision, and
average precision was not a primary goal. However, it may be
useful in a less critical context where a better average precision
is desired.

REFERENCES

[1] D. L. Mills, Computer network time synchronization. The network time
protocol on earth and in space. 2nd ed. CRC Press, 2011.

[2] IEEE, “Ieee standard for a precision clock synchronization protocol
for networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, July 2008.

[3] R. Holler, T. Sauter, and N. Kero, “Embedded synutc and ieee 1588
clock synchronization for industrial ethernet,” in EFTA 2003. 2003
IEEE Conference on Emerging Technologies and Factory Automation.
Proceedings (Cat. No.03TH8696), vol. 1, Sept 2003, pp. 422–426.

[4] A.-D. D. Ethernet and U. N. committee, Time-Triggered Ethernet
AS6802. SAE International, NOV 2016.

[5] A.-D. T.-T. F. committee, TTP Communication Protocol AS6003. SAE
International, AUG 2011.

[6] F. Consortium, FlexRay Communications System Protocol
Specification V 3.0.1. FlexRay Consortium, OCT 2010. [On-
line]. Available: https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRay%
E2%84%A2%20Protocol%20Specification%20Version%203.0.1.pdf

[7] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for
clock synchronization,” Information and Computation, vol. 77, no. 1,
pp. 1–36, Apr. 1988. [Online]. Available: http://dx.doi.org/10.1016/
0890-5401(88)90043-0

[8] S. I. Kazi, “Architecting of avionics full duplex ethernet (afdx)
aerospace communication network,” IJECT, vol. 4, no. 4, April-June
2013. [Online]. Available: http://www.iject.org/vol4/spl4/c0140.pdf

[9] M. Boyer, L. Santinelli, N. Navet, J. Migge, and M. Fumey, “Integrating
end-system frame scheduling for more accurate afdx timing analysis,”
in Proceedings of the 6th Embedded Real Time Software and System
Congress (ERTS2 2014), 2013.

[10] J. Grieu, “Analyse et évaluation de techniques de commutation ethernet
pour l’interconnexion des systèmes avioniques,” Ph.D. dissertation,
Institut National Polytechnique de Toulouse, SEP 204.

[11] H. Butz, “The airbus approach to open integrated modular avionics
(IMA): Technology, methods, processes and future road map,” in First
International Workshop on Aircraft System Technologies (AST 2007),
2007.

[12] J.-B. Itier, “A380 integrated modular avionics,” 2007.
[Online]. Available: http://www.artist-embedded.org/docs/Events/2007/
IMA/Slides/ARTIST2_IMA_Itier.pdf

https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRay%E2%84%A2%20Protocol%20Specification%20Version%203.0.1.pdf
https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRay%E2%84%A2%20Protocol%20Specification%20Version%203.0.1.pdf
http://dx.doi.org/10.1016/0890-5401(88)90043-0
http://dx.doi.org/10.1016/0890-5401(88)90043-0
http://www.iject.org/vol4/spl4/c0140.pdf
http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf
http://www.artist-embedded.org/docs/Events/2007/IMA/Slides/ARTIST2_IMA_Itier.pdf

	Introduction
	Existing, implemented proposals
	Our solution

	Context
	The A664-P7 Network
	Dimensions of the Problem
	Requirements for a clock synchronization algorithm
	The Welch-Lynch Algorithm

	Our Proposal
	Operating Modes
	Initial Mode
	Operational Mode

	Algorithms
	Algorithm for servers in initial mode
	Algorithm for servers in operational mode
	Algorithm for clients in initial mode
	Algorithm for clients in operational mode


	Experiments
	Setup
	Results

	Discussion
	Worst case precision
	Improvements


	References

