
HAL Id: hal-01890473
https://centralesupelec.hal.science/hal-01890473v1

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Qualitative Language for Qualitative Simulation
Slim Medimegh, Jean-Yves Pierron, Frédéric Boulanger

To cite this version:
Slim Medimegh, Jean-Yves Pierron, Frédéric Boulanger. A New Qualitative Language for Qualita-
tive Simulation. International Symposium on Computer Science and Intelligent Control, Sep 2018,
Stockholm, Sweden. �hal-01890473�

https://centralesupelec.hal.science/hal-01890473v1
https://hal.archives-ouvertes.fr

A NewQualitative language forQualitative Simulation
Slim Medimegh

CEA LIST, Laboratory of Model
Driven Engineering for Embedded

Systems
France

slim.medimegh@cea.fr

Jean-Yves Pierron
CEA LIST, Laboratory of Model

Driven Engineering for Embedded
Systems
France

jean-yves.pierron@cea.fr

Frédéric Boulanger
LRI, CentraleSupélec, Université

Paris-Saclay
France

frederic.boulanger@lri.fr

ABSTRACT
Cyber physical systems are specified in a hybrid form, with discrete
and continuous parts. Simulating such systems requires precise data
and synchronization of continuous changes and discrete transitions.
However, in the first design steps, missing information forbids nu-
merical simulation. We present here a new qualitative language
for qualitative simulation of cyber physical systems, which con-
sists in computing the relationships between the system variables.
This language is implemented in the Diversity symbolic execution
engine to build the traces of the system. We apply this approach
to the analysis of SysML models, using an M2M transformation
from SysML to a pivot language, an M2T transformation from this
language to Diversity and an analysis of the traces obtained by
Diversity to build the qualitative behaviors of the system.

KEYWORDS
Cyber physical systems, qualitative simulation, symbolic execution,
model transformation, qualitative behavior

ACM Reference Format:
Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger. 2018. A New
Qualitative language for Qualitative Simulation. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Embedded systems have become crucial in the industry, and their
design leads to hybrid models of a whole system, which mix discrete
and continuous parts. Simulating such complex systems requires
precise data and computational power for detecting changes in the
continuous values and synchronizing themwith discrete transitions.
However, in the early steps of the design, the numerical value of
some parameters is not known yet, while it is already necessary to
analyze the behavior of the system to make design decisions.

For continuous variables, the evolution laws are often described
by differential equations. Qualitative simulation can be an alterna-
tive to numerical simulation for this kind of models to compute the
qualitative behaviors of the system.

Its principle is the discretization of the domain of variation of
the continuous variables, their derivatives and second derivatives,
leading to a qualitative representation of their evolution: positive,
negative, null, increasing, decreasing, constant, at a minimum etc.
In this way, one can get a tree of abstract behaviors, each node
describing the qualitative evolution of the variables. Combined
with a model of the discrete part of the system, a discrete model of
the behavior of the whole system is established, to which formal
techniques can be applied.

However, sometimes the differential equations are not available,
or some constants are not known yet. In this case, we can use an
abstract model of the laws of evolution of the variables to perform
the qualitative simulation. This qualitative model captures the vari-
ations of continuous variables and their causal links. For instance,
precise values and differential equations are not necessary to pre-
dict that an object dropped in a gravitational field will fall down.
Such a qualitative model of a continuous behavior can be described
by an automata as discussed later.

In this article, we present a new language for qualitative simu-
lation without differential equations, which relies on a qualitative
constraint model describing the relationships between the system
variables. This model of constraint is implemented in the Diver-
sity [8] [15] tool in order to compute the qualitative traces of cyber
physical systems.

We designed a profile for SysML to model our qualitative con-
straints, and use model driven engineering techniques such as
QVTop [6] and Acceleo [5] in order to have a complete tool chain
that takes a SysML model and produces a Diversity model. We
add an analysis module in our tool chain to extract the qualitative
behaviors of the systems from Diversity traces.

This article has two main parts: in the first one, we present the
context of our work and our constraint execution model for quali-
tative simulation, in the second part we present how we designed
the profile for SysML in this context.

2 QUALITATIVE SIMULATION OF CYBER
PHYSICAL SYSTEMS

Cyber physical systems consist of continuous dynamic systems,
discrete event systems and an interface that handles the interac-
tion between both types of systems [12]. Such systems result from
the hierarchical organization of monitoring/control systems, or
from the interaction between algorithms for discrete planning and
continuous control. These systems can be modeled using hybrid
automata, which are defined by a set of continuous variables and
states, and discrete transitions with guards and assignments to
these variables.

Qualitative simulation comes from artificial intelligence, where it
is used for reasoning about continuous aspects of systems. The goal
is to reason about the behavior of a continuous variable without
computing its value.

For Cyber physical systems, the model of the discrete part of
the system is not influenced by the qualitative abstraction process.
However, continuous variables and their derivatives are discretized
in order to consider only their qualitative changes. Therefore, con-
tinuous behaviors become discrete transitions, and the resulting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger

system is entirely discrete and can be treated by traditional methods
for the verification of discrete systems.

2.1 Principle of Qualitative Simulation
Qualitative simulation is based on the principle of discretization by
partitioning the variation range of the continuous variables of the
system and their derivative to compute their qualitative state (in-
creasing, decreasing, constant etc.) This principle can be extended
to the nth derivative to distinguish more qualitative states. Once
the discrete states corresponding to this qualitative partitioning are
created, we build the possible transitions between them by taking
into account continuity and derivative constraints. For instance,
each variable or derivative can not go from negative to positive
without going through zero, and a variable can go from negative
to zero or from zero to positive only if its derivative is positive etc.
This limits the possibilities of evolution and thus reduces the size of
the corresponding automaton. Finally, the differential equation sys-
tem is abstracted into a transition system whose states are based on
the partitioning of the changes of continuous variables and deriva-
tives, and whose transitions are the physically possible evolutions
between these states. The result of the qualitative simulation is an
abstraction of the solutions to the differential equations system.

2.2 Types of Qualitative Simulation
Qualitative Simulation can be used according to two strategies [9]:
qualitative simulation with differential equations, and qualitative
simulation without differential equations. In the first approach, the
differential equations are known, and tools like QEPCAD [3] are
used to determine the conditions for a qualitative change. When a
change is possible, the corresponding branch in the execution tree
is tagged with the conditions, else it is cut.

In the second approach, the differential equations are not avail-
able (some constants are not known yet) or it is too difficult to deal
with their complexity. In this case, we build a qualitative model
of the equations by considering qualitative relations between the
variables and their derivatives. Of course, the results are less precise
than with the first approach, but this can be used at the first steps
of the design. In this article, we deal with the second approach.
We therefore use Diversity, which is a symbolic execution tool, to
compute the qualitative behaviors of the model of a cyber physical
system, combining the model of its discrete part and the discretized
qualitative model of its continuous part.

2.3 Qualitative behaviors
The result obtained from qualitative simulation is a set of qualita-
tive behaviors. Each qualitative behavior is an equivalence class
representing detailed behaviors of the system and is composed of a
set of qualitative contexts. As illustrated in Figure 1 a qualitative
context includes : (1) a Control State (CS), here it corresponds to
the state where both variables x and y have a null derivative; (2) a
Path Condition (PC), which is the condition to reach the symbolic
state from the initial state, here, both Ûx♯1 and Ûy♯1 are null; (3) a
symbolic memory which associates to each variable an expression
based on symbolic inputs. The ♯ notation is used to index successive
symbolic values.

EC =

CS : Null_der_x , Null_der_y
PC : Ûx ♯1 = 0, Ûy♯1 = 0
Üx-1 = Üx-1♯0, Üy-1 = Üy-1♯0
Ûx = Ûx ♯1, Ûy = Ûy♯1

Figure 1: Execution Context

2.4 Related Work
Kuipers’ algorithm, which is the first contribution to qualitative
simulation, and is implemented in QSIM [10], is based on an algebra
of signs (negative, positive, null). Numerous improvements have
been added to QSIM in order to address the combinatory explosion
of the number of predicted states caused by the addition of two
entities with opposite sign :

• Methods for changing the level of description to add addi-
tional information in order to eliminate behaviors with no
qualitative distinctions [11].
• Reasoning on “high order derivative” to provide curvature
constraints [11] [4].
• Adding energy constraint that decomposes the system into
a conservative part and a non conservative one [7].

The most famous tool for qualitative simulation is Garp3 [2]. It runs
model fragments, which describe part of the structure and behavior
of the system, and produces a state graph which contains all the
possible transitions based on the relationships between entities that
are described in the model fragments. Garp3 provides a language
based on two principle operators : proportionality and influence.
Proportionality deals with the derivatives of the variables: P+(Q2,
Q1) causes Q2 to increase if Q1 increases and to decrease if Q1
decreases. Influence deals with the value and the derivative: I+(Q2,
Q1) causes Q2 to increase if Q1 is > 0, and to decrease if Q1 is < 0.
Here, we notice that there is a lack of expressiveness, for example,
we can notmodel with these two operators the relationship between
a second derivative and a value, for example we can not model
that the weight p of an object is the product of its massm by the
gravitational acceleration д (p =mд). Also, we need to add multiple
thresholds to the operators besides the default ones which are 0,
when the user is interested in some critical values other than 0.

Garp3 provides a state graph as a result of the qualitative simula-
tion. This state graph describes all the possible qualitative behaviors
of the system with all the variables included. However, sometimes
the user want to ignore some variables and see the impact on the
qualitative behaviors obtained. We therefore provide an incremen-
tal methodology allowing us to select the variables that we want to
observe in order to establish the qualitative behaviors on.

In [14], Missier and Trave-Massuyes proposed a temporal filter
based on order ofmagnitude representation and second order Taylor
formula to evaluate the duration for qualitative states, in our case
we are not interested in temporal information because we are in the
first steps of the design; time is not critical at this stage.We therefore
propose a new qualitative language based on a constraint qualitative
model to enable the expression of multi level coupled variables with
different thresholds representing the critical landmarks from a user
point of view.

A NewQualitative language for Qualitative Simulation

2.5 A new Constraint Execution Model for
Qualitative Simulation

For improving the qualitative simulation without differential equa-
tions in Diversity, we developed a model of execution that con-
straints the evolution of the state variables, and computes their
qualitative behavior

= 0
x-1 ← x

x ← x-1 + Ûx-1

< 0
x-1 ← x

x ← x-1 + Ûx-1

> 0
x-1 ← x

x ← x-1 + Ûx-1

Ûx-1 < 0 Ûx-1 > 0

Ûx-1 > 0 and
Ûx-1 = −x

Ûx-1 < 0 and
Ûx-1 = −x

(Ûx-1 < 0) or
(Ûx-1 > 0 and Ûx-1 < −x)

(Ûx-1 > 0) or
(Ûx-1 < 0 and Ûx-1 > −x)

Figure 2: Qualitative changes based on symbolic integration

2.5.1 Model Of Execution. In our previous work [13] we pre-
sented a symbolic executionmodel in which we integrate the deriva-
tives of the state variables in a symbolic way. We use a simple Euler
integration since we do not compute exact numerical values. We
model each continuous state variable by six values: the current
(x) and previous (x-1) values of the variable, the current (Ûx) and
previous (Ûx-1) values of its first derivative, and its current second
derivative (Üx). In this new model of execution, we add the previous
second derivative (Üx-1), which is needed to integrate the first deriv-
ative. The symbolic integration with the Euler method, assuming a
unitary integration step gives x = x-1 + Ûx-1, and Ûx = Ûx-1 + Üx-1.

With these rules, the qualitative value of a state variable is con-
trolled by a state machine as illustrated in Figure 2. A similar au-
tomaton controls the change of the first derivative with respect
to its previous value (Ûx-1) and the previous second derivative (Üx-1).
Contrary to our previous work, these state machines are determin-
istic. For instance, in the > 0 state of x , if Ûx-1 < 0 and Ûx-1 = -x-1, we
go to the = 0 state, if Ûx-1 > 0 or Ûx-1 < 0 and - Ûx-1 < x , we stay in the
current state.

In this paper, we present a constraint qualitative model in which
we link the derivatives and the values of two state variables. We
define four operators inspired from [2]:
• causally proportional : CPROP
• proportional : PROP
• causally inversely proportional : CIPROP
• inversely proportional : IPROP

We will use thres to give the threshold of the state variables.

2.5.2 CPROP. This operator models the causal proportionality
between the values of two different state variables. For example, x
thres Tc is CPROP y thres Ts means that the sign of x −Tc has
to be the same as the sign of y −Ts , but a correction to x will be
made only when we detect a change of sign of y −Ts . So, if y-1 = Ts ,
y > Ts and x = Tc , we have to make the value of x > Tc . However,
if x goes below Tc while y remains above Ts , we won’t try to fix x .
Compared to our previous work [13], where we had x = x-1 + Ûx-1,

we need to add a corrective term xCor to fix the value of x when
necessary. As a result x = x-1 + Ûx-1 + xCor .

2.5.3 PROP. This operator models the proportionality between
the value of two different state variables. For example, Ûx thres 0
is PROP Ûy thres 0 means that the sign of Ûx and the sign of Ûy
have to be the same. Contrarily to CPROP, a qualitative change
in Ûy is not necessary to enforce the proportionality. Compared to
our previous work [13], where we had Ûx = Ûx-1 + Üx-1, we need to
add a corrective term ÛxCor to Ûx in order to fix the value of Ûx when
necessary. As a result Ûx = Ûx-1 + Üx-1 + ÛxCor .

2.5.4 CIPROP. This operatormodels the inverse proportionality
between the values of two different state variables. For example,
Üx thres 0 is CPROP y thres Ts means that the signs of Üx and
y −Ts have to be opposite, but a correction is enforced only when
we detect a qualitative change in y − Ts . If y-1 = Ts , y > Ts and
Üx ≥ 0, we have to fix the value of Üx to make it negative. Compared
to our previous work [13], where we had Üx = Üx-1, we need to add
a corrective term ÜxCor to Üx in order to fix the value of Üx when
necessary. As a result Üx = Üx-1 + ÜxCor .

2.5.5 IPROP. This operator models the inverse proportionality
between the values of two different state variables. For example, Ûx
thres 0 is IPROP Ûy thres 0means that the sign of Ûx and the sign
of Ûy have to be opposite, and the correction on Ûx must be performed
even without a qualitative change in Ûy. If Ûy < 0 and Ûx ≥ 0, we have
to fix the value of Ûx to make it negative. Compared to our previous
work [13] where we had Ûx = Ûx-1 + Üx-1, we need to add a corrective
term ÛxCor to Ûx in order to fix the value of Ûx when necessary. As a
result Ûx = Ûx-1 + Üx-1 + ÛxCor .

= 0
x-1 ← x

x ← x-1 + Ûx-1 + xCor

< 0
x-1 ← x

x ← x-1 + Ûx-1 + xCor

> 0
x-1 ← x

x ← x-1 + Ûx-1 + xCor

x-1 + Ûx-1 + xCor < 0 x-1 + Ûx-1 + xCor > 0

x-1 + Ûx-1 + xCor = 0
x-1 + Ûx-1 + xCor = 0

x-1 + Ûx-1 + xCor < 0 x-1 + Ûx-1 + xCor > 0

Figure 3: Qualitative changes based on qualitative con-
straints

With these rules, the qualitative value of a state variable is con-
trolled by a state machine. If we consider for example x thres 0
is CPROP y thres 0, the corrective term xCor will be added in
the symbolic integration of x as illustrated in Figure 3. For instance,
in the = 0 state of x , if x-1 + Ûx-1 + xCor > 0, we go to the > 0
state, if x-1 + Ûx-1 + xCor < 0, we go to the < 0 state. A similar
automaton controls the change of the first derivative with respect
to its previous value (Ûx-1), the previous second derivative (Üx-1) and
the corrective terms from the different relations that are linked to
the first derivative.

2.5.6 Implementation of the Generation of the Corrective Term.
The generation of the corrective terms is controlled by a state
machine. The goal of the corrective term is to change the variable

Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger

𝐶𝑃𝑅𝑂𝑃

𝑦 > 0 𝑎𝑛𝑑 𝑦−1 = 0
𝑎𝑛𝑑 𝑥 ≤ 0

𝑥𝐶𝑜𝑟 > 0

𝑦 = 0 𝑎𝑛𝑑 𝑦−1 ≠ 0
𝑎𝑛𝑑 𝑥 < 0
𝑥𝐶𝑜𝑟 > 0 𝑦 = 0 𝑎𝑛𝑑 𝑦−1 ≠ 0

𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 < 0

𝑦 < 0 𝑎𝑛𝑑 𝑦−1 = 0
𝑎𝑛𝑑 𝑥 ≥ 0

𝑥𝐶𝑜𝑟 < 0
𝑦 > 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 = 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 = 0

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0

𝑥𝐶𝑜𝑟 = 0

Figure 4: Qualitative automaton of the CPROP operator

𝑃𝑅𝑂𝑃

𝑦 > 0 𝑎𝑛𝑑 𝑥 ≤ 0

𝑥𝐶𝑜𝑟 > 0
𝑦 = 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 > 0
𝑦 = 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 < 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 ≥ 0

𝑥𝐶𝑜𝑟 < 0
𝑦 > 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 = 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 = 0

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0

𝑥𝐶𝑜𝑟 = 0

Figure 5: Qualitative automaton of the PROP operator

𝐶𝐼𝑃𝑅𝑂𝑃

𝑦 > 0 𝑎𝑛𝑑 𝑦−1 = 0
𝑎𝑛𝑑 𝑥 ≥ 0

𝑥𝐶𝑜𝑟 < 0

𝑦 = 0 𝑎𝑛𝑑 𝑦−1 ≠ 0
𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 > 0 𝑦 = 0 𝑎𝑛𝑑 𝑦−1 ≠ 0
𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 < 0

𝑦 < 0 𝑎𝑛𝑑 𝑦−1 = 0
𝑎𝑛𝑑 𝑥 ≤ 0

𝑥𝐶𝑜𝑟 > 0
𝑦 > 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 = 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 = 0

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0

𝑥𝐶𝑜𝑟 = 0

Figure 6: Qualitative automaton of the CIPROP operator

𝐼𝑃𝑅𝑂𝑃

𝑦 > 0 𝑎𝑛𝑑 𝑥 ≥ 0

𝑥𝐶𝑜𝑟 < 0
𝑦 = 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 > 0
𝑦 = 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 < 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 ≤ 0

𝑥𝐶𝑜𝑟 > 0𝑦 > 0 𝑎𝑛𝑑 𝑥 < 0

𝑥𝐶𝑜𝑟 = 0

𝑦 < 0 𝑎𝑛𝑑 𝑥 > 0

𝑥𝐶𝑜𝑟 = 0

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0

𝑥𝐶𝑜𝑟 = 0

Figure 7: Qualitative automaton of the IPROP operator

on the left side of the relation (the affected variable) in a way to
make the relation true. For causal relation, the corrective term is
set only when the relation becomes false because of a change in the
variable on the right side of the relation (the cause variable). For
instance, let us consider x thres 0 is CPROP y thres 0. This
relation is modeled by an automaton as illustrated in Figure 4. As
shown in this figure, we wait for the qualitative change of the cause
variable of the relation (y) in order to set a new qualitative value
for the corrective term. When y becomes > 0 and x ≤ 0, we need
to set a new > 0 qualitative value to the corrective term in order to

make the symbolic value of x positive. Of course, when the value of
x and y are proportional again, we need to set back the qualitative
value of the corrective term to 0.

Let us now consider x thres 0 is PROP y thres 0. This relation
is modeled by an automaton as illustrated in Figure 5. As shown in
this figure, we do not wait for the qualitative change of the cause
variable of the relation(y) in order to set a new qualitative value
for the corrective term. When y > 0 and x ≤ 0, we need to set a
new > 0 qualitative value for the corrective term in order to make
the symbolic value of x evolve toward a positive value. Of course,
when the value of x and y are proportional again, we need to adjust
the qualitative value of the corrective term to 0.

For the two other operator CIPROP as illustrated in Figure 6
and IPROP as illustrated in Figure 7, the automaton that sets the
new qualitative value of the corrective term is very similar to the
automata of CPROP and PROP except that they try to make the
qualitative values of x and y opposite.

𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑃𝑅𝑂𝑃 𝑁𝑜𝑡_𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑃𝑅𝑂𝑃

𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0 𝑜𝑟 𝑦 > 0 𝑎𝑛𝑑 𝑥 > 0
𝑜𝑟 (𝑦 < 0 𝑎𝑛𝑑 𝑥 < 0)

𝑦 = 0 𝑎𝑛𝑑 𝑥 = 0 𝑜𝑟 𝑦 > 0 𝑎𝑛𝑑 𝑥 > 0
𝑜𝑟 (𝑦 < 0 𝑎𝑛𝑑 𝑥 < 0)

𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

Figure 8: Verification automaton of the PROP operator

2.5.7 Verification of the Relations. It is very important to know
that our Constraint Qualitative Model is based on symbolic inte-
gration. So, when we set a corrective term in the execution model
to bring back the affected variable of a relation to follow the cause
variable, we are not sure that the relation is verified at the end of
the execution. For instance, if we consider x thres 0 is PROP y
thres 0. When y > 0 and x < 0, the corrective term is > 0 and
x = x-1 + Ûx-1 + xCor . However x-1 + Ûx-1 < 0 and xCor > 0, so x may
become > 0 or may stay ≤ 0. In the symbolic execution, we will
have these two paths. In order to tag the path in which x > 0, we
use an automaton that observes the qualitative changes of x with
respect to the relation, and tags the path in which the relation is
verified, as illustrated in Figure 8. This automaton shows that if
the value of x and y are proportional (they are both = 0, > 0 or
< 0), we are in a state in which the relation PROP is verified. In
all the other cases, we are in a state in which the relation PROP
is not verified. A quite similar automaton controls the verification
of the CPROP operator but in this case it takes into consideration
the qualitative changes of the cause variable of the relation. For
the two other operators IPROP and CIPROP, we have two other
automata for verifying that the variables linked by the relations are
inversely proportional. These two automata are based on the same
principle that we have discussed before for the PROP and CPROP
operators.

2.5.8 Implementation of the Qualitative Constraint Model. This
execution model with qualitative constraints relies on several au-
tomata: the first one is the scenario automaton in which the user
specifies the behavior of the system input and specifies the different

A NewQualitative language for Qualitative Simulation

values of the current second derivative; the second automaton calcu-
lates the corrective term of the relations that model the interactions
between the different state variables of the system, we have in fact
as many automata calculating the corrective terms as there are
relations; the third automaton keeps track of the qualitative value
of the second derivative (Üx), which is symbolically integrated from
the previous second derivatives and the corrective terms linked
to the second derivative; the fourth automaton keeps track of the
qualitative value of the first derivative (Ûx), which is symbolically
integrated from the previous first, second derivatives and the cor-
rective terms linked to the first derivative; the fifth automaton
keeps track of the qualitative value of the state variable (x), which
is symbolically integrated from the previous value, first derivative
and the corrective terms linked to the value; the sixth automaton
computes the qualitative variation of the variable by observing the
automata for the qualitative value of the variable, its derivatives,
and their previous value in order to detect the different qualitative
variation of the state variables (Constant, Increase...) as we have
shown in our previous work [13]; the seventh automata computes
the verification of the relations after setting the corrective term in
the model execution; and finally, the eighth automaton models the
controller specified by the user. This final automata observes the
outputs of the qualitative Constraints Model and try to adjust the
concerned state variables for the regulation of the system.

The order in which these automata are executed is important:
we execute the automaton of the scenario first, then the automata
of the relations, then the automaton for the second derivative, then
the automaton for the first derivative, then the automaton for the
value of the state variable, then the automaton for the qualitative
behavior, then the automata of the verification of the relations and
finally the automaton of the controller.

2.5.9 Qualitative Behavior Analysis. Our Constraints Qualitative
Model is executed in Diversity [1] which is a symbolic execution
engine developed at CEA LIST to produce symbolic scenarios corre-
sponding to classes of system behaviors. Properties can be proved
on this set of scenarios and concrete numerical tests can be gener-
ated from them. To guarantee termination or to limit the number
of generated test cases, the size and the number of behaviors can
be bounded, and redundant behavior detection can be used.

There are some traces found by Diversity that differ by a few
sequences of states. This is due to the way Diversity detects Redun-
dancy. During the symbolic execution of a model, Diversity builds a
tree, each branch corresponding to a choice for the symbolic value
of the variables. When Diversity finds an execution context that
was met before, it cuts the execution of this branch, and makes it
point to the state that was met before. This turns the tree into an
execution graph, and makes it possible to capture infinite behaviors
in a finite structure. However, depending on the order in which the
variables change, the redundancy detection can be delayed, which
creates several execution paths for the same physical behavior.

Diversity generates also traces that include all the possible paths
from our Constraints Qualitative Model. Among these traces there
are paths in which the relations are not verified. These traces need
to be eliminated because they do not respect the relations that
model the link between the different state variables of the systems.

That is why we need to filter the results of Diversity in order
to keep only one path for each possible physical behavior which
represents a real qualitative behavior of the cyber physical system.
For that, our tool chain that we are going to present later, includes
a module which filter the basic traces of Diversity and produces the
real qualitative behaviors of the system depending on the variables
that we want to observe on the simulation.

Figure 9: The Tool Chain

3 A SYSML PROFILE
FOR QUALITATIVE SIMULATION

To make our approach usable by system designers, and to insulate
them from changes in our execution model and input format, we
have designed a profile for SysML as input language for qualitative
simulation without differential equations. This makes the qualita-
tive modeling of cyber physical systems in SysML easier and more
expressive. We choose SysML because it allows the modeling of
multi domain specifications. It is also used by a large community
of engineers to model the system at the early design stages.

3.1 Presentation of the tool chain
We model a cyber physical system with a SysML model, on which
we have applied our Qualitative Simulation Profile, using the Pa-
pyrus Eclipse plug-in. Then, we transform the SysML model using
a QVT operational “model to model” transformation into a HyDiv
model. HyDiv is a pivot meta-model that we designed to capture
a high level representation of the cyber physical system, indepen-
dently of the source model (we could use Simulink/Stateflow instead
of SysML). We then use an Acceleo model to text transformation
to transform the HyDiv model into Xlia, the input language of
Diversity. In order to generate the qualitative behaviors, we add
an analysis trace module that takes the basic traces generated by
Diversity and applies some filters to eliminate the traces that we
discussed above in Qualitative Behavior Analysis as shown in
Figure 9. Compared to our previous work [13], we add the relation
between variables, the Qualitative Simulation Profile for SysML
and the trace analysis module. Also, we have updated the HyDiv
model to support the relations between the states variables of the
system.

Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger

Figure 10: The Block Extension

3.2 The Qualitative Simulation Profile
Block Extension. In order to distinguish the different components

of the system that we want to model in a qualitative way, we cre-
ate three stereotypes; the Qualitative System to label the global
system, the Qualitative Block to label the different component of
the system and the Scenario to label the input component of the
system as shown in Figure 10. A Qualitative system is composed of
different Qualitative Block and a Scenario.

Figure 11: The State Machine Extension

State Machine Extension. In order to distinguish the different
state machines that models the behavior of the system and the input
of the system, we create two stereotypes; the ScenarioStateMa-
chine to label the state machine that models the behavior of the
Scenario Block; the SystemStateMachine to label the state ma-
chine that models the behavior of Qualitative System as illustrated
in Figure 11. The Classifier Behavior of the Qualitative System is a
state machine that is tagged with the SystemStateMachine stereo-
type. We do the same for the Scenario, but in this case the classifier
behavior is a state machine that is tagged with the ScenarioStateMa-
chine stereotype.

Figure 12: The Property Extension

Figure 13: The Qualitative Types

Property Extension. In order to distinguish the different state
variables of a Qualitative block, we create the QualitativeState-
Variable stereotypewhich is composed of three attributes as shown
in Figure 12;
• order to know the order of the state variables. The order
is either first if we use only the first derivative of the state
variable, or second, if we also use the second derivative of
the state variable.
• threshold to know the different thresholds for the value of
the state variable.
• isContinuous to know if the value that is specified in the
order attribute is continuous or not.

A Qualitative Block contains different attributes tagged with
the QualitativeStateVariable stereotype to precise the properties
that our Constraint Model needs to configure the simulation. These
attributes will have a Qualitative Type as type in order to use the
different levels of description of a state variable as illustrated in
Figure 13.

Figure 14: The Constraint Property Extension

Figure 15: The Qualitative Constraints library
Constraint Block Extension. To express the continuous behav-

ior of the cyber physical system in SysML, the designers use the
parametric diagram. This type of diagram is used to model an
equation using the Constraint Block component of SysML. In
our case, we do not have the exact numerical equations, we have
a qualitative model of the equations which is described by rela-
tions based on the different operators of our Constraint Model
explained earlier in subsection 2.5. In order to make qualitative
modeling without differential equations easier in SysML, we create
theQualitativeConstraintProperty stereotype that will allow us
to enter easily the threshold of the linked state variables as shown
in Figure 14. The QualitativeConstraintProperty has two attributes;

A NewQualitative language for Qualitative Simulation

CauseThres, which is the threshold of the cause variable of the
relation, and effectThres, which is the threshold of the affected
variable of the relation. Also, we create aQualitative Constraints
Library that contains the four operators of our Constraint Model :
CPROP, PROP, CIPROP and IPROP. Every operator has two at-
tributes; cause and effect in order to specify the different variables
of the relation as illustrated in Figure 15.

Figure 16: The HyDiv Meta Model

3.3 HyDiv Model
HyDiv is a textual domain specific modeling language for Cyber
physical systems, implemented with Xtext. It provides us with a
compact representation of the system which is decoupled from
both the input formalism (SysML in this article) and the model
of execution that will be used in Diversity. Figure 16 shows its
meta-model. Compared to our previous work in [13], we add:

Relation a class to model relations between the state variables,
in which we find the cause and the affected variables of the
relation.

Threshold a class to model the threshold of state variables.
Scenario a class in which the user specifies the behavior of

the input scenario.
Controller a class in which the user specifies the behavior of

the control part of the system.

3.4 Trace analysis module
The trace analysis module is a Java application that takes the basic
traces generated by Diversity as input and produces the qualitative
behaviors of the cyber physical systems as output by applying some
filters:

Mathematical filter eliminates the paths that endwith a state
variable over its threshold while its first and second deriva-
tives are negative. This corresponds to an increasingly de-
creasing variable that stays indefinitely above a finite thresh-
old, which is mathematically impossible. The filter also elim-
inates the dual case of an increasingly increasing variable
which stays forever below a finite threshold (value under the
threshold, positive first and second derivatives).

Validation filter eliminates the paths that end with at least
one unsatisfied relation between state variables.

Observable Variable filter merges the behaviors that are sim-
ilar when we hide the variables that the user did not select
for observation. The detailed behaviors are still available for

inspection if the user wants to understand why we obtain
these qualitative behaviors when observing only this set of
variables.

Figure 17: General Principle of the Cooling System

4 USE CASE: COOLING SYSTEM
We applied our method to the cooling system shown in Figure 17.
The cooling system is a basic system found in French nuclear power
plants, which is used to provide cooling of auxiliary secondary cir-
cuits connected to the turbine process. This is a device for cooling
several hot sources through an interface with a cold source, con-
trolled by exchangers. It contains logical and analog parts. In this
system, we have a Heat flow that enters from the Heat source
component and tries to be cooled when it goes to the Cooling
component. The Heat source produces a hot temperature Thot as
output while the Cooling component produces a cold temperature
Tcold as output. The main goal of this system is to regulate the
Tcold temperature to be equal to a set temperature Tc. For that, we
have to regulate the Rate of the cold water. Four state variables
in the Cooling model were the primary subject of the simulation
process study: the Heat (input for the Cooling system), the hot tem-
perature of the circuit (input to exchangers), the cold temperature
(output from exchangers) and the flow in the exchangers (given
by the rate of the flow within an exchanger). All other parameters
were assumed to be constant. In this system, we do not have the
exact differential equations, we know only a qualitative model of
these equations which could be modeled by our language in the
form of relations:
• relation 1: ÛThot thres 0 is CPROP ÛHeat thres 0
• relation 2: ÛTcold thres 0 is PROP ÛThot thres 0
• relation 3: ÛThot thres 0 is PROP ÛTcold thres 0
• relation 4: ÜTcold thres 0 is CIPROP ÛRate thres 0

Relation 1 models the fact that the variation of the Heat impacts
the variation of the hot temperature Thot in a proportional way.
We want to fix the temperature only when Heat changes, so we
use the CPROP operator. Relations 2 and 3 model the fact that
the hot temperature Thot and the cold temperature Tcold vary in
a proportional way. We want to keep this relation all the time, so
we use the PROP operator. The hot temperatureThot and the cold
temperature Tcold influence each other in a acausal way, and we
model this mutual influence by two relations; in relation 2, the vari-
ation of Thot impacts the variation of Tcold , and in relation 3, the
variation of Tcold impacts the variation of Thot . Relation 4 models
the fact that the qualitative change of the variation of the Rate
makes the second derivative of the cold temperature ÜTcold change

Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger

Figure 18: Block Definition Diagram of the Cooling System
in a opposite way. When the Rate of the cold water increases, the
cold temperature Tcold has a tendency to decrease, so the second
derivative ÜTcold is negative. When the Rate of the cold water de-
creases, the cold temperatureTcold has a tendency to increase, and
the second derivative of ÜTcold is positive.

4.1 SysML Model of the Cooling System
4.1.1 Architecture of the Cooling System. The architecture of

the cooling system is modeled in a Block Definition Diagram in
SysML as shown in Figure 18. The cooling system which is a Qual-
itativeSystem is composed of three QualitativeBlock: the Heat-
Source block that contains a QualitativeStateVariable: Heat, the
Cooling block that contains two QualitativeStateVariable: Thot
and Tcold, the Regulation block that contains a QualitativeStat-
eVariable: Rate and finally the Scenario block that contains the
ScenarioStateMachine that specifies the variation of the Heat
which is the input of the cooling system.

«SystemStateMachine»
System_State_Machine

Constant_Rate
/entry Rate.derivative == 0

Init_System
/Tcold.value == Tc

t0

Increase_Rate
/entry Rate.derivative > 0

t4

[Tcold.value > Tc]

t5

[Tcold.value == Tc]

t6
[Tcold.value > Tc]

Decrease_Rate
/entry Rate.derivative < 0

t1

[Tcold.value < Tc]

t2

[Tcold.value == Tc]

t3
[Tcold.value < Tc]

Figure 19: Regulation State Machine of the Cooling System

4.1.2 Regulation of the Cooling system. The regulation of the
cooling system is modeled by a state machine as illustrated in
Figure 19 with 4 states and 7 transitions:

• the t0 transition sets the initial value of Tcold to = Tc
• the t1 transition flips the switch to Decrease_Rate if the value
of Tcold < Tc
• the t2 transition flips the switch to Constant_Rate if the value
of Tcold = Tc
• the t3 transition flips the switch to Decrease_Rate if the value
of Tcold still < Tc
• the t4 transition flips the switch to Increase_Rate if the value
of Tcold > Tc
• the t6 transition flips the switch to Increase_Rate if the value
of Tcold still > Tc

4.1.3 Behavior of the Cooling System. As said before, the con-
tinuous behavior of the cooling system is modeled by 4 relations.
These relations can be specified in a parametric diagram as shown
in Figure 20 where, for instance,Relation_1 has its cause attribute
connected to the derivative of Heat in HeatSource, and its effect
attribute connected to the derivative of Thot in Cooling. The thresh-
olds of a relation are specified in the property of the operator as
illustrated in Figure 21.

4.2 Qualitative Behaviors Obtained of the
Cooling system

Running the trace analysis module on the basic traces generated by
Diversity, we obtain 7 qualitative behaviors for the cooling system
by observing just theTcold variable. Figure 22 shows an oscillating
behavior. The red color shows when a variable changes, the green
one shows the Execution context (EC) toward which the last EC in
the behavior loops back. Tcold is = Tc in EC3, then Tcold becomes
> Tc in EC7, it becomes = Tc again in EC27, it becomes < Tc in
EC29, and then we loop back to EC3 where Tcold = Tc again. If
we want to see the impact of the variation of Tcold on the other
variables, we can add the first derivative of Rate as illustrated in
Figure 23. In this Figure, we see that when Tcold > Tc in EC7,
Rate is starting to increase (the first derivative of Rate is > 0 in
EC9). WhenTcold = Tc in EC27, Rate stops increasing (ÛRate = 0 in
EC29). WhenTcold < Tc in EC29, Rate starts decreasing (ÛRate < 0
in EC31). There is always a delay between the variation of Tcold
and of Rate because the automaton that controls the variation of
the Rate is executed at the end; this automaton observes the out-
puts of our Constraint Model and then changes the variables that
we want to adjust. The complete column seen in Figure 22 and
Figure 23, is used to record in hyperlink the traces that included all
the states variables of the system from which we have extracted the
qualitative behavior shown in the behavior field. Figure 24 shows
an example of a complete qualitative trace. In this figure, we see all
the state variables of the system: Heat , Thot , Tcold , Rate and also
the verification of the relations in the verification column. We see
clearly that the EC toward which the last EC loops back differs from
Figure 22 (EC3), Figure 23 (EC7) and Figure 24 (EC29). Although
these three Figures represent the same qualitative behavior; Fig-
ure 22 is refined by Figure 23 and Figure 23 is refined by Figure 24.
The detection of loop back (EC) depends on the observed variables.

5 CONCLUSION
We have presented a new constraint execution model for the quali-
tative simulation of cyber physical systems with only a qualitative
model of the equations, with a new symbolic integration of the

A NewQualitative language for Qualitative Simulation

Figure 20: Qualitative Relations of the Cooling system

Figure 21: Property of the operator

Figure 22: Oscillatory Behavior of Tcold

derivatives of the state variables that takes into account the cor-
rective term introduced by the relations between state variables
that model the continuous behavior of the system. We compute
only qualitative values for the state variables by partitioning their
domain into regions according to their symbolic thresholds. We
compute the derivatives of the state variables by partitioning their
domain into Negative, Null and Positive.

Our constraint execution model is composed of several layers
of state machines. The first one contains the scenario automaton
in which the user specifies the behavior of the input of the system;

Figure 23: Oscillatory Behavior of Tcold and Rate

the second one contains the automata that compute the correc-
tive terms of the relations that model the interactions between
the different state variables of the system; the third layer contains
automata that keep track of the qualitative value of the second
derivative (Üx) of each state variable, which is symbolically inte-
grated from the previous second derivative and the corrective term
linked to the second derivative; the fourth layer keeps track of the
qualitative value of the first derivative (Ûx) of each state variable,
which is symbolically integrated from the previous first and second
derivatives and the corrective terms linked to the first derivative;
the fifth layer keeps track of the qualitative value of each state vari-
able (x), which is symbolically integrated from the previous value,
first derivative and the corrective terms linked to the value; the

Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger

Figure 24: Complete Qualitative Trace

sixth layer computes the qualitative variation of each variable by
observing the automata for the qualitative value of the variable, its
derivatives, and their previous value in order to detect the different
qualitative variations (Constant, Increase...); the seventh layer
verifies whether the relations between state variables hold or not;
and finally, the eighth layer contains the automaton which models
the controller specified by the user.

We have enhanced our existing tool chain, which is based on
an M2M transformation from stereotyped SysML models to the
HyDiv pivot language, and an M2T transformation from this lan-
guage to Diversity, by designing a SysML profile for qualitative
simulation without differential equations, in order to make the qual-
itative modeling of cyber physical systems in SysML easier and
more expressive. We have added also a filter to eliminate redundant
symbolic behaviors that correspond to the same physical behavior
in the execution tree generated by Diversity.

We applied our approach to a cooling system case study, which
is a typical cyber physical system with logical and analog parts and
is therefore a good candidate for our study. We have shown that
we are able to find the different qualitative behaviors of the cooling
system.

The qualitative behaviors produced by our tool chain can be
used in co-simulation to validate other systems that interact with
the cyber physical system. Indeed, co-simulation generally involves
numerical simulators which often involve long computation time
and which are necessarily configured only for specific scenarios,
thus reducing the scope of exploration. In contrast, qualitative
simulation provides a good abstraction of all system behaviors,
which requires less computation time and thereby enables more
exhaustive exploration.

There are obviously limitations to the analysis of cyber physical
systems using qualitative simulation without differential equations,
because behaviors that depend on specific numerical values of
some parameters cannot be found. However, this approach can be
applied to systems that cannot be analyzed because their differential
equations are too complex to be analyzed. It can also be applied in
the early phases of the design of a system, when some parameters
or the exact form of the differential equations are not known yet.

REFERENCES
[1] Mathilde Arnaud, Boutheina Bannour, and Arnault Lapitre. 2016. An illustra-

tive use case of the DIVERSITY Platform based on UML interaction scenarios.
Electronic Notes in Theoretical Computer Science 320 (2016), 21–34.

[2] Bert Bredeweg, Floris Linnebank, Anders Bouwer, and Jochem Liem. 2009. Garp3
— Workbench for qualitative modelling and simulation. Ecological informatics 4,
5 (2009), 263–281.

[3] Christopher W. Brown. 2003. QEPCAD B: A Program for Computing with Semi-
algebraic Sets Using CADs. SIGSAM Bull. 37, 4 (Dec. 2003), 97–108. https:
//doi.org/10.1145/968708.968710

[4] Johan de Kleer and Daniel G Bobrow. 1984. Qualitative Reasoning With Higher-
Order Derivatives.. In AAAI. 86–91.

[5] Eclipse Modeling Project. 2017. Acceleo. https://projects.eclipse.org/projects/
modeling.m2t.acceleo

[6] Eclipse Modeling Project. 2017. QVT. https://projects.eclipse.org/projects/
modeling.mmt.qvt-oml

[7] Pierre Fouché and Benjamin J Kuipers. 1992. Reasoning about energy in qual-
itative simulation. IEEE Trans. on Systems, Man, and Cybernetics 22, 1 (1992),
47–63.

[8] Jean-Pierre Gallois and Agnès Lanusse. 1998. Le test structurel pour la vérifica-
tion de spécifications de systèmes industriels: L’outil AGATHA. In Fiabilité &
maintenabilité. 566–574.

[9] Jean-Pierre Gallois and Jean-Yves Pierron. 2016. Qualitative simulation and
validation of complex hybrid systems. In ERTS 2016. TOULOUSE, France. https:
//hal.archives-ouvertes.fr/hal-01291350

[10] Benjamin Kuipers. 1986. Qualitative simulation. Artificial intelligence 29, 3 (1986),
289–338.

[11] Benjamin Kuipers and Charles Chiu. 1987. Taming intractible branching in
qualitative simulation. Readings in qualitative reasoning about physical systems
(1987).

[12] Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2003. Hybrid i/o automata.
Information and computation 185, 1 (2003), 105–157.

[13] Slim Medimegh, Jean-Yves Pierron, and Frédéric Boulanger. 2018. Qualitative
Simulation of Hybrid Systems with an Application to SysML Models. In 6th
International Conference on Model-Driven Engineering and Software Development.
SCITEPRESS-Science and Technology Publications.

[14] AntoineMissier and L Trave-Massuyes. 1991. Temporal information in qualitative
simulation. In AI, Simulation and Planning in High Autonomy Systems. IEEE, 298–
305.

[15] Nicolas Rapin, Christophe Gaston, Arnault Lapitre, and Jean-Pierre Gallois. 2003.
Behavioural unfolding of formal specifications based on communicating au-
tomata. In Proc. 1st Workshop on Automated Technology for Verification and Anal-
ysis.

https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/968708.968710
https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://projects.eclipse.org/projects/modeling.m2t.acceleo
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
https://hal.archives-ouvertes.fr/hal-01291350
https://hal.archives-ouvertes.fr/hal-01291350

	Abstract
	1 Introduction
	2 Qualitative Simulation of cyber physical systems
	2.1 Principle of Qualitative Simulation
	2.2 Types of Qualitative Simulation
	2.3 Qualitative behaviors
	2.4 Related Work
	2.5 A new Constraint Execution Model for Qualitative Simulation

	3 A SysML profile for Qualitative Simulation
	3.1 Presentation of the tool chain
	3.2 The Qualitative Simulation Profile
	3.3 HyDiv Model
	3.4 Trace analysis module

	4 Use Case: Cooling System
	4.1 SysML Model of the Cooling System
	4.2 Qualitative Behaviors Obtained of the Cooling system

	5 Conclusion
	References

