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Abstract—The non-orthogonal multiple access (NOMA)
technique is considered as a key component for the next
generation cellular system. In downlink NOMA, the con-
stellation of several users are superposed for transmission.
The resulting super-constellation needs to be carefully
designed for allowing recovering of the data at the receiver
side. A deep learning method for constellation optimization
is proposed here in the context of downlink NOMA com-
munications. The method is based on an analogy between
auto-encoders, a powerful tool in neural networks, and
communication systems. Simulation results have verified
the effectiveness of this method for both constellation
design and optimization of the individual receivers of the
users. The optimized encoder/decoder can be successfully
combined with iterative error-correction devices such as
turbo-codes or LDPC and can be integrated in current
communication systems. This technique is quite general
and can be used for point-to-point communication as well
as for multi-user access under various channel conditions.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has re-
ceived significant attention for the fifth generation (5G)
wireless networks. NOMA is expected to meet the
increasing need of data transmission rate and demands
on massive connectivity and high reliability [1], [2], [3].
The key idea behind NOMA is to serve multiple users
in the same resource block by exploiting the channel
gain differences. Non-orthogonal techniques have the
potential to achieve the whole capacity region for both
downlink and uplink channels [4]. In downlink NOMA,
signals intended for different users are superposed at
the base station before transmission through the same
resource. In general, successive interference cancellation
(SIC) is implemented at the receiver. The strong user
estimates and cancels the signals of the weak users
before decoding its own message. The weak user treats
the signal of the other users as interference or noise en-
abling a direct decoding of its own message. Therefore,
super-constellation design is a crucial point for enhanced
performance with NOMA. This question is related to
constellation design for the 2-user broadcast channel
for which theoretical results can be found in [5], [6].
In practical systems however, constellations with finite
cardinality are employed such as QAM or PAM constel-
lations. Recently, several publications have considered

optimal super-constellation design based on off-the-shelf
constellations. The superposition of BPSK signals with
equal power allocation factor (PAF) is investigated in [7]
whereas the superposition of BPSK signals with unequal
PAF is studied in [8]. In [9], superposition coding with
QPSK signals is proposed including power allocation
policy and phase-shift. Other contributions focused on
the angles of rotation of the individual constellations
[10] in order to optimize the spatial diversity. Higher
order modulation schemes are considered in [11] where
analytical expressions are obtained for the Bit error rate
(BER) in NOMA with M1-QAM (or BPSK) + M2-
QAM with unequal PAF. In [11], neither the labeling
nor possible angles of rotation are studied whereas the
allocated power and phase rotation are optimized in [12].
In [13], two-user superposition transmission scheme
with QAM input is studied. An exhaustive search for the
optimal PAF based on mutual information is proposed
which is computationally prohibited. Another amount
of research focus on coded data, labeling and receiver
design. It is proved in [14] that Gray-mapping NOMA
should be preferred to non-Gray mapping when maxi-
mum likelihood (ML) detection is implemented at the
receiver. A simple scheme based on PAM and turbo-
codes is studied in [15] to realize the promised gains
of downlink NOMA. Finding good super-constellations
require to choose in an optimal manner the individual
constellations, their respective power and angles of
rotation, labeling and a proper receiver for each user.
In most of the previous publications these requirements
where addressed separately. The main contribution of
this paper is to provide a joint optimization framework
for super-constellation/receiver design. Our approach
does not require to perform SIC at the receiver and is
therefore not subject to error propagation in contrast to
[12]. Deep learning (DL) is a branch of machine learning
research which has been introduced to allow machines
and computer systems to improve with experience and
data accumulation. Recent years have seen renewed
interest for the study of DL. Auto-encoders (AEs) play
a fundamental role in machine learning. They were first
introduced in [16] to address the problem of unsuper-
vised learning. An AE is a neural network that is trained



to copy its input at its output [17]. Internally, an AE con-
sists of two parts usually termed as encoder and decoder.
The encoder is trained to produce a representation of the
input with desired properties (compression, robustness
to harsh environment,etc.) whereas the decoder consists
in recovering the input from this representation. Neural
network have been used recently in several publications
from the communication community. For example, a
methodology is proposed in [18] for learning symbol
basis functions from existing modulation signals. More
recently an algorithm for signal detection for molecular
communication has been proposed in [19] demonstrating
the ability of neural networks to detect symbols even
when the channel is unknown and nonlinear.

We do believe that AEs are the right tool for con-
stellation design in NOMA. Indeed, the encoder can
be trained to optimize the constellation whereas the
decoders are trained to recover the binary message of
each user from the received data. The strengths of the
proposed methodology are listed below. The criterion
to be optimized is a lower bound of the mutual in-
formation which is usually considered in constellation
design. Neither an analytical expression of the mutual
information nor an a priori on the geometry of the
constellation are needed for the optimization process
which is in contrast with previous works. The role
of the encoder is to map a binary word to a specific
constellation point meaning that the constellation point
positions and the labeling are optimized jointly. The
proposed mapping/de-mapping solution can be used in
combination with powerful channel decoders such that
turbo-codes or Low density Parity-Check codes (LDPC)
and is fully compatible with wireless communications
schemes already deployed. The validity of the proposed
scheme will be emphasized in the simulation part.

II. SYSTEM DESCRIPTION

A. Auto-encoders

An AE is a neural network that is trained for learning
a useful representation Y of an input X . The simplest
form of an AE is a feedforward, non-recurrent neu-
ral network organized in two different blocks usually
termed as encoder and decoder. Let x denote a given
input vector with size d and y the resulting output vector
with size d′ then a one-layer encoder is given by the
deterministic mapping

y = fd→d
′,s

θ (x) = s(Wx + b) (1)

where θ = {W,b} is the set of parameters to be
optimized and the respective size of W and b are d′×d
and d′ × 1. The function s(.) is either a non-linear
function or could also be the identity mapping. This is
the simplest configuration however, in general, an AE is
the concatenation of several layers for which the output
of the previous layer is used as an input for the current

layer. The task of the decoder is to recover the input x
from the hidden representation y through

z = fd
′→d,s
θ′ (x) = s(W′y + b′) (2)

where θ′ = {W′,b′} and where s(.) is not necessarily
the same function than in (1). The network is then
trained in order to optimize the reconstruction error
L(x, z) = − log p(x|z). Here, binary input will be
considered and our problem can be seen as a binary
classification problem with the particularity that the data
x are also the target labels. With binary classification,
the adequate reconstruction error is the cross-entropy
loss [20], namely

L(x, z) = −
∑
j

(
xj log zj + (1− xj) log (1− zj)

)
(3)

In that case, Xj |z ∼ B(zj) where B stands for the
Bernouilli and zj is such that zj = P (Xj = 1|z).
The training of the network is performed by solving the
following optimization problem

arg min
θ,θ′

EX [L(X,Z)] (4)

When the distribution of the input is unknown, the
expectation is replaced by the empirical average over the
training samples. It is proven in [20] that the optimiza-
tion problem in (4) is equivalent to the maximization of
a lower bound on the mutual information I(X;Y ).

B. Downlink NOMA

In downlink NOMA, under consideration here, a
super-constellation is transmitted that comes from the
superposition of the signals of the individual users. In
the 2-user case, the transmitted signal reads

y =
√
p1y1 +

√
p2y2 (5)

where p1 and p2 are respectively the power of the first
and second user and y1 and y2 are the corresponding
signals of each user. The super-symbol is normalized
such that E[|y|2] = 1 and transmitted to the users

ri = hiy + ni (6)

where hi is the complex channel coefficient between
the base station and user i, ni is the AWGN noise with
spectral power density N0,i and SNRi is the signal to
noise ratio (in dB) of user i. We will consider here
both AWGN and Rayleigh block-fading channels. The
AWGN channel is the appropriate model for downlink
NOMA with OFDM [21]. Without loss of generality, the
near user is user 1 whereas user 2 is the far user. By
assigning a sufficient power to user 2 the interference
is expected to be sufficiently small to enable user 2 to
recover its useful information.



III. AN AUTO-ENCODER FOR DOWNLINK NOMA

A. General description

For sake of simplicity, the proposed structure is de-
scribed in the two users case. Generalization to a higher
number of users is straightforward. Let x = [x1;x2]
denote the input of the AE. At the same time, x is
the binary message which is composed of k1 bits at
destination of user 1 forming x1, and k2 bits at desti-
nation of user 2 forming x2. The total number of bits
is k = k1 + k2. Therefore, the super-constellation with
size M = 2k is the superposition of two constellations
with size 2k1 and 2k2 . The output of the encoder is y
(transmitted symbol and constellation point). This is a
vector of size 2 containing the real and imaginary parts
of the transmitted symbol. In AEs, noise is usually added
at the input of the AE to enhance the generalization
capability of the network or to implement a denoising
auto-encoder. Here, the noise is added at the output of
the encoder in order to simulate the transmission channel
in (6) between the base station and the users. The task
of receiver 2 is to provide an accurate estimation of x2

based on the received symbol r2 whereas receiver 1 is
trained to recover both x1 and x2 like in SIC where
the near user should be able to decode the message of
the far user. Note however that SIC is not implemented
here. Instead the network is trained for learning the task
which consists in recovering the emitted message. In the
evaluation phase, the BER of user 1 is computed based
on the sole k1 bits in x1 even if the network has also
been trained to recover x2. The loss function is the sum
of two contributions

Lr1(x, z) + Lr2(x2, z2) (7)

where L is defined in (3) and where ri is a reference to
the channel in which the data are transmitted.

B. Network configuration

One of the most intricate task in deep learning is to
design the network (number of layers, number of hidden
units/layer, number of epochs, choice of the optimizer,
batch size, etc.) since there are no general guidelines for
that. The proposed structure is depicted in Fig. 1 and is
more precisely described below:
• Encoder. The bit to symbol mapping can be carried

out by a linear operation. The encoder is therefore
a single layer with input length k and output length
2. Then, y reads

y = fk→2,l
θ1

(x) = W1x + b1 (8)

where l means linear activation function.
• Decoder. Following [22], decoder1 and decoder2

are constituted of 3 layers with respective output
length [128, 64, 32] followed by an output layer of
output length k for decoder1 and k2 for decoder2.

Figure 1. Deep learning structure for 2-user mapping

Formally, z and z2 which are soft estimates of x
and x2 respectively are given by

z = f2→128,r
θ′1

◦ f128→64,r
θ′2

◦ f64→32,r
θ′3

◦ f32→k,sθ′4
(r1)

(9)
z2 = f2→128,r

θ′5
◦f128→64,r
θ′6

◦f64→32,r
θ′7

◦f32→k2,sθ′8
(r2)
(10)

where r and s stand respectively for the rectified
linear unit (relu) and sigmoid activation functions.

• Optimization. The stochastic gradient descent
(SGD) with learning rate λ = 0.1 is used in the
optimization process. Based on our experiments,
the number of epochs is fixed to 219 and the batch-
size is 2k which corresponds to the whole set of
input data. The gradient of the loss function is
calculated over the entire input set during each
epoch as a consequence dropout is useless here.

In our architecture, the channel layer generates a new
realization of the noise and of the channel coefficient
each time it is used. The optimization problem is solved
with a unit-norm constraint on the columns of matrices
W to avoid scaling effects. The goal of training is
to find the optimal set of parameters. The optimized
mapping and demapping blocks are given by (8) and
(9-10) when the parameters are set to the optimal ones.
The training of the neural network is implemented with
Keras which is a convenient high-level abstraction front-
end for Theano or Tensorflow. This structure can be
generalized to any number of users.

IV. SIMULATION RESULTS

A. Case 1: uncoded data, 2 users

Analytical expressions are given in [11] for the esti-
mation of each NOMA’s user bit probability for the 2
users case where the superconstellation is the superpo-
sition of M-QAM and/or BPSK constellations and the
channel is AWGN. Let denote BERi the BER of user
i, it is thus possible to compute, for a given SNR value,
the theoretical BER such that BER1 = BER2. These
results are used as a benchmark. On the other side, the
AE is trained with the loss in (3) in which the individual



Figure 2. BER vs SNR1 (∆SNR = 9dB) - THT = theoretical [11]
- AE = superconstellations optimized with the AE.

losses are given the same weight. The users are such
that ∆SNR = SNR1 − SNR2 = 9dB. We consider
the two following situations: (k1 = 2, k2 = 2) and
(k1 = 2, k2 = 1). For computing the theoretical BER,
it is assumed that the constellation is QPSK+QPSK
when (k1 = 2, k2 = 2) and QPSK+BPSK when
(k1 = 2, k2 = 1). The numerical results are given in
Fig. 2 where BER (THT) is the theoretical target. We
can first observe that, BER1 ≈ BER2 which is what
was expected by choosing the same weights for the
losses of the individual users. The second observation
is that, regardless of the value of the SNR, BER1 and
BER2 are very close to the theoretical BER hence the
AE always yields a valid solution. For (k1 = 2, k2 = 2),
the super-constellation obtained with the AE are rotated
QPSK+QPSK whereas for (k1 = 2, k2 = 1) the super-
constellation is in general a 4PAM+BPSK this is the
reason why both BER1 and BER2 can be slightly
better than the theoretical BER. One of the advantage
of deep learning in this scenario is that the labeling,
the positions of the constellation points as well as the
decoder are jointly optimized and does not require any
prior information, knowledge or intuition.

B. Case 2: uncoded data, 3 users

The 3 users case is now considered. The loss is the
sum of three contributions namely

Lr1(x, z) + Lr2([x2,x3], [z2, z3]) + Lr3(x3, z3) (11)

where the strongest users are trained to decode their own
message as well as the messages of the weaker users.
The constellations XAE are given in Fig. 3 and 4. We
can observe that for all the considered settings the AE
is able to select an appropriate geometry and PAF.

Figure 3. XAE with (k1 = 2,k2 = 2,k3 = 2) and AWGN.

Figure 4. XAE with (k1 = 2,k2 = 2,k3 = 1) and AWGN.

C. Case 3: coded data, 2 users

Even if the superconstellations are optimized with
uncoded data, the compatibility with error-correction
devices must be considered for practical use. For that
purpose, the binary message is encoded with off-the-
shelf DVB-S2 LDPC code. We want here to serve two
users with ∆SNR ≈ 9dB. The superconstellation has
a cardinality |X | = 16 and (k1 = 2,k2 = 2). We first
select the constellation which has the best results in
terms of BER for the whole range of SNRs. The best
super-constellation is obtained with (SNR1 = 11dB,
SNR2 = 2dB) as training SNRs for the AWGN
channel and with (SNR1 = 12dB,SNR2 = 3dB) as
training SNRs for the Rayleigh block-fading channel
with known channel state information at the receiver.
They are given in Fig. 5. Except for the angle of
rotation, the two constellations exhibit a very similar
shape with identical PAF. Hence, like in point-to-point
communications, the same constellation can be used
for both AWGN and Rayleigh fading channels. The
communication chain considered here is constituted of
two binary messages with length 64800R where R is
the code rate. These messages are encoded with DVB-
S2 LDPC. The codewords are then splitted into blocks of
length k1 and k2 and mapped to the superconstellation in
Fig. 5 and broadcasted to the users. At the receivers side,
the optimized decoder computes the soft estimates z1 or
z2 based on the observations r1 for user 1 and r2 for user
2. Since z1 or z2 are probabilities, the corresponding
log-likelihood ratios are computed and serves as an input
to the LDPC decoder. The BER are given in Fig. 6 for
different values of R and for the AWGN and Rayleigh
block-fading channel. As can be seen, numerical results



Figure 5. XAE with (k1 = 2,k2 = 2). Left: AWGN - Right: Rayleigh
channel.

Fig. P1 P2 P3 Fig. P1 P2 P3

3-L 0.010 0.134 0.856 3-R 0.012 0.124 0.864
4-L 0.066 0.326 0.608 4-R 0.155 0.161 0.684
5-L 0.123 0.877 5-R 0.098 0.902

Table I
PAF FOR XAE IN FIG. 3-5. L= LEFT, R= RIGHT.

Figure 6. BER vs SNR - DVBS2-LDPC 2 users (k1 = k2 = 2).

demonstrates the effectiveness of the proposed method
in the context of downlink NOMA. The PAF for XAE
in Figs. 3 to 5 are given in table I.

V. CONCLUSIONS

The efficiency of AEs for constellation optimization
in downlink NOMA has been proved in this article.
The optimization method is general and encompasses
all possible configurations (number of users and relative
position of the users). Analytical expressions of the BER
or of the mutual information are not required and the
method can thus be generalized to other impairments
such as phase noise or other type of interferences.
After the optimization process, the mapping and de-
mapping blocks can be plugged into current communica-
tion systems. In particular the de-mapping sub-block is
compatible with hard input as well as soft input devices.
In this paper, off-line optimization was considered. Fu-
ture research include on-line optimization as well as
constellation design for secure communications.
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