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Abstract—Radar and wireless communication coexistence is
considered in this paper as a possible solution to face the
exploding demand and rising congestion in wireless networks.
The transmission medium is modeled as an AWGN channel
with additive radar interference. Standard constellations are not
optimal in this context and an auto-encoder (AE) is used to design
proper constellations and corresponding receiver devices. AE is
a powerful tool in neural networks that shares strong similarities
with communication systems. This technique is particularly
relevant in the lack of an analytical expression of the loss function.
In the asymptotic region (high interference regime), the optimal
constellation shape is known and the AE always converges
towards this optimal solution. In the other regions, the AE is able
to yield solutions that outperform the standard configurations.
Several demapping alternatives are also considered leading to
the conclusion that it is possible to maintain the communication
link in the presence of radar interference independently of the
interference power. This is a step further compared to previous
works in which solutions were limited to low or high interference
regimes.

Index Terms—Machine learning, optimization methods, digital
modulation, radar interference.

I. INTRODUCTION

Increasing data traffic demand in cellular and wireless net-
works leads to a rethinking of the spectrum allocation policy.
The actual spectrum regulation with bands allocated to specific
users or services is suboptimal and a significant part of the
spectrum is seldom used. Indeed radars and radio navigation
infrastructure occupy an important portion of the available
spectrum with low usage efficiency. Several regulators across
the world have started considerations for release portions of
governmental radar bands to be shared with commercial wire-
less services. Consequently, the concept of spectrum sharing in
radar has gained lots of interest [1], [2], [3]. Literature on radar
and wireless communication coexistence is vast. It is possible
however to design the radar and/or the communication system
to alleviate its impact on the other device by using different
techniques such as waveform design [4], [5], interference
mitigation [6] or spatial separation [7]. In [8], a joint design
of the radar transmission waveform’s power spectrum and
the power spectral density of a multi-carrier communication
system is proposed. As a complementary approach, it is
also interesting to consider an unaltered radar signal and a
communication system and in particular it is useful to have
an idea of the attainable performance when both systems
coexist. The performance of standard communication systems

in the presence of radar interference has been studied through
numerical experiments in several publications. For example,
WiMax and ground based radar are considered in [9] and an
OFDM system subject to ultra-wide band radar interference is
considered in [10]. A theoretical performance analysis is given
in [11] where bounds on performance of the joint system are
measured in terms of data information rate for communications
and radar estimation information rate for radar. The capacity of
the communication channels with both additive white Gaussian
noise and radar interference is investigated in [12]. It is
proved that communication is possible even in the presence
of high radar interference. This latter case results in a loss of
half the degrees of freedom compared to a channel without
interference. The capacity achieving input distribution under
average power constraint is characterized in [12]. The optimal
input distribution has independent modulus and phase. The
phase is uniformly distributed in [0, 2π] whereas the modulus
is discrete with countably infinite many mass points but only
finitely many in any bounded interval. Finite inputs are used
in practice whereas the optimal input is continuous (Gaussian
distributed). The objective of this paper is to design finite
constellations for the additive radar interference channel. To
the best of our knowledge, this problem has not been widely
investigated in the past. Very recently, this question was
addressed in [13]. The objective function considered for the
minimization process is the symbol error rate which is based
on the analytical expressions given in [14] for the weak and for
the very strong interference regime leading to very interesting
results for these two situations. The method in [13] cannot
be extended to other regimes since closed form expressions
are not known in the general case. Instead, it is proposed
here to use deep learning and AEs for constellation design.
With deep learning, the network is able to learn directly from
the observations and closed-form expressions are no longer
required.

Deep learning is a branch of machine learning research
which has been introduced to allow machines and computer
systems to improve with experience and data accumulation. An
auto-encoder (AE) is a type of artificial neural network used
to learn efficient representations of the data in an unsupervised
manner. The analogy between AEs and communication sys-
tems has been used in recent publications [15]. More generally,
deep learning techniques have already been used for solving
communication problems. The vast majority is dedicated to
the design of the receiver. For example, multi-user detection in
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code-division multiple access (CDMA) has been investigated
in [16], [17]. The ability of a neural network to decode polar
codes with MAP performance is analyzed in [18]. Neural
network techniques demonstrate convincing results for short
block length codes but suffer from high decoding complexity.
Indeed, the training complexity of deep learning-based channel
decoders scales exponentially with the number of information
bits and cannot be reasonably considered for standard codes
used in practice. In [19], the emitter and decoder are consid-
ered jointly. Here again the complexity limits the usefulness
of the method since the proposed method can only be applied
to short block length.

Taking into consideration those works, we believe that AEs
are well-suited for constellation design. Indeed, the dimen-
sionality of this problem is modest and the encoder of the
AE can be trained to optimize the constellation whereas the
decoder is trained to recover the binary message from the
received data. Our objective is not end-to-end learning of
communications systems through deep neural network like
in [19]. Here, the neural network is considered only for
modulation and demodulation tasks. The proposed solution is
compatible with other elements of the communication chain
such as error-correcting codes. The strengths of the proposed
methodology are listed below. The objective function to be
optimized is a bound of the mutual information [20] which
is an usual criterion in communication and in particular in
constellation design. Neither an analytical expression of the
mutual information (or of the symbol error rate) nor an a
priori on the geometry of the constellation are needed for
the optimization process. This is in contrast with previous
works [21], [22], [23], [13]. The constellation geometry and
the labeling are optimized jointly. The proposed mapping/de-
mapping solution can be used in combination with powerful
channel decoders such as turbo-codes or Low Density Parity-
Check codes (LDPC) and is fully compatible with wireless
communications schemes already deployed.

The paper is organized as follows. The system model is
depicted in Section II. Past work related to this model is
recalled and our contribution detailed. The strong interference
regime is considered in section III. It is proved that, in
this specific regime, an M-PAM like constellation should be
used. AEs are discussed in Section IV-A and the proposed
structure is presented. Section V is devoted to constellation
design. Numerical results are given in Section VI where the
demapping operation is discussed in order to exhibit the best
association for each interference regime.

II. SYSTEM MODEL

The system under consideration is composed of a narrow-
band communication channel suffering from the interference
of a high power, short duty cycle radar pulse. An analytical
model for the discrete-time complex-valued signal at the
communication receiver is given in [24]. The channel model
is an AWGN with additive interference, with known constant
amplitude

√
I and unknown random phase θI uniformly

distributed in [0, 2π]. A justification for this model can be
found in [25] and references therein. From the communica-
tion perspective, a single carrier system is considered with

narrow-band frequency-flat slowly-varying fading model with
known channel gain at the receiver. Extension to time-varying
channels is obtained by averaging the error rates over the
channel statistics. The amplitude of the radar interference
can be accurately estimated since the radar system has slow-
varying parameters [25]. At the opposite, the phase suffers
rapid variations and is difficult to track. Let’s denote the
discrete-time signal at the communication receiver as Y then

Y = X +
√
IejθI + Z (1)

where X is the channel input chosen from the constellation
X = {Xi =

√
Sie

jθi , i = 0, ...,M − 1} with cardinality
M and Z is a complex Gaussian noise with zero-mean and
unit-variance. The average power of the constellation is S
meaning that E[|X|2] = S. The random variables (X, θI , Z)
are mutually independent and the channel is memoryless. From
these notations, the average Signal to Noise Ratio (SNR) is S
and the average Interference to Noise Ratio (INR) is I . The
objective of this paper is to optimize the constellation alphabet
X for reliable transmission through the AWGN channel with
additive interference given in (1). Both S and I are fixed
and known at the receiver. Three different regimes will be
considered here. For each one, the state of the art is first
recalled and emphasis is given on our contribution.

1) I � S. In the high interference regime, it is optimal at
the receiver to estimate the phase of the radar interfer-
ence as the phase of the received signal and to use this
estimation to subtract its contribution from the received
signal [24]. In this interference cancellation process, a
portion of the useful signal is also subtracted and the
capacity is only half the capacity of the interference-
free system. More specifically, it is proved in [12] that

lim
I→∞

C(S, I) =
1

2
log(1 + S) (2)

where C(S, I) denotes the capacity of the channel in
(1). The Gaussian input is optimal in the high interfer-
ence regime. However, in practice, the channel input is
constrained to a finite size alphabet.

2) I � S. The Gaussian input performs also very well
(but is not optimal) in the weak interference regime
with achievable rates close to the upper bound in [26].
The capacity achieving distribution under average power
constraint has independent modulus and phase [12]. The
phase is uniformly distributed in [0, 2π] and the modulus
is discrete with countably infinitely many mass points,
but only finitely many in any bounded interval. It can
also be seen in [14] that, in this regime, the optimal
MAP decoder is the classical minimal distance decoder
applied to (1) in which the interference is considered as
Gaussian noise.

3) The intermediate regime is the most challenging case.
The interference is neither small enough to be neglected
nor large enough to be accurately estimated. The expres-
sion of the channel capacity does not admit a simple
expression like in the other two cases.

Our contributions are given below. The main contribution is
the design of finite size constellations with enhanced perfor-
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mance compared to standard constellations and the design of
the corresponding soft demapping rules. The constellation as
well as the soft demapping are optimized with an AE. Thanks
to this optimization framework, the constellation shape, the
constellation labeling1 and the soft demapping device are opti-
mized jointly. This in contrast with [13] in which the constella-
tion labeling is not addressed. Indeed, in [13] the symbol error
rate (SER) is considered in the optimization problem whereas
here the loss function is based on bit probabilities. This is a
key difference that will be discussed in section V-C. Note also
that [13] focuses on the low and high INR regime whereas
here solutions are proposed for the three regimes. The resulting
constellations are evaluated in terms of achievable rates and/or
error probability and compared to theoretical bounds and also
to standard constellations. The second contribution is to show
that the designed schemes are efficient both with uncoded and
coded data. Indeed the AE outputs soft information which can
be easily connected to a turbo or LDPC decoder. To the best
of our knowledge, previous works considered uncoded data
only. However, the gain from the constellation design may be
absorbed by the channel coding. It can be seen here that the
proposed schemes outperform the standard ones even when
coded data are considered. Finally, a new demapping rule
(called DMHighSNR in the following) well adapted to the
additive radar interference channel is introduced here. This
new rule outperforms the existing ones in the three regimes.

An analysis of the interference channel in the high INR
regime is provided in the next section. It is proved that the
constellation points should be collinear to avoid equivocal
areas. This is consistent with the expression of the capacity of
the real AWGN channel with power constraint given in (2).

III. INTERFERENCE CANCELLATION IN THE HIGH INR
REGIME

In the high INR regime (I � S), Y ≈
√
IejθI since the

other terms in (1) become negligible when I goes to infinity.
The phase of the radar interference can thus be estimated as
θ̂I = arg(Y ) and

√
Iejθ̂I =

√
I Y
|Y | is an estimation of the

radar interference. The accuracy of this estimation depends on
the SNR value. Let’s define YIC as

YIC = Y −
√
Iejθ̂I = Y

(
1−
√
I

|Y |

)
(3)

where |Y | stands for the modulus of the complex variable
Y . In the whole paper, X stands for the channel input, Y is
the channel output in (1) and YIC is the channel output after
interference estimation and cancellation given in (3).

Result 1: Without loss of generality, X = X0 =
√
S0e

jθ0

where X0 is a given point of the constellation X . If SNR→
∞ and I � S then

YIC =

√
S0

2

(
ejθ0 + ej(2θI−θ0)

)
+
√
S0o(1) (4)

where
√
S0o(1) is the remainder term of the Taylor expansion

and o(1)→ 0 when
√

S0

I → 0.

1A constellation labeling is the assignment of a bit pattern to each symbol
in a signal-set constellation.
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Figure 1. Locus of YIC , 16QAM constellation, I = S2, SNR = 20 dB.

Proof: The absolute square of Y reads

|Y |2 = I

(
1 +

√
S0

I

(
ej(θ0−θI) + ej(θI−θ0)

)
+
S0

I

)
(5)

Since S is the average energy of the constellation and since
the constellation is bounded and of finite size, I � S leads to
I � S0 Thus,

√
I
|Y | admits the first-order asymptotic expansion

√
I

|Y |
= 1− 1

2

√
S0

I

(
ej(θ0−θI) + ej(θI−θ0)

)
+

√
S0

I
o(1) (6)

where
√

S0

I o(1) is the remainder term of the Taylor expansion

and o(1) → 0 when
√

S0

I → 0. From Y =
√
I

(
ejθI +√

S0

I e
jθ0

)
and from (3), we obtain the first-order expansion

of YIC√
I

as

YIC√
I

=
1

2

√
S0

I

(
ejθ0 + ej(2θI−θ0)

)
+

√
S0

I
o(1) (7)

which concludes the proof.
From result 1, the locus of YIC for a given transmitted symbol
X = X0 =

√
S0e

jθ0 is a circle with center
√
S0

2 ejθ0 and radius√
S0

2 . Let’s denote the point with Cartesian coordinates (0; 0)
as O. The circles corresponding to two different constellation
points overlap at least in O since each circle passes through
the origin. The loci for a 16QAM constellation are depicted in
Figs. 1 and 2 for I = S2 and SNR = 20 dB and SNR = 40
dB respectively. We can observe several overlapping points
which may complicate the de-mapping task. We prove in the
next result that there exists a constellation geometry with one
and only one overlapping point, namely O.

Result 2: Let’s assume that C1 and C2 are two circles defined
as

C1 =

{
z1 =

√
S1

2

(
ejθ1 + ejθ

)
, θ ∈ [0; 2π)

}
C2 =

{
z2 =

√
S2

2

(
ejθ2 + ejθ

)
, θ ∈ [0; 2π)

}
Let’s define X1 and X2 as two distinct points of X with
respective polar coordinates

√
S1

2 ejθ1 and
√
S2

2 ejθ2 . Then,
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Figure 2. Locus of YIC , 16QAM constellation, I = S2, SNR = 40 dB.

C1 ∩ C2 = {O} if and only if the three points X1, X2 and
O are collinear.

Proof: For compactness, (x1; y1) denote the Cartesian co-
ordinates of X1 and (x2; y2) denote the Cartesian coordinates
of X2. With these notations and for i ∈ {1, 2}, Ci is a circle
with center coordinates (xi, yi) and radius Ri =

√
x2i + y2i .

If M with Cartesian coordinate (x; y) is a point of C1 ∩ C2,
then x and y are such that

x2 − 2x1x+ y2 − 2y1y = 0 (8)
x2 − 2x2x+ y2 − 2y2y = 0 (9)

We distinguish here the two following cases:
1) x1 = x2. Then, by subtraction of (8) and (9), either

y = 0 or y1 = y2. Since it is assumed that X1 6= X2,
the case {x1 = x2 and y1 = y2} does not require to
be considered. If y = 0 then x = 0 or x = 2x1 hence
|C1 ∩ C2| = 2.

2) x1 6= x2. By subtracting (8) and (9), we have

x =
y2 − y1
x1 − x2

y (10)

which can be plugged into (8) leading to((
y1 − y2
x2 − x1

)2

+ 1

)
y2 = 2

(
x2y1 − x1y2
x2 − x1

)
y (11)

As a consequence, |C1 ∩ C2| = 1 if and only if x2y1 =
x1y2. This condition is equivalent to

sin(θ1 − θ2) = 0 (12)

Hence X1, X2 and O are collinear.

An illustration of this result is given in Fig. 3 where the con-
stellation is composed of 16 collinear points and is symmetric
with respect to O. As expected, the overlapping is limited to O.
In the following, a constellation with cardinality M and such
that all points are on a straight line passing through the origin
is termed an M-RPAM by analogy with a rotated M-PAM.
Note however that regular spacing between the constellation
points is not required. It is proved in the next result that perfect
decoding is possible even when YIC = 0.
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Figure 3. Locus of YIC - |X | = 16 -I = S2 - SNR = 40 dB

Result 3: Let’s consider the high INR regime (I � S)
and the noiseless case. Let’s assume that X is an M-RPAM
constellation and that {θX ; θX + π} denote the possible
phases of the constellation points. The channel input is X =
X0 =

√
S0e

jθ0 and the corresponding channel output is
Y =

√
S0e

jθ0 +
√
IejθI . If YIC = 0 then X0 is recovered

from the observation Y as

X0 = 2Re(Y e−jθX )ejθX (13)

Proof: From (3), YIC = 0 is equivalent to Y = 0 or |Y | =√
I . In the high INR regime, I 6= S0 thus Y =

√
S0e

jθ0 +√
IejθI 6= 0. The other alternative |Y | =

√
I is equivalent

to |Y |2 = I . Since |Y |2 = S0 + I + 2
√
S0Icos(θ0 − θI),

|Y | =
√
I is equivalent to cos(θ0 − θI) = − 1

2

√
S0

I . The
expression of sin(θ0 − θI) is inferred from cos(θ0 − θI)2 +
sin(θ0 − θI)2 = 1 leading to sin(θ0 − θI) = ε

√
1− S0

4I with
ε ∈ {−1; 1}. Replacing these two equations into the expression
of the noiseless channel output leads to

Y =
√
S0e

jθ0

(
1

2
− jε

√
I

S0

√
1− S0

4I

)
(14)

Since θ0 − θX = 0 mod π, we have ej(θ0−θX ) ∈ {+1,−1}
and we can conclude that

Re(Y e−jθX ) = 1

2

√
S0e

j(θ0−θX ) (15)

The channel input is thus recovered from the observation Y
by computing 2Re(Y e−jθX )ejθX .
Hence, at high SNR, a M-RPAM constellation yields per-
fect decoding. Other geometric configurations may share this
property. However, since collinear points decrease the number
of equivocal area, it is likely to observe, with noisy data,
an improvement in terms of BER with M-RPAM compared
to other constellations. This point will be confirmed in the
simulation part.

IV. AUTO-ENCODERS AND COMMUNICATION SYSTEMS

A. Deep learning

Deep learning is a specific subfield of machine learning. The
central problem in machine learning and deep learning is to
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learn useful representations of the input data from exposure to
known examples of inputs and outputs. Deep learning involves
several successive layers of representation. A deep neural
network is obtained by stacking layers one on top of another.
The neural layers considered in this article transform an input
data `in into an output `out as follows

`out = g(w`in + b) (16)

where w and b are called weights or trainable parameters
and where g(.) is either a non-linear function or the identity
mapping [27]. The weights contain the information learned by
the network from exposure to training data. The weights of the
whole layers are optimized jointly, each layer being updated to
follow both the representational needs of the layer above and
the needs of the layer below [28]. The optimizer implements
the back-propagation algorithm. The loss function takes the
prediction of the output of the network and the true target and
computes a distance score that is used as a feedback signal
to adjust the weights. In this representation, `in and `out are
vectors with respective length din and dout, w is a matrix
with size dout×din and b is a vector with length dout. In the
following, we use the shorthand notation

`out = fdin→dout,gP (`in) (17)

where P = {w,b} is the set of trainable parameters.

B. Auto-encoders and proposed structure

AEs are a specific type of feedforward neural networks
where the input is the same as the output. The Denoising AE
is of particular interest here. The idea behind Denoising AEs is
simple. In order to force the neural network to discover more
robust features and prevent it from simply learning the identity,
we train the AE to reconstruct the input from a corrupted
version of it. The network may be viewed as consisting of
two parts termed as encoder and decoder. Usually, the cor-
ruption is introduced at the input. To mimic a communication
system, the perturbation is introduced here at the output of
the encoder and before entering the decoder [15]. From the
network perspective, the perturbation is modeled by a layer
(Channel layer) that does not involve any trainable parameters.
A schematic representation of the proposed structure is given
in Fig. 4.

Let’s denote the length of the binary message C to be
transmitted as k. C is the input of the AE. The input space is
of size M = 2k. X is the complex symbol at the output of the
encoder and is thus a vector of length 2 (real and imaginary
part of the symbol). X is a representation of C that will be
optimized to be robust to the perturbation introduced by the
communication channel. Unfortunately, there are no formula to
determine the right number of layers and the right size for each
layer. The general workflow to find the appropriate network’s
size is to start with relative few layers and parameters and
increase the size of the layers or the number of layers until
reaching a minimum or a threshold in the validation loss [28].
With this methodology, the encoder (modulator) is defined as

X = fk→16,t
P1

◦ f16→8,t
P2

◦ f8→4,t
P3

◦ f4→2,l
P4

(C) (18)

Figure 4. Schematic representation of the AE - Black pictograms indicate
layers with trainable parameters.

where t and l stand respectively for the hyperbolic tangent and
linear activation functions. This structure involves a moderate
number of layers with small size but appears to be sufficient
for performing the encoding task. The activation functions
are chosen symmetric with respect to 0 since X should
not be restricted to the quadrant of the complex plane with
positive real part and positive imaginary part. Before entering
the channel, the block of data is normalized such that the
constellation has an average energy equal to S. The decoder
(demodulator) is defined as

Ĉ = f2→128,r
P′1

◦ f128→64,r
P′2

◦ f64→32,r
P′3

◦ f32→M,s
P′4

(Y ) (19)

where r and s stand respectively for the rectified linear unit
(relu) and sigmoid activation functions. The rectified linear
unit is recognized as one of the most efficient activation
function. The sigmoid activation function should be used in
the output layer for a binary classification problem. Since
Ĉ ∈ {0, 1}k, the problem considered here can be seen as a
binary classification problem. This decoder structure has also
been used in [18] for decoding polar codes.

C. Training the network

For a given training session, the triplet (k, S, α) is fixed. For
all the simulations in this paper, the number of layers and the
size of each layer is also fixed to the values given in (18-19)
and in Fig. 4. The training set contains all the possible values
of C (binary words with length k). In an AE during the training
phase, the targets values are equal to the inputs ie Ĉi = Ci
where Ci is a realization of C. The output of the channel layer
could be either Y (see Fig. 4-a, low/mid INR) or YIC (see
Fig. 4-b, high INR). A third alternative will be discussed later
on. Like in [18], the gradient of the loss function is calculated
over the entire input set during each epoch. The batch size is
chosen equal to 2k, the number of epochs is 219 which is a
good compromise between performance and complexity. The
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stochastic optimization is performed by a stochastic gradient
with fixed learning rate lr = 0.01. In our architecture, the
channel layer generates a new realization of the noise Z and
of the phase θI each time it is used. The network is then
trained in order to optimize the reconstruction error

L(C, Ĉ) = − log p(C|Ĉ)

The problem under consideration here is a binary classification
problem. In that case, the reconstruction error is the cross-
entropy loss [20], namely

L(C, Ĉ) = −
∑
j

(
C(j) log Ĉ(j)+(1−C(j)) log (1− Ĉ(j))

)
(20)

and Ĉ(j) is such that Ĉ(j) = P (C(j) = 1|Ĉ) where C(j)
stands for bit j of C and Ĉ(j) stands for bit j of Ĉ. Since
Ĉ(j) = P (C(j) = 1|Ĉ), connection with soft decoders such
as LDPC or turbo-codes is straightforward. The training of the
network is performed by solving the following optimization
problem

arg min
P,P′

EC,Z,θI [L(C, Ĉ)] (21)

When the distribution of the input is unknown, the expectation
is replaced by the empirical average over the training samples
[27]. It is proven in [20] that the optimization problem in
(21) is strongly connected to the maximization of the mutual
information I(X;C) between X and C which makes sense
in the present context. The optimization problem is solved
with a unit-norm constraint on the columns of w to avoid
scaling effects. The goal of training is to find the optimal
set of parameters {P1, ...P4,P ′1, ...,P ′4}. The training of the
neural network is implemented with Keras2.

D. Using a trained network
Once trained, the optimized network can be introduced

into the communication chain. Let’s define the binary rep-
resentation of i for 0 ≤ i ≤ 2k as Ci. Then, Xi =
fk→16,t
P1

◦ f16→8,t
P2

◦ f8→4,t
P3

◦ f4→2,l
P4

(Ci). The association
Ci ↔ Xi can be also stored in a table. This association
between a constellation point and a particular input is usually
called labeling. At the receiver and when the network is
the one in Fig. 4-a, the demapping task can be handled as
Ĉi = f2→128,r

P′1
◦ f128→64,r
P′2

◦ f64→32,r
P′3

◦ f32→M,s
P′4

(Y (Xi))

where Y (Xi) is the channel output corresponding to the
input X = Xi. The demapping is called DMAE(Y) in that
case. When the network used during the training is the one
in Fig. 4-b, the demapping task can be handled as Ĉi =
f2→128,r
P′1

◦ f128→64,r
P′2

◦ f64→32,r
P′3

◦ f32→M,s
P′4

(YIC(Xi)) where
YIC(Xi) is the channel output after interference cancellation.
This demapping will be referred as DMAE(YIC). With this
framework, the constellation geometry, the labeling and the
demapping device are optimized jointly. This in contrast with
previous publications. The proposed structure is deployed, in
the next section, in various channel conditions. The AE is con-
ceived here as an off-line optimization tool with the objective
of finding the appropriate constellation and demapping device
for each scenario.

2https://keras.io/

V. CONSTELLATION DESIGN

We are now ready to use the AE defined above. Our goal
here is to evaluate the capability of the AE to find the most
appropriate constellation for both the low and high INR
regime in which communication should be possible without
experiencing a severe degradation [12]. The capacity of the
AE to cope with the severe channel impairments inherent to
the intermediate regime will also be tested.

A. Constellation design at high INR

As a first step, the performance of several standard constel-
lations are compared in terms of average symbol error rate
(SER) for SNRs ranging from 10 to 30 dB. The results are
displayed in Fig. 5 where we used the analytical expression
of the SER given in [14] for an arbitrary constellation at
high INR and with an interference cancellation decoder. The
numerical results in Fig. 5 illustrate perfectly the theoretical
analysis of section III. For any constellation size, there exists
a threshold on the SNR such that beyond this threshold the
M-PAM constellation outperforms the other ones. The ability
of the AE to find this optimal constellation is now under
consideration. For the high INR regime, the receiver should
estimate and subtract the interference. Hence, the AE is trained
with YIC as channel output instead of Y . Training is performed
for different values of the triplet (M,SNR,α) where α is
such that I = Sα. The values of α are chosen between 1.8
and 2.5. The corresponding SER can be found in Fig. 5. We
can observe that for each triplet the AE converges towards a
constellation which has either the same SER as the M-PAM
(best standard constellation) or slightly better. For example,
the constellation obtained with (M = 16, SNR = 20 dB,
α = 2) is shown in Fig. 8. This is a 16-RPAM3 with
non-equally spaced symbols. The SER with this constellation
is 0.3499 whereas the SER of the 16-PAM at 20 dB is
0.3547. As a conclusion, the AE has been able to find the
appropriate constellation for each triplet. The efficiency of the
corresponding decoder will be evaluated in Section VI with
LDPC-coded data.

B. Constellation design at low to intermediate INR

The AE is trained here with Y as a channel output. Several
pairs (M,α) are considered with SNR = 20 dB. The
achievable rates for the constellations designed by the AE are
given in Fig. 6. The results are compared with the upper bound
from Ihara’s work in [26] which coincides, for α ∈ [0 1],
with the rate achieved with a Gaussian input. The capacity of
the Gaussian channel log2(1+

S
1+I ) where the interference is

replaced by a Gaussian noise with same power is also plotted
and serves also to benchmark the achievable performance.
Finally, our results are compared to the achievable rates of
an input distribution with uniform phase and one mass-point
at
√
S for the modulus. This constellation corresponds to the

class of optimal input distributions for the AWGN channel
with additive radar interference ([12], theorem 1). The one

3The constellations obtained with the AE at the high INR regime are all
RPAM. The AE always converges towards the optimal constellation shape.
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Figure 5. SER vs SNR at high INR (I = Sα, α ≈ 2) and with interference
cancellation.

mass-point constellation is obviously easy to design since
the modulus is necessarily equal to

√
S. The optimization

remains challenging in the general case for which the optimal
number of mass-points is unknown. This is here that the AE
is expected to bring new solutions. We can observe in Fig.
6, that when α is small (α < 0.4), the standard constellation
cannot be improved with the AE. Indeed, the constellations
obtained in this area are in general rotated standard QAM4. In
contrast, when 0.4 ≤ α ≤ 0.8 the constellations obtained with
the AE outperform significantly the standard constellations in
particular when M = 8 or M = 16. Significant improvements
can also be obtained when M = 32 but at higher SNR. When
the channel impairment is too important, the AE converges au-
tomatically towards a degenerated constellation. For example,
at SNR = 20 dB and at α = 0.7, even if M is chosen equal
to 16, a constellation with cardinality 8 will be obtained. In
that case, the optimization process should be run again with
M = 8 instead of M = 16 to obtain a constellation with
M distinct points. This is a nice property of the AE making
the choice of M much easier. The constellations obtained at
(SNR = 20 dB, M = 8, α = 0.6) and (SNR = 20 dB,
M = 16, α = 0.5) are given in Fig. 7 and are discussed
below.

C. Analysis of constellation shapes

The constellations obtained with the AE and for various
triplets (SNR,α,M) are given in Figs. 7 and 8. It is
noticeable that the constellations in Fig. 7 can be seen as
optimal input distributions ([12], theorem 1) after uniform
phase sampling. Except for the point at the origin, the con-
stellation with cardinality equal to 8 is a sampled version
of the “one mass point at SNR”. To take the analysis one

4It should be noticed however that α = 0.4 is the threshold obtained
when SNR = 20 dB. We will see in the next section, at α = 0.2 for
example, that improvements are possible at lower SNR (compared to standard
constellations).
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Figure 6. Achievable rates vs α at SNR = 20 dB and I = Sα.

step further, the constellation corresponding to (SNR =
20 dB, M = 16, α = 0.5) is again plotted in Fig. 9.
We can see that this constellation has four different values
of the modulus and thus 4 orbits with 4 points on each
((0, 2, 4, 6); (1, 3, 5, 7); (8, 10, 12, 14); (9, 11, 13, 15)) and 16
evenly distributed values for the phase. However on a specific
orbit, the phase is not evenly distributed. From the labels
given in the scatter plot, decision regions for each bit can
be inferred. Let’s denote the binary decomposition of C
as (C(3), C(2), C(1), C(0)). For clarity, the constellation is
again plotted in Fig. 9 in which red markers indicate a con-
stellation point such that C(i) = 0 whereas blue stars indicate
a constellation point such that C(i) = 1. We can observe a
clear dividing line between the two categories (C(i) = 0 /
C(i) = 1) whatever the value of i is. The demapping task can
thus be handled with binary classification and this is exactly
the function of the AE decoder. Constellation design for the
radar interference channel is also addressed in [25]-[13]. In
those publications, the loss function is the symbol error rate
(SER) with power constraint on the constellation. The labelling
is not addressed. The constellation given in Fig. 9 (right) is
obtained at (SNR = 20 dB, M = 16, α = 0.5) with the AE
and with the SER as loss function. It can be compared with
the constellation in Fig. 9 (left) obtained with our method
and also at (SNR = 20 dB, M = 16, α = 0.5). When
the optimization is based on the SER, the constellation tends
to shape like a concentric hexagon as already mentioned in
[25]-[13]. We can observe in this particular example that the
cardinality of the constellation on the right is 13 instead of 16
(several constellation points coincide). The irregular spacing
between the constellation points is optimized by taking into
account the binary representation of the input which is not
possible when the optimization is based on the SER. From this
example, we can conclude that a joint optimization (labelling
+ constellation shape) is mandatory in the intermediate regime.
We then turn our attention to Fig. 8. We can observe that when
the INR increases, degrees of freedom are being lost on the
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Figure 7. Constellation designed with AE. Low to intermediate INR regime.
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Figure 8. Constellation designed with AE. Intermediate to high INR regime.

constellation geometry. Indeed, the phase of the constellation
points is allowed to span [0; 2π] in the constellations of Fig.
7 whereas the phase is limited to smaller intervals when the
INR increases. In the extreme case (high INR regime) the
phase belongs to a set with cardinality 2. Loosing degrees of
freedom is equivalent to increasing the prior knowledge on
the transmitted symbol. This prior knowledge is a key point
for recovering the transmitted symbol from the observation
for large INR values (see the proof of Result 3). The
constellation shape at high INR is consistent with the results
in section III and with [13]. The AE is therefore able to find
the most suitable constellation for given channel parameters.
At this point, the efficiency of the demapping has not been
evaluated yet. In the next section, the joint performance of the
mapping/demapping optimized with the AE are compared to
standard settings in the context of LDPC-encoded data.
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Figure 9. Constellation designed at (SNR = 20 dB, α = 0.5, M = 16).
Left: loss function in (20). Right: loss function = SER [25].
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Figure 10. Constellation designed with AE at (SNR = 20 dB, α = 0.5,
M = 16). Decision region for the individual bits.

VI. NUMERICAL RESULTS

Let’s denote the information message as B and the corre-
sponding LDPC-encoded message as C. The data-block C is
split into binary words of length log2(M) which are mapped
to X ∈ X and sent through the channel in (1). At the receiver
side a soft demapper is used. The output of the demapper
is converted into LLR and serves as an input to the LDPC
decoder which is based on the sum-product algorithm. The
parity-check matrix of the LDPC code proceeds from the
DVB-S.2 standard. The block length of the code is fixed
and equal to 64800, the code rate R is chosen according
to the achievable rates of the constellation. The constellation
is either a standard one (QAM, PAM, PSK) or one of the
constellations in Figs. 7 - 8. The demapping is characterized
by the conditional probability pY |X(y, x) from which the LLR
of bit j is obtained as

LLR(Cj) = log

(∑
x∈X :xj=0 pY |X(y, x)∑
x∈X :xj=1 pY |X(y, x)

)
(22)

and serves as an input to the LDPC decoder. Depending on
the values of the channel parameters, several expressions can
be obtained for pY |X(y, x):
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• At low INR (I � S), the channel is expected to behave
as an AWGN channel [14]. In that case, the channel
conditional distribution reads

pY |X(y, x) ∝ e−
|y−x|2
1+I (23)

We shall refer to this demapping as DMLowINR.
• At high INR (I � S), it is possible to obtain an accurate

estimate θ̂I = arg(Y ) leading to YIC after interference
cancellation. It can be proven with the same line of
arguments as in the proof of result 1 (see also [14] for
an alternative proof) that

Re(yICe−jθ̂I ) =
√
s0cos(θ0 − θ̂I) + V (24)

where V ∼ N (0, 12 ) and where the polar form of x is√
s0e

jθ0 . Therefore, the conditional probability to be used
at high INR reads

1√
π
e−(Re(yICe

−jθ̂I )−√s0cos(θ0−θ̂I))2 (25)

We shall refer to the soft demapping based on (25) as
DMHighINR.

• When I ≈ S, arg(Y ) is not anymore an accurate
estimation of θI . Instead and since we want to compute
a conditional probability, an estimation of θI conditioned
on the knowledge of the transmitted symbol X is obtained
as θ̂I(X) = arg(Y −X). The accuracy of the estimation
depends on the noise level. In that case

pY |X(y, x) ∝ e−|y−x−
√
Iejθ̂I (x)|2 (26)

The corresponding soft demapping shall be referred as
DMHighSNR.

• Once trained, the AE provides a constellation alphabet
associated with a valid soft demapping. The output Ĉ
of the demapping block is given in (19) where the
input should be Y at low and intermediate INR and
YIC at high INR. The LLR of bit j is computed as

LLR(Cj) = log

(
1−Ĉj
Ĉj

)
. This soft-demapping is termed

DMAE. As before, three cases are considered. In the
high INR regime, the input of the AE decoder should
be YIC . The corresponding soft-demapping is denoted
DMAE(YIC). Outside of the high INR regime, the input
of the AE decoder is Y and the resulting demapping
is called DMAE(Y ). We can observe that DMAE(Y ) is
based on the same observations (received samples) as
DMLowINR whereas DMAE(YIC) is based on the same
observations as DMHighINR. The last one, DMHigh-
SNR, is a bit more intricate since the observation required
is Y −X . It is possible to mimic DMHighSNR by giving
{Y −Xi}0≤i≤M−1 as an input to the AE decoder where
Xi belongs to a given constellation X . In that case, the
training process is divided into two steps: 1) constellation
design with one of the schemes in Fig. 4, 2) update of
the decoder weights with one of the schemes in Fig. 4 for
which the weights P of the encoder are frozen to output
the constellation X given by step one. The corresponding
soft-demapping is denoted DMAE(Y − {Xi}).

NAME ASSUMPTION METRIC

DMLowINR I � S eq. (23)
Gaussian noise

+ Gaussian interference
DMHighINR I � S eq. (25)

Gaussian noise
DMHighSNR S � 1 eq. (26)

Gaussian noise
NAME ASSUMPTION INPUT OF AE DECODER

DMAE(Y ) I � S or I ≈ S Re(Y ), Im(Y )
DMAE(YIC ) I � S Re(YIC), Im(YIC)

DMAE(Y − {Xi}) S � 1 Re(Y −Xi), Im(Y −Xi)
Xi ∈ X , i = 0, 1, ...M − 1

Table I
LIST OF DEMAPPING DEVICES.

The full list of soft-demapping devices under consideration is
given in table I. The numerical results are depicted in Figs. 11
to 14 in terms of bit error rate (BER) for different INR and
SNR values. We can draw some conclusions. Whatever the
value of α, the best configuration always involves XAE . The
AE is therefore able to yield appropriate constellations in the
low and high INR regime but also in the intermediate one.
This is a substantial advantage compared to the state of the
art. Even in the high INR regime where we already know
that a PAM-like constellation should be used, the AE is able
to bring an improvement thanks to an optimized spacing of
the constellation points. The highest gains are obtained in the
intermediate regime and it is thus mandatory to design a proper
communication chain in this region. These gains could be very
important. For example, at α = 0.5, a gap of more than 2 dB
is observed between the best association (XAE+DMHighSNR)
and the standard one (16QAM+DLowINR). Not surprisingly
DMLowINR and DMHighSNR lead to reasonable perfor-
mance in their target area but are dismissed outside. For all
configurations under consideration, DMHighSNR outperforms
the other alternatives even when SNR ≈ 14 dB but may fail
at lower SNR. We turn to the discussion on the performance
of DMAE. In Fig. 11, DMAE(Y) exhibits close performance
to DMLowSNR. Indeed, when α = 0.2, the assumption√
IejθI + Z ∼ N (0, 1 + I) is true. Then eq. (23) is the

correct metric and we cannot expect the training process to
perform better. The gap of 0.1 dB between DMLowSNR and
DMAE(Y) should then be considered as a good result for
DMAE(Y). When α = 0.5, the radar interference can no
longer be considered as a Gaussian variable. As a conse-
quence, DMLowINR exhibits poor results as can be seen in
Fig. 12. DMAE(Y) does not rely on a Gaussian assumption (on
the radar interference) and is still a good solution at α = 0.5.
However, when the INR level increases, DMAE(Y) is not the
best option as can been seen in Fig. 13. At high INR, we can
observe that DMAE(YIC) and DMHighINR are within a gap
of 0.2 dB meaning that the AE has been able to ”learn” the
metric. Finally, DMAE((Y-{Xi}) is considered in Figs. 13-14
as an alternative to DMHighSNR. We can see that, in both
cases, the gap between DMHighSNR and DMAE((Y-{Xi})
is less than 0.5 dB which means that DMAE((Y-{Xi}) is an
appropriate alternative to DMHighSNR in particular when the
noise has unknown or intractable closed-form expression.
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Figure 11. BER vs SNR at α = 0.2 and with LDPC rate R = 3/4. XAE
optimized with (M = 16, α = 0.2, SNR = 13 dB).
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Figure 12. BER vs SNR at α = 0.5 and LDPC rate R = 5/6. XAE optimized
with (M = 16, α = 0.5, SNR = 20 dB).

VII. CONCLUSIONS

The coexistence of a short duty cycle, wide-band radar
signaling and of a narrow-band communication signal was
discussed in this paper from the communication system per-
spective. Thanks to deep learning techniques, it was proven
that it is possible to design an appropriate constellation and
to maintain an acceptable communication link whatever the
interference power is. In this paper, AEs were envisioned as
an off-line optimization tool. The self adaptation of a given
node to the transmission medium is the next step forward.
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