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Low Frequency Model-Based Identification of Soft
Impedance Faults in Cables

Andrea Cozza

Abstract—Cables are subject to local impedance faults, or A criterion (e.g., an amplitude threshold) is then appliad i
soft faults, e.g., following mechanlc_al alterations. Whi _thelr order to decide whethet(¢) contains significant anomalies
occurrence can be detected, no simple procedure exists forynat should be interpreted as a potential fault. The digtaric

assessing whether a fault is critical and requires intervetion. . . . .
Previous work has demonstrated that the amplitude of echoes the fault from the testing port is then inferred from the time

generated by time-domain reflectometry does not measure how Of-flight 7 elapsed between the injection and the appearance
severe such faults are, hindering attempts at introducing arly-  of the anomaly. This approach is very effective as long as it
warning schemes that could prevent these faults from eventlly s applied to the search of hard transitions, such as redlesti
evolving into hard faults, i.e., open or short circuits. This paper from the end of a line or faults in the shape of short or open

introduces a model-based identification procedure that isapable .~ . .
of accurately inferring how severe an impedance modificatin circuits, often referred to as hard faults. From the intgns

along a cable is, together with its length. Its has the advaage these echoes the reflectivity of the fault can be estimated an
of operating at lower frequencies than other more complex its nature identified, e.g., its impedance.

identification methods, while being intrinsically stable ad well- On the contrary, impedance (or soft) faults are local mod-
defined since faults are identified and located in separate &s, ifications found along a cable that can go from light chafing
without requiring non-linear regression techniques. The poposed ¢ tial | of fi duct The diffisti
method is also shown to remove the typical ambiguities found ,O par 'a_ remova 0, coatings or conductors. .e I '
in the interpretation of time-domain reflectometry signals by In detecting them with TDR are well-known, basically due to
reinstating a single reflection peak in reflectograms. Genal their weak reflectivity [11]. Methods related to TDR specifi-
feasibility conditions for the identification of impedancefaults are  cally optimized to detect soft faults have been proposed [8]
discussed, proving that only sufficiently long faults can uivocally [9], [12], but they rely on the use of wide-band tests, exaegpd

be identified. The accuracy of the proposed method is tested o . .
against experimental results obtained for faults of increaing several GHz, that seem at odd with industrial settings and

severity in coaxial cables, for which time-domain reflectoratry ~known frequency limitations from cables, in particular tivig
is shown to yield accurate estimates only when testing over a frequency attenuation.

bandwidth almost ten times wider. Fundamental limitations to the use of TDR methods for
Index Terms—Fault detection, identification, parameter infer-  SOft-fault testing were highlighted in [13]. In particulahe
ence, soft faults, cable testing, risk assessment. amplitude of TDR echoes was shown not to represent an
accurate estimator of how severe a fault is, as echoes also
|. INTRODUCTION strongly depend on other parameters, e.g., the bandwidktieof

LTHOUGH less often in the spotlight than wireless comt-eStt 5|ghnalp(t), andt tZebfauI:ctI?ngI:hu. It?\ [14] it \év_?fs Sh(xg
munications, cables are the backbone of communicati echoes generalted by SOTLTaulls with a very ditieregr
of severity can be practically identical, if tested at freqoies

infrastructures in a number of industrial settings wheneve ! L
highly reliable communication is required, from local-aret- well below f./4, with f. the fault characteristic frequency

works in office buildings to transportation systems as aitpb fe=v/w=1/T, (1)

and railway signaling, including critical applicationscbuas h is th ion del ded f ianal
control and security signals in power plants. The ability gyhere T is the pr(r)]pafgatlmn _re]zay needef or a Slggr? o
detect any degradation in these cables is therefore fundtameProPagate across the fault, with a spee ot propagat

lests are carried out at./4, an accurate estimate of a fault

and has led to the development of a number of measurem | h b ible. Th blem is. f 1
methods to detect and locate any fault that could c:omprom%%verlty was shown 10 be possible. The problem Is, for a & cm
ong fault in a PTFE-based coaxial cablg,~ 20 GHz, thus

the propagation of signals and energy along cables. - . . . .
The most prominent and widespread approach to fafauinng test signals to reach about 5 GHz in order to idignti

detection and location is time-domain reflectometry (TDRj. € fau-lt lparEImeters, abrequwemefnrt].uiually mcompaﬂ;l)hlﬂe W
A large number of implementations has been introduced o qustrla cables, €.g., because ot hig propagatlon Sse€
the years [L]-[10], all sharing a similar idea: a test signal Alternative methods have been recently introduced, based

p(t) is injected into a cable under test through a testing poor[1 the solution of an ipverse problem _relating reflectioradat
and the output signat() is monitored for any significant and the characteristic impedance profile along a cable [15]-

; A 17]. They also require wide-band tests: bandwidths from 5
echo, e.g., by comparing or cross-correlating it witft). [ )
g- by paring ¢ ) up to 8 GHz have been reported. Moreover, inverse-problem
Andrea Cozza is with GeePs, Group of electrical engineeriRgris UMR ~ formulations are known for their tendency to be noise siesit
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attention, and costly human intervention, without relyimg ’ do w

high-frequency data. This paper presents a methodology to )

solve this problem, by exploiting certain theoretical pedjes )

of impedance faults. A formal framework is introduced in

Sec. I, where the accuracy and feasibility conditions for

identification are discussed. p(0) N>
While the idea of inferring fault parameters using a model- o(t) AN

based approach has been previously considered in [12], [18]

those papers did not explore the general properties anthlimi

tions about fault identification intrinsical to fault modelOn

the contrary, our proposal provides insight into the feéib 4)

of fault identification, in particular the relationship sting L. (v) I (v)

between fault length and the minimum value of the test

bandwidth f,,. Furthermore, the approach introduced in [12] _ _ _
igure 1. Double impedance-step representation of a loaalt fin a

is computationally intensive and critically based on a NOWznsmission line of characteristic impedanZg. The faulty section has a
linear regression procedure which is, by its very natute, illocal characteristic impedancé and is centered at a distandg from the
posed, requiring accurate initial guesses in order for it t@stin_g‘ port, spanning a length that starts atl,. Its responds with reflection
. . coefficientsI" 7 (v) andI'in (v) when measured at the fault level or from a

be successful. This last issue also appeared to be a M@Qote testing port, respectively.
limitation in [18].

Contrarily to these previous attempts, the propose method
does not require the problems of identification and locatiamith w the length of the fault. Its accuracy was demonstrated
to be solved simultaneously, avoiding to make the probleim [13] together with its practical implications for faukgting
ill-posed because of its non-linear dependency to a faalhd risk assessment.
parameters. A successful identification is shown to endide t Eqg. (4) was shown in [13] to scale roughly with the
synthesis of equalized TDR signals, yielding an accuraie esrequencyv as long asv < f,, where f, is the critical
mate of the positions of the fault extremities while remayvinfrequency of the fault
ambiguities intrinsical to any standard TDR testing method 9
Experimental validation is presented in Sec. lll, for saVer fo= Jel- Fg’ (5)
faults in coaxial cables, confirming theoretical predicto 2m1+175
about feasibility conditions. In particular, faults areosm to \yhjich, since in most practical configuratiofis,| < 0.5, can
be accurately identified at frequencies as low as 5 %.0f pe approximated by
thus strongly reducing the need for high-frequency testing
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These results are expected to be useful in designing eféecti fo ~ fe (1- p2)2 (6)
- . . . - o )
and reliable early-warning monitoring systems based onsbb 2m
criteria for automatic measurement-based decisions. with an error at worst equal to 6.7 %, reduced to 0.8 % for
ITy| < 0.3.

IIl. M ODEL-BASED FAULT IDENTIFICATION Fig. 2 presents the reflectivity’ ()| from an impedance
A soft fault can be schematically described as in Fig. 1, ag4ult as in Fig. 1, for several values of severifly,|. For
local change in the characteristic impedance of a cablsimgs » < f,, |T'z(v)| is indeed mostly proportional te, but
from its nominal valueZ, to a local valueZr, assumed to be clear differences are apparent according to the severitiieof
constant over a length. Transmission-line theory [19] allows fault, |T', |, in terms of an increasing curvature @f-(v)|, as
to quantify this local impedance mismatch by defining a surge f, — 1.

reflection coefficient’, Fig. 2 suggests the possibility of linking this curvature to
r - Zr — 7, @) the severity of a fault, an idea developed in Sec. II-A, by
T Zr+Z, introducing a formal framework for the identification of fau

IT,| thus measures how severe a fault is and it is of practi@frameters, inferring their value from regression of measu
importance to have access to this quantity. Unfortunatgly. ment results onto a model. The accuracy and feasibility isf th
cannot be directly measured from a testing port at one end&Proach are discussed in Sec. 1I-B, while the opportuimitie

the cable. The reflection coefficient measured from this pdft SIMPplify fault location, enabled by fault identificatioare
is rather discussed in Sec. II-C.

Din(v) = Tp(v)ei2kdo 3) It is of practical interest that the input reflection coefiti
) _ ) I, (v) measured from one end of a cable has,(v)| ~
Whe_redo is the_geometncal distance between the fault a_nd tPPpF(V)L as long as a cable is tested at frequencies at which
testing port,v is the frequencyk = 27v/v the propagation it is weakly dissipative. This observation implies that any
constant of the cable andthe speed of propagation. The faulfgentification method based only on the amplitude of a faalt r
reflectivity was found in [13] to be flectivity would not be affected by phase dispersion in signa
2T e IF® sin(kw) propagating through the cable, when testing a cable at fre-
Tr(v) = 1 — [2e-i2hw ) guencies higher than its normal operating conditions. Glea




[wn(T)|

ITr()/Tl

Tl

15 2 25 3

v/ Figure 3. Weightsu,, (T',) of the Taylor expansion (7) of the fault reflectivity
T r(v)|, as functions of the fault severity,|.

Figure 2. Normalized fault reflectivity predicted by (4) asuaction of the
frequencyr and the fault severityI',|, shown on each curve. Frequency is
normalized tof,, yielding results independent from the fault length For

v/fo < 1, |Tm(s)| roughly scales with the frequency. The rationale for expandingl'#(v)| in the variablev/f,

is twofold. First, it provides simpler expressions where th
fault extensionw has no effect on the polynomial coefficients
propagation losses can be compensated from a preliminamy.(I'»)}. Second, as proven in Sec. II-B, the ability fto
calibration on healthy cables, but this case is not consitieidentify the frequency range where the fault reflectivitgrst
here. Assumingl';, (v)| ~ |T'#(v)| in the following, the fault to deviate from its low frequency regime, thus confirming its
location can be considered in a second step, as the propagatble as an important fault parameter.
modeled by the exponential in (3) has no effect. Fig. 3 shows how the amplitudes of the expansion coeffi-
The proposed procedure avoids non-linear regressions dgnts{w, (I',)} evolve with the fault severity,, with the first
proceeding first to identify the fault parameters using adin two terms of the series providing the main contributions for
regression and exploits these results for locating thet faul |T's| < 0.4. These results confirm that deviation from linearity
a subsequent step. This approach is computationally frugal v are tightly related to the fault severit¥/,|.
and makes the design of testing methods possible, since th€ig. 4(a) completes this picture by showing that the con-
accuracy of the results can be predicted. Finally, it answhes tribution from b, (v) is about 20 % ofb,(v) if faults with
need for low-frequency testing, while handing good estasat |T',| < 0.3 are involved, as long as tests are carried out for
without requiring ultra-wide bandwidth signals, as done in < f,. As a result, measurements taken at frequencies f,
previous works cited in Sec. I. could be expected not to be reliable for the identificatiom of
fault, since in this case (3) can be approximated as

A. Fault identification 2jv _iokd
i ) Din(v) @ =—T,we 7<% (9)
The relationship between the curvature|Bf-(v)| and the v
fault parameters can be established by expandingv)|, \yhere the roles of', andw are hardly distinguishable. Fig.

as defin(_ed in (4)_, in?o a power series, in order to factorigﬁb) shows thabs(v) starts having an impact d8,| > 0.3,
the relative contributions of frequency and fault pararmetei.e” for rather severe impedance faults (cf. the examples i

Proceeding to a Taylor expansion fer— 0 yields Sec. Il) at relatively high frequencies.
0 As also shown in Fig. 3, terms for > 2 are much more
ITe()] = [Tol D bu(v) = sensitive to the fault severityT,| than lower-order terms.
n=0 It would therefore be tempting to consider exploiting this
[e%s) 2n+1 . . .
—r |Zw (Ty) v ) property in order to estimatd’,|. The problem with such
° —~ " fo a proposal is the minor contribution éf,(v) for n > 2, for

00 e (T on+1 soft faults and/or tests carried out belgw which leaves them
=10y L‘lngnﬂ (1) more exposed to noise.
n= ( Fi) fo The fault parameters can now be identified by first approx-

L imating measured data by means of a polynomial of order
where{a,(T,)} are polynomials in the parametEg (here ?he number of term);) and degméer)i

apg —= 2
N
a1 = (1410T3+T7)/3 ~ 2n+1
! ot o ICr)] = Y par™t, (10)
az = (1+116IZ+ 48613 + 116I'C +1%) /60 (8) n=0
az = (1 + 10862 + 20847T; + 569320+ obtaining the polynomial coefficien{,, }, e.g., by means of a

+ 208470% 4 1086T'L0 + T'}?) /2520. least-square regression. A detailed analysis about theeh®
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Figure 4. Partial contributions to (7) of higher-ordr, ()} relative to the T

linear termbg (), as a function of the frequency and the fault seveity|.

Figure 5. Frequency., for which |b1(fa)/bo(fa)| = «, expressed as either
oo . fraction of (a) the critical frequency, or (b) the characteristic frequengy
N and its Impact on the accuracy of the procedure IS presengﬁﬂe fault. The value ofx is defined by the degree of accuracy of available

in Sec. II-B. Enforcing the equivalence between (7) and,(1Qata.

Dolan(To)

n:2T2"+1—1”|7 Vn<N 11 . . .
pa = (2rT)(=1) (1 —T2)2n+d n< AN, (1) The fault length estimatab is then found from (12a), recalling
would result in an estimate dI’,| and w. In practice, this thatw = Tv 1-12

direct approach is not the simplest option, as it would negjui W = pov (16)

to solve an over-determined non-linear system Mf+ 1

equations in the two unknowis, andw. Moreover, as already

discussed, higher-order polynomial contributions woulel 3. Polynomial regression and identification accuracy

more affected by noise. The fault parameter estimators (14)-(16) require an ateura
It is possible to directly obtain estimators by focusing osstimate of the polynomial coefficients andp;. The previous

the first two terms in (7). We stress the fact that using gnly section has shown that in low-frequency testing, i.e., well

andp; does not mean thaV needs to be set to one in (10)below f,, the reflectivity of an impedance fault is mostly

as discussed in Sec. II-B. Now, enforcing (11)®r< 1 proportional to the frequency, so that any identificatiderapt
2T, | is bound to fail unless the contribution of at least the first
po = 2nT (128) nigher-degree ternb, (v) can be measured, which can be

1-T12
° challenging in case of data affected by noise. More generall
3Ll (1 + 10 4; Lo)/3 (12b) including higher-degree terms may result in an overfittifig o
(1 - Fi) the data samples, with (10) reproducing noise contribgtion
rather than operating as a regression procedure, whichdwoul
otherwise be expected to be robust to noise [20].

-p = (277)

straightforwardly yields an estimate df,|, by setting

2 4
__p_ 1+ 100, + Fo’ (13) It is therefore important to understand what is the minimum
2 2412 value of test bandwidtlf,; to be considered in order for the
which yields the estimator proposed fault identification procedure to be applied ssg&ce
N fully, e.g., by requiring that the non-linear contributifn(v)|
2 _ \/_7 . .
I3 ==5+125 = 2V6v/1 — 55 + 65>, (14)  pe at least a fraction of |bo(v)]. The frequencyf,, for which
Most settings call fofT',| < 0.5, for which |T,|* ~ 0 in (13), [b1(v)/bo(v)| > «, Vv > f, is straightforwardly found from
thus yielding (7) to be ,
; Fo)fo = Voot o (17)
Tl = 1/4/—24p1/p§ — 10. (15) arde V1I+ 1002 + 14



Its dependence on the fault severify,| is shown in Fig. 0 e e 0
5(a), for several values ofv. These results show thaf, AN
provides an effective estimator of the frequency at which ¢ -2 AN 10
fault response deviates from a linear slope, siffgéf, is \\ = 20 N
not strongly dependent on the value |@%,|, especially for E -4 < \\
a <10 %. e 5 —30
Conversely, expressing (17) in terms of the characteristi ~; -6 =
frequencyf, yields & I & 40
2 B — N2 -50
fol fo= é@ Ly I (18) .

T /141002 + 12 -10, : ; ~60, ; 5

which is shown in Fig. 5(b) to be way more sensitivelfg|. ful o Jar/ o

These observations justify the choice of usjfygas a reference
in the description of fault models as (7). Eq. (5) provideSgure 6. Relat_ive error in the expansion paramqb@randpl estimated fro_m
direct insight in the identification process, as it suggﬁm (10) as a function of the ordel!v' of the polynomial and the test bandwidth
) o . fm- Results refer to a fault withl',| = 0.1 (black curves) andl,| = 0.3

more severe faults can be identified at lower frequencies, @8y curves).
fo decreases for a higher severjty,|.

The value ofa depends on the uncertainty expected from
measurements, in particular, but not exclusively, fromiaddcan provide accurate fault identification while testing aw |

tive noise. Assuming an additive white Gaussian noise wiffequency.

standard deviatiom,,, requiring thath, (f,) > 20, resultsin ~ If o > 0 pushes to restrain from using higher-order
9% 9 polynomials, it is still necessary to choo$é large enough
a> — = (19) to reproduce the fault reflectivity accurately. , and
Tr(f)l ~ VANR P Y Y. B5/ f

IT,| increase, a higher-order polynomial is required in order to
with SNR the signal-to-noise ratio of the measured reflectioproperly reproduce the fault reflectivil/ » ()|, and thus yield
coefficient|T'z| at f,. accurate estimates qf, and p;, upon which identification

A o > 0 acknowledges the fact that there is no need formulas (15) and (16) depend. This issue should therefere b
extend the polynomial fit in (10) by including higher-orderegarded as a source of systematic errors, i.e., presenirals
terms whose contribution could be smaller than uncertaintiase of noiseless data.
E.g., from the results presented in Sec. #tiwas inferred to  The question of howV should be chosen can be answered
be about 2 %, requiringas > f,/20, approximatively. Fig. 5 by applying the least-square fit (10) to (4), over a given
requires thatf, be known, a problem addressed at the end éflequency rangefy,, for a specific value ofl’,| and N. By
this section. comparing the fit parameters, } to those expected from

Thanks to (1), the conditioffy; > f. can be translated astheory, i.e.,{w,/f2"*!} as from (7), the best choice a¥f

v f can be studied, in order to control this source of systematic
w> —22 (20) errors.
a fe Fig. 6 presents the results of this analysis for the case of a

which is a necessary condition to ensure the feasibility edlatively light fault with|T',| = 0.1. As long asfas/f, < 1,
impedance fault identification, in terms of a fault length, can be expected to be within less than 1 % of its expected
and the chosen test bandwidth. E.g., assuming a PTFE-baggidie, with a 10 % error omp; for N = 1, i.e., for the
coaxial cable, tested with signals of bandwidthy = 300 simplest regression model possible. In this case, rega(lib),
MHz, with an expectedv = 5 %, corresponding t¢,/f. ~ |I',| estimated from (15) would present a systematic error
0.08, then only faults at least 5 cm long could be identifiegmaller of approximatively 5 %. Much better accuracy can be
unambiguously. A simpler but more conservative criteri@sw achieved forN > 1, but this possibility needs to be explored

introduced in [14], bearing in mind that higher-order terms can be estimateg onl
w > v (21) if their contribution is larger than the measurement urziety.
4fm The risk would otherwise be to overfit data fluctuations. For

based on the requirement of allowing direct estimates to Ber > f, the accuracy quickly worsens and choosMg> 1 is
drawn from frequency-domain data as recalled in Sec. [IIRTDnecessary, as confirmed by Sec. Ill. When more severe faults
testing would rather requirg¢y; > f./2 (cf. Sec. lll-B), i.e., are consideredN > 1 might be needed even fofy, < f,
far > 2 GHz for the proper identification of a 5 cm fault. as in Fig. 6 for|T',| = 0.3, since the estimate error fgr

The condition (20) thus allows to dramatically reduce th@ndp: is about twice that fofl',| = 0.1. This conclusion is
minimum test bandwidth needed for fault identification, bgxplained by the no longer negligible contribution fréptr ),
about a factor 3 for the above example, and a factor tBus requiringV > 2.
with respect to standard TDR. This latter reduction will be Fig. 7 show how these systematic errors pn and p;
shown to be closer to a factor 12 for the experimental resutt@nslate into biases in fault parameter estimates.
shown in Sec. lll, confirming that the procedure here progose A simple criterion that can help in deciding about the
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Figure 7. Relative error in fault parametgi3,| andw estimated from (10)
as a function of the ordeiN of the polynomial and the maximum tested
frequency fas. Results refer to a fault withl',| = 0.1 (black curves) and
|To| = 0.3 (gray curves).

reliability of estimators of the fault parameters wouldl dat
the fault critical frequencyf, to be known, hence allowing to
verify the value off) . From (12

fy fM/fo ( ) Figure 8. A typical example of TDR echo for an impedance faliplaying
the distinctive monocycle pulse shape (a) and the equallfe® echo (b),
~ 6f2(1 _ 8F2) (22) unambiguously indicating the beginning of the fault regiBefer to Sec. IlI
- o o

2
_@ _ 6f2 (1 + F?))
- for details.

P °14100% 414

which, forT'2 < 1 yields
A signal s(t) can be synthesized by inverse transforming

fo 22 \/=po/6p1. (23) the equalized spectrum
The above estimator is expected to underestimfdsy less S(v E(v) FF(V)P(V)GJJMO’ (25)

T Tr)  TrW)

with Tz (v) the fault reflectivity obtained by evaluating (4)
) ) ) with the estimated fault parameters, recalling thatis only
C. Locating the fault region: equalized TDR known by its modulus. Therefore, for an accurate identificat
Apart from the identification of an impedance fault, TDR-
based approaches present another issue: to the best of our

knowledge, there is no clear procedure for the mterpmat'which reproduces conditions similar to those expected éod h

of the echo generated by such faults. Fig. 8(a) Showsfaaults since
typical echo from this class of faults, observed in one of the ™ ™’

experiments described in Sec. lll. Recalling that TDR eshoe s(t) = sign(T'o)p(t — 7)), (27)

in presence of hard faults are expected to be proportional tp .~ _ o, /v. Hence, s(t) will present a single peak
the test signal, one could be tempted to think that the pe Siched over the left end of the fault region, at a distance
in the echo represent the partial reflections from the twasen from the test port, also correcting the/2 shift appearing
of thg r.egion spa_nned by the impedgnce fault. '_I'h_e inaccu_rafﬁy(‘l). Fig. 8(b) sho;/vs how this procedure operates on the
of this mterpre_tatlon was discussed in [13] and it is esplbci original TDR echo in Fig. 8(a). The amplitude of the equalize
troublesome_ since these peaks only depend on the bandwg_pﬁﬁo does no longer bear any information about the fault
of the test signal. . . , reflectivity, since (27) effectively removes all fault-dapent
Instead of attempting any interpretation based on Stand%@antities, but for its position. The effectiveness andlaacy
TDR, once the fault parametef§,| and w are identified, of this procedure is demonstrated in Sec. Ill
.(4) can b_e usi? ”: or(:]er 0 Fremove any %rqrbég;'ty b:n the | case|l',| < 1, it can be expected that the distance from
!ntelipref[anon N fau tec (;)es. or a measure echp the center of the fault will be identified by the time at which
Its Fourier transform reads e(t) crosses zero between the two peaks in the TDR echo
E() = P()Tin(v) = P(v)Dp(v)e~ ¥k (24) doublet. .This approach makes sense as long as a perfectly
symmetrice(t) can be expected. It is important to notice that
whereP(v) is the Fourier spectrum of the test si and the equalization procedure is more general, as it would work
p 9 q p g
d, is the distance between the test port and the left end of teen in case of critically severe faults, where a TDR eg(t®
fault, as in Fig. 1. may display asymmetric features, as discussed in [13].

than 21 % as long a§',| < 0.3. The experimental validation
presented in Sec. Il holds (23) accurate fay > f,/3.

S(v) ~ sign(T',) P(v)e 2k (26)
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Figure 10. The experimental setup with the vector networdyerer used for

Figure 9. The four cable faults tested, sorted from the l6agb the most characterizing the cables.

severe (iv).

In casefy < f,, [Cr(v)| would increasingly appear as™More, suc_h occurrence vyould be unIike!y. The use of short
scaling linearly with the frequency and the identification "gid coaxial cables was intended to avoid using longer ones
procedure in Sec. 1I-B might no longer be reliable. This ndfat would have not allowed to apply controlled impedance
withstanding, (25) can still be applied, as the polynomial fnodifications, as_those_ in Fig. 9, because they would have
can correct the frequency dispersion introduced/by()|, N€eded to be pliable in order to be rolled and thus less
even though the absence of parameter estimates does no lofg&lly machineable. For similar reasons, the frequencgeran

allow to correct the delay termy/2. The resulting signal ~ ©F test was in the GHz range because of the limited extent
of the faults, again a choice dictated by the use of a compact
se(t) ~ sign(I'o)p(t — 7 = T), (28)  validation setup.

with T defined in (1), will share the same property of Given the weak intensity of fault reflectivity, even small

proportionality top(t) as s(t), but will now reach its peak reflgctlons from the N to _SMA connector in Fig. 10 can b_e
over the fault center, at a distande. an issue. Careful calibration after the connector was adpli

using the full 1-port correction procedure available foisth
VNA. Fault echoes were isolated from residual reflections
from the 5002 far-end load by means of time gating. This
proach should be applied systematically in cable testng
der to allow frequency-domain procedures as the one here
range from a crushed to an glmost severed outer conduc Bposed, starting from data obtained from TDR techniques.
Their lengths, varying from slightly less than 1 cm to morQ o natively, wavelet expansions could be used, as they al
than 4 cm, were designed in order to present very S'm"%{fw effective data denoising while capturing a signalroae
I

responses when tested below 1 GHz, as discussed in [38liio time interval. This kind of approach allows prodess
The four cables are based on a PTFE (poIytetrafluoroethyleasta presenting multiple echoes of interest, by procedhizm
dielectric and have &0 Q characteristic impedance. Their | o one-by-one basis

average phase velocity over a 6 GHz bandwidth was estimateq;ig_ 11 shows the reflectivity of the faults thus charac-

) 2 . - X : ¥8%zed. The wide frequency range allowed to access the
In v 2.18 x 1(.) m_/s, with ne_gllglblg dispersion up to 6high-frequency behavior of the faults, in order to provide
GHz. T_he yelomtyv IS a quantity of interest not °”'Y for accurate identification that served as a reference thraugho
converting time delays into dlstar_\ces, but also for esimga'_[ the validation of the low-frequency identification proceelu

the fault lengthw. It should be noticed that the same velocity From |T'»(»)| in Fig. 11 it is possible to estimate the faults

is assumed for the undamaged cable as well as for the fatgg(/erity IT,| by applying the procedure introduced in [14].

portions, as apparent in (4). r reaches its first maximumi,,; at the frequency* =
The reflectivity of each fault was measured using the set| ﬁy\)/\l/ith 4) givlingl XImUttaz quency

in Fig. 10, where a vector network analyzer (VNA), mode
R&S ZVB8, measured the input reflectivity;, (v) of the B B
cables over the frequency range 100 kHz to 6 G(H)z. According D = Cr(fe/4)] = 1+1% (29)
to the VNA manual, a maximum relatlvg uncgrtalnty of 5_0/Since all faults in Fig. 9 are fundamentally local impedance
should b.e expe.ct_ed for measurements |_nvoIV|ng a re'cle’mv'éhanges that do not introduce any measurable lo$ses,R,
< 0.1, with a minimum absolute uncertainty equal to 0.03. hence inverting (29) yields

Each cable was terminated by a 80impedance, in order
to reduce reflections from its far end. The rationale for this 1—./1— r2, T
choice was that given the short length of the cable and the D)= —%—— ~ M
close proximity of its far end to the fault (less than 15 cm), Y 2
echoes from the cable end would superpose to those fravhile the fault length can be estimated as = v/4v*. A
the faults for most choices of the test bandwidffp. In most direct fit was applied for fault (iv), as no local maximum
practical settings, for long cables of several tens meteesen is reached. Since the propagation speed along the fault is

Ill. EXPERIMENTAL RESULTS

The proposed procedure was put to test with the four 30
long semi-rigid coaxial cables shown in Fig. 9. These faul

2[T,|

(30)



Table |

FAULT PARAMETERS: do, dc AND w ARE GEOMETRICAL DISTANCES 0.08 | (a)
MEASURED ON THE FAULTS WITH AN EXPECTED UNCERTAINTY
UNIFORMLY DISTRIBUTED SPANNING A+0.5 MM RANGE. we AND \Fo\ 0.06 |
ARE THE FAULTS PARAMETERS ESTIMATED ACCORDING TO THE
PROCEDURE RECALLED INSEC. |Il. THEORETICAL RESULTS PREDICTED oS
BY (4) FOR THESE SETS OF PARAMETERS ARE SHOWN INIG. 11. THE = 0.04r7
FAULTS CRITICAL AND CHARACTERISTIC FREQUENCIESRESPECTIVELY
fo AND f., WERE COMPUTED FROMwe AND |T'5|. 0.02} <
L T d | o [ w [T & I. 0 4 1
Faults (emy T (emy T (mm) T (mm) CHz) T (GH) 06 038 1 12 14 16
6) 139 16.1] 44 44 | 0.042] 0.79 5.0
(ii) 150 | 16.0 | 21 20 | 0091 | 1.7 11 (b)
(i) | 15.4 | 160 | 14 14 | 013 | 24 16 0.15 ¢
(v) | 16.0| 16.4| 6 7 022 | 4.4 30
—~ 01}
= =
_ _ 0.05 bl
not necessarily equal to, differences betweem and w, S «2
are expected, whereas estimates|Iof| are expected to be 0 w ) ) ) ) )
accurate. Using these estimates with (4) leads to the sesull 0.5 15 2 2.5 3 35
shown in Fig. 11 as solid black lines, in close agreement 0.5 ¢
with experimental results. Average residual errors betwee ' (©)
measurements and (4) were smaller théh of |T',|. 0.2}
The fault parameters thus obtained are shown in Table 015+ ,
I and will be used throughout this section as references < “
Other parameters pertaining to the faults are presented i 0lr
Table 1, such as the distaneg where the fault starts and 0.05 H & <
its lengthw. A uniformly distributed uncertainty spanning a IT
+0.5 mm range is assumédfor these geometrical distances, 0 1 5 3 5
due to 1 mm resolution of the rigid meter used during the
measurements. Faults involving a transition like in the two oal \ @
crushed cables had their length measured from center tercent ' & <
of the two transitions. From these parameters, the critiodl 03l -
characteristic frequencies were estimated and shown in th
same table. = 02f
01f
1j.e., a type B evaluation of uncertainty. 0 . . . ,
1 3 4 6
fur (GHz)

0.4F

— meas. (iv)
theory

0.35¢

0.3r
iii
— 0.25¢ L

= 02f
= (ii)
0.15F

0.1r
0.05¢

v (GHz)

Figure 11.

Frequency-domain reflection coefficients of tber ffaults in
Fig. 9, comparing experimental results (thick backgroumaly gcurves) and
theoretical description from (4) once the fault parameteesidentified (black
curves). White circles mark the critical frequengy for each fault, below

which their responses are well approximated by a lineartionc

Figure 12. Estimates of fault severiﬂ]“o|, obtained from a polynomial fit
of order N = 1 (gray lines) andNV = 2 (black lines), as functions of the
test bandwidthf,, going from 10 MHz up to2f, for each fault, but for
case (iv), wheref, > 6 GHz. Thin horizontal lines reproduce the reference
values for the severity found in Table I. Plots (a) to (d) espond to the four
faults in Fig. 9, respectively from (i) to (iv).

A. Fault identification

The identification procedure detailed in Sec. II-A was ap-
plied to the data shown in Fig. 11. Only the amplityfig, (v)|
was used, selecting only samples belfiy, which was made
to vary over the frequency rand® MHz to 2f,, having used
the f, estimates in Table | for each of the four faults. Tests
were not carried out at highét,, sincef./4 ~ fom/2 < 2f,
and that data af./4 are sufficient to identify the fault directly
[14].

The results of the identification procedure were compared
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Figure 13. Same as in Fig. 12, but results here pertain tmatts of the

fault lengthw.

for the case of polynomial fits of orde¥ = 1 and N = 2,
in order to verify the validity of the analysis in Sec. II-B,
where criteria for choosing the order of the polynomial f

were presented.

Results for this analysis are shown in Figs. 12 and 13,
gether with the fault parameters estimated from high-feeqy 1, ostimate off,
samples presented in Table I, serving as references. Theech
of the polynomial fit has a direct impact on the results, with
N =1 providing the best results fofy; < f,, while N =2

-

Rel. err. f, (%)

0.8 12 14 16 18 2

1
Il fo

Figure 14. Estimates of the critical frequengy for the four faults, based
on (23) for a polynomial fit withV = 1, as a function of the test bandwidth
-

while for the fourth one, which is more severe, is expected
to be closer to the 36 % error predicted far,| = 0.3. As

N = 2, the estimators error should be smaller than 5 % of the
real parameters, consistently with all of the faults, apart
the most severe, for whicN = 3 should be used approaching
the frequency f,.

At frequencies below about, /3 ~ f./20 all estimates start
to fluctuate. These errors are caused by the accrued séwsitiv
of the least-square fit (10) to even minor deviations between
the theoretical model (4) and the experimental results, éug
to noise but also limitations of the model (4) which neglects
border effects and transitions at the ends of the faults.

This kind of behavior is consistent with the analysis in
Sec. II-B, where a minimumf,,; > f, was discussed as
necessary in order to ensure a robust least-square fit. The
fact that estimates break down belgi/20 can be compared
with the results in Fig. 5, inferring that the ratiq /po of the
polynomial coefficients for the experimental dataset igesttb
to variations close to 2 % from the theoretical model. Theesam
figure predicts that for more severe faults the estimatoulsho
behave better at lower frequency, as the curvatur@ pfv)|
is more pronounced, thus easier to identify. The resultsga.F
12 and 13 for the case (iv) support this last prediction, \aith
region free of fluctuations extending to lower frequencies.

The pertinence of introducing a minimum frequengy is
confirmed, making it fundamental to know if any attempt to
identifying a fault parameters is carried out over a suffitlie
wide frequency range. For this reason theestimator (23)

iwas also tested, with results reported in Fig. 14. Estimates

}0 were found to be precise to withitt20% for fy; > 0.5f,
for the four faults tested, while at lower frequencies rapid

WRuctuations are observed. A simple criterion ensues, where

can be expected to be reliable only when

Qeakly affected by a changinfy,.

performs better at higher frequencies. The analysis ini6&. B- Standard TDR echoes

predicted that forV = 1 the estimates of the fault parameters This section explores the issue of how TDR echoes can be
should be precise up to about 5 % fidt,| = 0.1 which is ambiguous if interpreted under the usual paradigm apptied t
consistent with estimates arourfd for the first three faults, hard faults, i.e., that their intensity is a measure of hovese



a fault is. Two sets of signals were considered: those obderv

10

with standard TDR and alternatively those obtained with the 0037 A (a)
equalization approach presented in Sec. II-C. 0.02

The test signap(t) was chosen to be a base-band pulse
with a Fourier spectrumP(v) given by a Kaiser window 0.01r
[21], spanning a bandwidtffi,;. The rationale for this choice =  gr—a— =< e
was driven by the ability of Kaiser windows to approximate .
Slepian functions, which in turn are the optimal solution  ~901f ---E:i))
for maximal energy concentration, or minimum time-span, ol _g 5| (iii
p(t), for a given bandwidthfy;. A taper parametep = 5 _ )
was used, approximatively corresponding to a 30 dB tape 003 0 10 20 30 20
in the frequency domain and a 36 dB side-lobe level ir 01r
time domain, in order to reduce the appearance of side lobe ®)
while minimizing loss of temporal and spatial resolution. KR
While this choice is guided by the need for a highly resolvec 0.05¢ S~
pulse, any pulse shape is ultimately subject to the unceytai Y R\
principle intrinsical to Fourier transform [22], implyinthat T op=—- 7 X Tl —
for a bandwidthf,,, a pulse would occupy a spatial interval N 4
at best equal ta/fyr. In other words, a fault of lengthw _005l gl
could be resolved only fofy; = f./2. S

The TDR echoes(t) were computed from the input re- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
flection coefficientl';,(v) of each faulty cable, by inverse- 01 10 12 14 16 18 20 22 24
transforming I';, (v) P(v), having taken care to normalize 0.151 ©
P(v) such thatp(t) peaked to one, in order to simplify any
comparison of results. Results are presented in Fig. 15, fc
test signals extending over three different bandwidths Fig.
15(a) shows TDR echoes fgi; = 1 GHz, for which all four _
faults are tested well below their critical frequengy, apart <
for case (i). The resulting echoes are very similar, aparafo _0.05L o ,
changing sign between cases (i)-(ii) and (iii)-(iv). As ipiad N
out in [14], such TDR signals would be associated to faults o -0.1p )
similar severity, even thouglf',| goes from0.042 up t00.22.

Switching tofy; = 3 GHz partially removes this ambiguity, as
shown in Fig. 15(b), where the echo from fault (i) has peaked
to its respectivel’, |, while the remaining echoes still display_.
similar amplitudes. Using the full bandwidtfy; = 6 GHz

12

14

16
Distance (cm)

18

20

Figure 15. Standard TDR echoes for the four faults testetl itse-band
pulsesp(t) with a bandwidthf, : (&) 1 GHz, (b) 3 GHz and (c) 6 GHz.

results in more insightful results in Fig. 15(c), with ca$e (The reflectograms are expressed in terms of the distancethertest port.

now clearly featuring two separate echoes from the endseof th
faulty section, as well as cases (ii) and (iii), even thoug t
two echoes are not yet fully separated for these last twoscase
The echo from fault (iv) only peaks at 0.13, thus making it
unlikely to suspect a much more severe impedance mismat
of 0.22.

Fig. 15(c) suggests that standard TDR, if applied to ¢
sufficiently wide bandwidth, can still be used for assessing
impedance fault. In order to understand under what conitio
this approach is feasible, two further estimators werestest
the fault severity was assessed by measuniag; |e(t)| and
the fault length from the time delay between the two peak:
observed in standard TDR echoes, corresponding to a déstan
wp. Fig. 16 shows how these estimators fare for a changin
test bandwidth. The results for the four faults are thordyigh
consistent and superpose to provide a continuum.

max; |e(t)]/|To|

20

15

0.5
f}\[/f(:

0.5

1 15 2
fﬁf/f('

Therefore, a naive interpretation of TDR echoes can woFkgure 16. Estimates of fault parameters obtained by diresgiection (peak

s . reflection and peak spacing) of standard TDR echoeg fpre [0.2, 6] GHz.
Only for fyu > f0/2' Yet, itis important to stress how un“kely Results for the four faults are indistinguishable and ereatontinuum. The

it is to have the opportunity of testing faults at such higfinite circles indicatef../20, i.e., the lower limit for a reliable identification
frequencies, with Fig. 15(a) a likelier outcome that serass with the proposed procedure. The thin horizontal lines dstéor exact

a sobering remainder of the ambiguities of interpreting TDR"mas:
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1h (a) Table Il
FAULT LOCATION USING EQUALIZATION: ESTIMATES OF THE LEFFEND
POSITION OF THE FAULTY SECTIONd, IN CASE THE FAULT PARAMETERS
0.5r ARE IDENTIFIED AND OF THE DISTANCE TO THE FAULT CENTERI. WHEN
NO IDENTIFICATION IS APPLIED, FOR fj; = 1 GHz (STANDARD
TYPEFACE) AND fas = 3 GHz (ITALICS). ERRORS ARE EVALUATED WITH
RESPECT TO THE REFERENCE RESULTS INABLE |.

s(d) (a.u.)

—®

- = = i) do | do—do | dec | dc—dc
(iii) Faults (cm) (mm) (cm) (mm)
(iv) (0 14.1 2 16.2 1
: : ‘ 13.9 0 16.1 0
0 3% 40 W | B2 2 16.1 1
1L (b) 15.0 0 16.0 0
(i) 15.6 2 16.2 2
15.4 0 16.1 1
05} (W) 16.0 0 16.5 1
. 15.9 -1 16.4 0
g5
\f/
=
® Table Il

VERY-LOW FREQUENCY(fa/fe < 1) FAULT LOCATION USING
EQUALIZATION WITHOUT FAULT IDENTIFICATION , BASED ON
POLYNOMIAL FITS OF ORDERN = 1.

8 10 12 14 16 18 20 22 24

. favr =0.2 GHz far = 0.5 GHz
Distance {cm) e | de [ de—do | Far/fe | de | de—do | far/le
(cm) (mm) % (cm) (mm) %
Figure 17. Synthetic TDR echoes obtained after the equializg25), for a [6) 175 14 4.0 16.4 3 10
bandwidth fas : (a) 1 GHz and (b) 3 GHz. Results should be compared with | (i) 16.6 6 1.9 16.2 2 4.8
those in Fig. 15(a)-(b). (iii) 17.2 12 1.3 16.4 4 3.2
(iv) 17.4 10 0.60 16.7 3 1.4

echoes in the case of soft faults. Results in Fig. 16 are in
sharp contrast with those in Figs. 12 and 13, and prove the

effectiveness of the procedure presented in Sec. |I-B, whegrrror with respect to the geometrical distantewhere the

data collected forfy, — 1 GHz were largely sufficient to eginning of faulty section was measured. Errors are smalle

. : o than 2 mm when testing witlf,; = 1 GHz, and drop below
precisely estimate the fault parameters within a few pdrce . .
- mm for f); = 3 GHz. Geometrical distances are expected
points of the reference values.

to come with an uncertainty of abot0.5 mm. These values
of fy; should be compared with the minimum test bandwidth
C. Equalized TDR echoes fe/2 required with TDR, as estimated in Table I.

When app|y|ng the equa“zation procedure (25) presentedlf faults are tested fOfM/fc < 1 where fault identification
in Sec. I-C fault echoes are transformed into those showiay not work, an equalization can still be applied, by using
in Fig. 17, obtained by using the fault parameters estimattt¢ polynomial fit (10) in (25) instead of the fault model (4).
in Figs. 12 and 13 with polynomial fits with N = 1 for Echoes similar to those expected for a full equalization are
far = 1 GHz, in Fig. 17(a) and withV = 2 for fi; = 3 expected, but they would now reach their peakstferT + ,
GHz in Fig. 17(b), respectively. Three main effects can p@rresponding to a distancé expected to be equal to the
noticed: first, the disappearance of the monocyde Shar]h, mistanc&lc at which the center of the fault is found, rather than
echoeSS(t) now proportiona' to the 0rigina| test Signpﬂt)’ its left end. Results obtained with this procedure are rmbr
as expected for hard faults. Second, the echoes displayka p&alable Ill, where the four faults were testedfat = 0.2 and
that is positioned at the left end of the faulty section of 8.5 GHz, were their parameters cannot be reliably estimated
cable. Fina”y, the p0|arity' or Sign, dfo is C|ear|y apparent’ This equalization is still rather accurate, and resultsriors
as demonstrated by the results in Fig. 17. The fact that tAeout 1 cm forfy, = 0.2 GHz, and 3 mm forf; = 0.5 GHz.
peak amplitude of the echoes after equalization be equal to
one is a by-product of (25) and a gauge of the accuracy of the
fault identification.

As argued in the previous sections, standard TDR testingThis paper has introduced an identification approach capabl
of faults below their critical frequency, not only yields of determining the nature of impedance faults along a cédble.
ambiguous results, as the fault severity cannot be estimateas the remarkable advantage of allowing a fault identificat
but also the exact position of the fault is not directly agpar without needing to address simultaneously the problem of

The accuracy offered by the equalization procedure céotating it, which is otherwise known to lead to an ill-
be assessed from the results in Fig. 17. The distahcfor posed estimation problem. The factorization is made ptessib
which their peaks are observed is reported in Table Il, and thy the fact that the proposed approach only uses amplitude

IV. CONCLUSIONS
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information in the frequency domain, which are practically[9] Y. J. Shin, E. J. Powers, T. S. Choe, C.-Y. Hong, E.-S. Sdng. Yook,
independent from the position of the fault.

The identification procedure was proven to be effective at

frequencies as low a$,/3 ~ f./20, i.e., about 10 % of the

bandwidthf./2 required with standard TDR, a limitation duel®
to the uncertainty principle of Fourier transform. Moregve 11
it was shown to be capable of accurately estimating the
impedance mismatch, or severity, of the fault together wi

its length, even in cases where standard TDR cannot res
partial reflections from the tested soft faults. This praged

is well-posed and does not rely on any initial guess. It $3l
easily implemented and numerically light, as it is based on a

polynomial regression of low-order. An equalization prdaes

can then be applied in order to remove the ambiguities

intrinsical to standard TDR signals for this class of faults

Although the identification assumes a lossless propagation
along the cable, losses can be accommodated by using[f-éﬁw
iterative approach, compensating most of them by first rugh
estimating the distance to the fault from the time-of-flight
proceeding to a first identification of the fault that WiII[17
subsequently be used in order to provide a better estimate
of the fault distance. Such procedure could then be iterated
if needed. Future work will focus on the case of lossy ang®!

dispersive cables.

Minimum conditions that ensure the feasibility of the pro
posed procedure were derived, explaining the reasons éor fy)

difficulties in detecting and interpreting this class of lfau

These results are expected to pave the way to quantitat[i%Jé

methods for designing early-warning testing methods afigw
automatic systems to reliably decide whether echoes may[®& K. B. Howell, Principles of Fourier analysis CRC Press, 2001.

caused by severe impedance faults, before they develop into

hard faults, even when they still generate weak echoes.

(1]
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(3]
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(5]

(6]
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