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Low Frequency Model-Based Identification of Soft
Impedance Faults in Cables

Andrea Cozza

Abstract—Cables are subject to local impedance faults, or
soft faults, e.g., following mechanical alterations. While their
occurrence can be detected, no simple procedure exists for
assessing whether a fault is critical and requires intervention.
Previous work has demonstrated that the amplitude of echoes
generated by time-domain reflectometry does not measure how
severe such faults are, hindering attempts at introducing early-
warning schemes that could prevent these faults from eventually
evolving into hard faults, i.e., open or short circuits. This paper
introduces a model-based identification procedure that is capable
of accurately inferring how severe an impedance modification
along a cable is, together with its length. Its has the advantage
of operating at lower frequencies than other more complex
identification methods, while being intrinsically stable and well-
defined since faults are identified and located in separate steps,
without requiring non-linear regression techniques. The proposed
method is also shown to remove the typical ambiguities found
in the interpretation of time-domain reflectometry signals, by
reinstating a single reflection peak in reflectograms. General
feasibility conditions for the identification of impedancefaults are
discussed, proving that only sufficiently long faults can univocally
be identified. The accuracy of the proposed method is tested
against experimental results obtained for faults of increasing
severity in coaxial cables, for which time-domain reflectometry
is shown to yield accurate estimates only when testing over a
bandwidth almost ten times wider.

Index Terms—Fault detection, identification, parameter infer-
ence, soft faults, cable testing, risk assessment.

I. I NTRODUCTION

A LTHOUGH less often in the spotlight than wireless com-
munications, cables are the backbone of communication

infrastructures in a number of industrial settings whenever a
highly reliable communication is required, from local-area net-
works in office buildings to transportation systems as airplanes
and railway signaling, including critical applications such as
control and security signals in power plants. The ability to
detect any degradation in these cables is therefore fundamental
and has led to the development of a number of measurement
methods to detect and locate any fault that could compromise
the propagation of signals and energy along cables.

The most prominent and widespread approach to fault
detection and location is time-domain reflectometry (TDR).
A large number of implementations has been introduced over
the years [1]–[10], all sharing a similar idea: a test signal
p(t) is injected into a cable under test through a testing port
and the output signale(t) is monitored for any significant
echo, e.g., by comparing or cross-correlating it withp(t).
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A criterion (e.g., an amplitude threshold) is then applied in
order to decide whethere(t) contains significant anomalies
that should be interpreted as a potential fault. The distance of
the fault from the testing port is then inferred from the time-
of-flight τ elapsed between the injection and the appearance
of the anomaly. This approach is very effective as long as it
is applied to the search of hard transitions, such as reflections
from the end of a line or faults in the shape of short or open
circuits, often referred to as hard faults. From the intensity of
these echoes the reflectivity of the fault can be estimated and
its nature identified, e.g., its impedance.

On the contrary, impedance (or soft) faults are local mod-
ifications found along a cable that can go from light chafing
to partial removal of coatings or conductors. The difficulties
in detecting them with TDR are well-known, basically due to
their weak reflectivity [11]. Methods related to TDR specifi-
cally optimized to detect soft faults have been proposed [8],
[9], [12], but they rely on the use of wide-band tests, exceeding
several GHz, that seem at odd with industrial settings and
known frequency limitations from cables, in particular high-
frequency attenuation.

Fundamental limitations to the use of TDR methods for
soft-fault testing were highlighted in [13]. In particular, the
amplitude of TDR echoes was shown not to represent an
accurate estimator of how severe a fault is, as echoes also
strongly depend on other parameters, e.g., the bandwidth ofthe
test signal,p(t), and the fault lengthw. In [14] it was shown
that echoes generated by soft faults with a very different degree
of severity can be practically identical, if tested at frequencies
well below fc/4, with fc the fault characteristic frequency

fc = v/w = 1/T, (1)

where T is the propagation delay needed for a signal to
propagate across the fault, with a speed of propagationv. If
tests are carried out atfc/4, an accurate estimate of a fault
severity was shown to be possible. The problem is, for a 1 cm
long fault in a PTFE-based coaxial cable,fc ≃ 20 GHz, thus
requiring test signals to reach about 5 GHz in order to identify
the fault parameters, a requirement usually incompatible with
industrial cables, e.g., because of high propagation losses.

Alternative methods have been recently introduced, based
on the solution of an inverse problem relating reflection data
and the characteristic impedance profile along a cable [15]–
[17]. They also require wide-band tests: bandwidths from 5
up to 8 GHz have been reported. Moreover, inverse-problem
formulations are known for their tendency to be noise sensitive
and may need regularization techniques.

There is a clear case for developing test methods capable
of assessing whether a fault is critical enough to deserve
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attention, and costly human intervention, without relyingon
high-frequency data. This paper presents a methodology to
solve this problem, by exploiting certain theoretical properties
of impedance faults. A formal framework is introduced in
Sec. II, where the accuracy and feasibility conditions for
identification are discussed.

While the idea of inferring fault parameters using a model-
based approach has been previously considered in [12], [18],
those papers did not explore the general properties and limita-
tions about fault identification intrinsical to fault models. On
the contrary, our proposal provides insight into the feasibility
of fault identification, in particular the relationship existing
between fault length and the minimum value of the test
bandwidthfM . Furthermore, the approach introduced in [12]
is computationally intensive and critically based on a non-
linear regression procedure which is, by its very nature, ill-
posed, requiring accurate initial guesses in order for it to
be successful. This last issue also appeared to be a major
limitation in [18].

Contrarily to these previous attempts, the propose method
does not require the problems of identification and location
to be solved simultaneously, avoiding to make the problem
ill-posed because of its non-linear dependency to a fault
parameters. A successful identification is shown to enable the
synthesis of equalized TDR signals, yielding an accurate esti-
mate of the positions of the fault extremities while removing
ambiguities intrinsical to any standard TDR testing method.
Experimental validation is presented in Sec. III, for several
faults in coaxial cables, confirming theoretical predictions
about feasibility conditions. In particular, faults are shown to
be accurately identified at frequencies as low as 5 % offc,
thus strongly reducing the need for high-frequency testing.

These results are expected to be useful in designing effective
and reliable early-warning monitoring systems based on robust
criteria for automatic measurement-based decisions.

II. M ODEL-BASED FAULT IDENTIFICATION

A soft fault can be schematically described as in Fig. 1, as a
local change in the characteristic impedance of a cable, passing
from its nominal valueZo to a local valueZF , assumed to be
constant over a lengthw. Transmission-line theory [19] allows
to quantify this local impedance mismatch by defining a surge
reflection coefficientΓo

Γo =
ZF − Zo

ZF + Zo

. (2)

|Γo| thus measures how severe a fault is and it is of practical
importance to have access to this quantity. Unfortunately,Γo

cannot be directly measured from a testing port at one end of
the cable. The reflection coefficient measured from this port
is rather

Γin(ν) = ΓF (ν)e−j2kdo (3)

wheredo is the geometrical distance between the fault and the
testing port,ν is the frequency,k = 2πν/v the propagation
constant of the cable andv the speed of propagation. The fault
reflectivity was found in [13] to be

ΓF (ν) =
2jΓoe−jkw sin(kw)

1 − Γ2
oe−j2kw

(4)

oZ FZ oZ

w

p t( )

e t( )

do

F
G n( )inG n( )

dc

Figure 1. Double impedance-step representation of a local fault in a
transmission line of characteristic impedanceZo. The faulty section has a
local characteristic impedanceZF and is centered at a distancedc from the
testing port, spanning a lengthw that starts atdo. Its responds with reflection
coefficientsΓF (ν) and Γin(ν) when measured at the fault level or from a
remote testing port, respectively.

with w the length of the fault. Its accuracy was demonstrated
in [13] together with its practical implications for fault testing
and risk assessment.

Eq. (4) was shown in [13] to scale roughly with the
frequencyν as long asν . fo, where fo is the critical
frequency of the fault

fo =
fc

2π

1 − Γ2
o

1 + Γ2
o

, (5)

which, since in most practical configurations|Γo| < 0.5, can
be approximated by

fo ≃ fc

2π

(

1 − Γ2
o

)2
, (6)

with an error at worst equal to 6.7 %, reduced to 0.8 % for
|Γo| < 0.3.

Fig. 2 presents the reflectivity|ΓF (ν)| from an impedance
fault as in Fig. 1, for several values of severity|Γo|. For
ν < fo, |ΓF (ν)| is indeed mostly proportional toν, but
clear differences are apparent according to the severity ofthe
fault, |Γo|, in terms of an increasing curvature of|ΓF (ν)|, as
ν/fo → 1.

Fig. 2 suggests the possibility of linking this curvature to
the severity of a fault, an idea developed in Sec. II-A, by
introducing a formal framework for the identification of fault
parameters, inferring their value from regression of measure-
ment results onto a model. The accuracy and feasibility of this
approach are discussed in Sec. II-B, while the opportunities
to simplify fault location, enabled by fault identification, are
discussed in Sec. II-C.

It is of practical interest that the input reflection coefficient
Γin(ν) measured from one end of a cable has|Γin(ν)| ≃
|ΓF (ν)|, as long as a cable is tested at frequencies at which
it is weakly dissipative. This observation implies that any
identification method based only on the amplitude of a fault re-
flectivity would not be affected by phase dispersion in signals
propagating through the cable, when testing a cable at fre-
quencies higher than its normal operating conditions. Clearly,
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Figure 2. Normalized fault reflectivity predicted by (4) as afunction of the
frequencyν and the fault severity|Γo|, shown on each curve. Frequency is
normalized tofo, yielding results independent from the fault lengthw. For
ν/fo < 1, |ΓF (ν)| roughly scales with the frequency.

propagation losses can be compensated from a preliminary
calibration on healthy cables, but this case is not considered
here. Assuming|Γin(ν)| ≃ |ΓF (ν)| in the following, the fault
location can be considered in a second step, as the propagation
modeled by the exponential in (3) has no effect.

The proposed procedure avoids non-linear regressions by
proceeding first to identify the fault parameters using a linear
regression and exploits these results for locating the fault in
a subsequent step. This approach is computationally frugal,
and makes the design of testing methods possible, since the
accuracy of the results can be predicted. Finally, it answers the
need for low-frequency testing, while handing good estimates,
without requiring ultra-wide bandwidth signals, as done in
previous works cited in Sec. I.

A. Fault identification

The relationship between the curvature of|ΓF (ν)| and the
fault parameters can be established by expanding|ΓF (ν)|,
as defined in (4), into a power series, in order to factorize
the relative contributions of frequency and fault parameters.
Proceeding to a Taylor expansion forν → 0 yields

|ΓF (ν)| = |Γo|
∞

∑

n=0

bn(ν) =

= |Γo|
∞

∑

n=0

wn(Γo)

(

ν

fo

)2n+1

= |Γo|
∞

∑

n=0

(−1)nan(Γo)
(

1 + Γ2
o

)2n+1

(

ν

fo

)2n+1

(7)

where{an(Γo)} are polynomials in the parameterΓo

a0 = 2

a1 =
(

1 + 10Γ2
o + Γ4

o

)

/3

a2 =
(

1 + 116Γ2
o + 486Γ4

o + 116Γ6
o + Γ8

o

)

/60 (8)

a3 =
(

1 + 1086Γ2
o + 20847Γ4

o + 56932Γ6
o+

+ 20847Γ8
o + 1086Γ10

o + Γ12
o

)

/2520.
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Figure 3. Weightswn(Γo) of the Taylor expansion (7) of the fault reflectivity
|ΓF (ν)|, as functions of the fault severity|Γo|.

The rationale for expanding|ΓF (ν)| in the variableν/fo

is twofold. First, it provides simpler expressions where the
fault extensionw has no effect on the polynomial coefficients
{wn(Γo)}. Second, as proven in Sec. II-B, the ability offo to
identify the frequency range where the fault reflectivity starts
to deviate from its low frequency regime, thus confirming its
role as an important fault parameter.

Fig. 3 shows how the amplitudes of the expansion coeffi-
cients{wn(Γo)} evolve with the fault severityΓo, with the first
two terms of the series providing the main contributions for
|Γo| < 0.4. These results confirm that deviation from linearity
in ν are tightly related to the fault severity|Γo|.

Fig. 4(a) completes this picture by showing that the con-
tribution from b1(ν) is about 20 % ofb0(ν) if faults with
|Γo| ≤ 0.3 are involved, as long as tests are carried out for
ν < fo. As a result, measurements taken at frequenciesν ≪ fo

could be expected not to be reliable for the identification ofa
fault, since in this case (3) can be approximated as

Γin(ν) ≃ 2jν

v
Γow e−j2kdc , (9)

where the roles ofΓo and w are hardly distinguishable. Fig.
4(b) shows thatb2(ν) starts having an impact as|Γo| & 0.3,
i.e., for rather severe impedance faults (cf. the examples in
Sec. III) at relatively high frequencies.

As also shown in Fig. 3, terms forn ≥ 2 are much more
sensitive to the fault severity|Γo| than lower-order terms.
It would therefore be tempting to consider exploiting this
property in order to estimate|Γo|. The problem with such
a proposal is the minor contribution ofbn(ν) for n ≥ 2, for
soft faults and/or tests carried out belowfo, which leaves them
more exposed to noise.

The fault parameters can now be identified by first approx-
imating measured data by means of a polynomial of orderN
(here the number of terms) and degree2N + 1

|ΓF (ν)| ≃
N

∑

n=0

pnν2n+1, (10)

obtaining the polynomial coefficients{pn}, e.g., by means of a
least-square regression. A detailed analysis about the choice of
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Figure 4. Partial contributions to (7) of higher-order{bn(ν)} relative to the
linear termb0(ν), as a function of the frequency and the fault severity|Γo|.

N and its impact on the accuracy of the procedure is presented
in Sec. II-B. Enforcing the equivalence between (7) and (10),

pn = (2πT )2n+1(−1)n |Γo|an(Γo)

(1 − Γ2
o)2n+1

∀ n ≤ N, (11)

would result in an estimate of|Γo| and w. In practice, this
direct approach is not the simplest option, as it would require
to solve an over-determined non-linear system ofN + 1
equations in the two unknownsΓo andw. Moreover, as already
discussed, higher-order polynomial contributions would be
more affected by noise.

It is possible to directly obtain estimators by focusing on
the first two terms in (7). We stress the fact that using onlyp0

andp1 does not mean thatN needs to be set to one in (10),
as discussed in Sec. II-B. Now, enforcing (11) onn ≤ 1

p0 = 2πT
2|Γo|

1 − Γ2
o

(12a)

−p1 = (2πT )3 |Γo|(1 + 10Γ2
o + Γ4

o)/3
(

1 − Γ2
o

)3
(12b)

straightforwardly yields an estimate of|Γo|, by setting

s = −p1

p3
0

=
1 + 10Γ2

o + Γ4
o

24Γ2
o

, (13)

which yields the estimator

Γ̂2
o = −5 + 12s − 2

√
6
√

1 − 5s + 6s2. (14)

Most settings call for|Γo| < 0.5, for which |Γo|4 ≃ 0 in (13),
thus yielding

|Γ̂o| = 1/
√

−24p1/p3
0 − 10. (15)
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Figure 5. Frequencyfα for which |b1(fα)/b0(fα)| = α, expressed as either
a fraction of (a) the critical frequencyfo or (b) the characteristic frequencyfc

of the fault. The value ofα is defined by the degree of accuracy of available
data.

The fault length estimator̂w is then found from (12a), recalling
that w = T v

ŵ = p0v
1 − Γ2

o

4π|Γo| . (16)

B. Polynomial regression and identification accuracy

The fault parameter estimators (14)-(16) require an accurate
estimate of the polynomial coefficientsp0 andp1. The previous
section has shown that in low-frequency testing, i.e., well
below fo, the reflectivity of an impedance fault is mostly
proportional to the frequency, so that any identification attempt
is bound to fail unless the contribution of at least the first
higher-degree termb1(ν) can be measured, which can be
challenging in case of data affected by noise. More generally,
including higher-degree terms may result in an overfitting of
the data samples, with (10) reproducing noise contributions
rather than operating as a regression procedure, which would
otherwise be expected to be robust to noise [20].

It is therefore important to understand what is the minimum
value of test bandwidthfM to be considered in order for the
proposed fault identification procedure to be applied success-
fully, e.g., by requiring that the non-linear contribution|b1(ν)|
be at least a fractionα of |b0(ν)|. The frequencyfα for which
|b1(ν)/b0(ν)| ≥ α, ∀ν > fα is straightforwardly found from
(7) to be

fα/fo =
√

6α
1 + Γ2

o
√

1 + 10Γ2
o + Γ4

o

. (17)
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Its dependence on the fault severity|Γo| is shown in Fig.
5(a), for several values ofα. These results show thatfo

provides an effective estimator of the frequency at which a
fault response deviates from a linear slope, sincefα/fo is
not strongly dependent on the value of|Γo|, especially for
α < 10 %.

Conversely, expressing (17) in terms of the characteristic
frequencyfc yields

fα/fc =

√
6α

2π

1 − Γ2
o

√

1 + 10Γ2
o + Γ4

o

, (18)

which is shown in Fig. 5(b) to be way more sensitive to|Γo|.
These observations justify the choice of usingfo as a reference
in the description of fault models as (7). Eq. (5) provides
direct insight in the identification process, as it suggeststhat
more severe faults can be identified at lower frequencies, as
fo decreases for a higher severity|Γo|.

The value ofα depends on the uncertainty expected from
measurements, in particular, but not exclusively, from addi-
tive noise. Assuming an additive white Gaussian noise with
standard deviationσn, requiring thatb1(fα) > 2σn results in

α >
2σn

|ΓF (fα)| =
2√

SNR
(19)

with SNR the signal-to-noise ratio of the measured reflection
coefficient|ΓF | at fα.

A α > 0 acknowledges the fact that there is no need to
extend the polynomial fit in (10) by including higher-order
terms whose contribution could be smaller than uncertainty.
E.g., from the results presented in Sec. III,α was inferred to
be about 2 %, requiringfM > fo/20, approximatively. Fig. 5
requires thatfo be known, a problem addressed at the end of
this section.

Thanks to (1), the conditionfM > fα can be translated as

w ≥ v

fM

fα

fc

, (20)

which is a necessary condition to ensure the feasibility of
impedance fault identification, in terms of a fault length
and the chosen test bandwidth. E.g., assuming a PTFE-based
coaxial cable, tested with signals of bandwidthfM = 300
MHz, with an expectedα = 5 %, corresponding tofα/fc ≃
0.08, then only faults at least 5 cm long could be identified
unambiguously. A simpler but more conservative criterion was
introduced in [14],

w ≥ v

4fM

(21)

based on the requirement of allowing direct estimates to be
drawn from frequency-domain data as recalled in Sec. III. TDR
testing would rather requirefM > fc/2 (cf. Sec. III-B), i.e.,
fM & 2 GHz for the proper identification of a 5 cm fault.

The condition (20) thus allows to dramatically reduce the
minimum test bandwidth needed for fault identification, by
about a factor 3 for the above example, and a factor 6
with respect to standard TDR. This latter reduction will be
shown to be closer to a factor 12 for the experimental results
shown in Sec. III, confirming that the procedure here proposed

0 1 2
−10

−8

−6

−4

−2

0

fM/fo

R
el
.
er
r.

p
0
(%

)

 

 

0 1 2
−60

−50

−40

−30

−20

−10

0

fM/fo

R
el
.
er
r.

p
1
(%

)

N = 1

N = 2

N = 3

Figure 6. Relative error in the expansion parametersp0 andp1 estimated from
(10) as a function of the orderN of the polynomial and the test bandwidth
fM . Results refer to a fault with|Γo| = 0.1 (black curves) and|Γo| = 0.3
(gray curves).

can provide accurate fault identification while testing at low
frequency.

If α > 0 pushes to restrain from using higher-order
polynomials, it is still necessary to chooseN large enough
to reproduce the fault reflectivity accurately. AsfM /fo and
|Γo| increase, a higher-order polynomial is required in order to
properly reproduce the fault reflectivity|ΓF (ν)|, and thus yield
accurate estimates ofp0 and p1, upon which identification
formulas (15) and (16) depend. This issue should therefore be
regarded as a source of systematic errors, i.e., present also in
case of noiseless data.

The question of howN should be chosen can be answered
by applying the least-square fit (10) to (4), over a given
frequency rangefM , for a specific value of|Γo| and N . By
comparing the fit parameters{pn} to those expected from
theory, i.e.,{wn/f2n+1

o } as from (7), the best choice ofN
can be studied, in order to control this source of systematic
errors.

Fig. 6 presents the results of this analysis for the case of a
relatively light fault with |Γo| = 0.1. As long asfM/fo ≤ 1,
p0 can be expected to be within less than 1 % of its expected
value, with a 10 % error onp1 for N = 1, i.e., for the
simplest regression model possible. In this case, recalling (15),
|Γo| estimated from (15) would present a systematic error
smaller of approximatively 5 %. Much better accuracy can be
achieved forN > 1, but this possibility needs to be explored
bearing in mind that higher-order terms can be estimated only
if their contribution is larger than the measurement uncertainty.
The risk would otherwise be to overfit data fluctuations. For
fM > fo the accuracy quickly worsens and choosingN > 1 is
necessary, as confirmed by Sec. III. When more severe faults
are considered,N > 1 might be needed even forfM < fo,
as in Fig. 6 for|Γo| = 0.3, since the estimate error forp0

and p1 is about twice that for|Γo| = 0.1. This conclusion is
explained by the no longer negligible contribution fromb2(ν),
thus requiringN ≥ 2.

Fig. 7 show how these systematic errors onp0 and p1

translate into biases in fault parameter estimates.
A simple criterion that can help in deciding about the
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as a function of the orderN of the polynomial and the maximum tested
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reliability of estimators of the fault parameters would call for
the fault critical frequencyfo to be known, hence allowing to
verify the value offM/fo. From (12)

−p0

p1

= 6f2
o

(

1 + Γ2
o

)2

1 + 10Γ2
o + Γ4

o

≃ 6f2
o (1 − 8Γ2

o) (22)

which, for Γ2
o ≪ 1 yields

f̂o ≃
√

−p0/6p1. (23)

The above estimator is expected to underestimatesfo by less
than 21 % as long as|Γo| < 0.3. The experimental validation
presented in Sec. III holds (23) accurate forfM > fo/3.

C. Locating the fault region: equalized TDR

Apart from the identification of an impedance fault, TDR-
based approaches present another issue: to the best of our
knowledge, there is no clear procedure for the interpretation
of the echo generated by such faults. Fig. 8(a) shows a
typical echo from this class of faults, observed in one of the
experiments described in Sec. III. Recalling that TDR echoes
in presence of hard faults are expected to be proportional to
the test signal, one could be tempted to think that the peaks
in the echo represent the partial reflections from the two ends
of the region spanned by the impedance fault. The inaccuracy
of this interpretation was discussed in [13] and it is especially
troublesome since these peaks only depend on the bandwidth
of the test signal.

Instead of attempting any interpretation based on standard
TDR, once the fault parameters|Γo| and w are identified,
(4) can be used in order to remove any ambiguity in the
interpretation of fault echoes. For a measured TDR echoe(t),
its Fourier transform reads

E(ν) = P (ν)Γin(ν) = P (ν)ΓF (ν)e−2jkdo (24)

whereP (ν) is the Fourier spectrum of the test signalp(t) and
do is the distance between the test port and the left end of the
fault, as in Fig. 1.
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Figure 8. A typical example of TDR echo for an impedance fault, displaying
the distinctive monocycle pulse shape (a) and the equalizedTDR echo (b),
unambiguously indicating the beginning of the fault region. Refer to Sec. III
for details.

A signal s(t) can be synthesized by inverse transforming
the equalized spectrum

S(ν) =
E(ν)

Γ̂F (ν)
=

ΓF (ν)

Γ̂F (ν)
P (ν)e−2jkdo , (25)

with Γ̂F (ν) the fault reflectivity obtained by evaluating (4)
with the estimated fault parameters, recalling thatΓo is only
known by its modulus. Therefore, for an accurate identification

S(ν) ≃ sign(Γo)P (ν)e−2jkdo , (26)

which reproduces conditions similar to those expected for hard
faults, since

s(t) ≃ sign(Γo)p(t − τ), (27)

where τ = 2do/v. Hence,s(t) will present a single peak,
reached over the left end of the fault region, at a distance
do from the test port, also correcting thew/2 shift appearing
in (4). Fig. 8(b) shows how this procedure operates on the
original TDR echo in Fig. 8(a). The amplitude of the equalized
echo does no longer bear any information about the fault
reflectivity, since (27) effectively removes all fault-dependent
quantities, but for its position. The effectiveness and accuracy
of this procedure is demonstrated in Sec. III.

In case|Γo| ≪ 1, it can be expected that the distance from
the center of the fault will be identified by the time at which
e(t) crosses zero between the two peaks in the TDR echo
doublet. This approach makes sense as long as a perfectly
symmetrice(t) can be expected. It is important to notice that
the equalization procedure is more general, as it would work
even in case of critically severe faults, where a TDR echoe(t)
may display asymmetric features, as discussed in [13].
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(i)

(ii)

(iii)

(iv)

Figure 9. The four cable faults tested, sorted from the least(i) to the most
severe (iv).

In casefM < fo, |ΓF (ν)| would increasingly appear as
scaling linearly with the frequencyν and the identification
procedure in Sec. II-B might no longer be reliable. This not
withstanding, (25) can still be applied, as the polynomial fit
can correct the frequency dispersion introduced by|ΓF (ν)|,
even though the absence of parameter estimates does no longer
allow to correct the delay termw/2. The resulting signal

se(t) ≃ sign(Γo)p(t − τ − T ), (28)

with T defined in (1), will share the same property of
proportionality top(t) as s(t), but will now reach its peak
over the fault center, at a distancedc.

III. E XPERIMENTAL RESULTS

The proposed procedure was put to test with the four 30 cm
long semi-rigid coaxial cables shown in Fig. 9. These faults
range from a crushed to an almost severed outer conductor.
Their lengths, varying from slightly less than 1 cm to more
than 4 cm, were designed in order to present very similar
responses when tested below 1 GHz, as discussed in [14].
The four cables are based on a PTFE (polytetrafluoroethylene)
dielectric and have a50 Ω characteristic impedance. Their
average phase velocity over a 6 GHz bandwidth was estimated
on an undamaged cable from transmission delays, resulting
in v ≃ 2.18 × 108 m/s, with negligible dispersion up to 6
GHz. The velocityv is a quantity of interest not only for
converting time delays into distances, but also for estimating
the fault lengthw. It should be noticed that the same velocity
is assumed for the undamaged cable as well as for the faulty
portions, as apparent in (4).

The reflectivity of each fault was measured using the setup
in Fig. 10, where a vector network analyzer (VNA), model
R&S ZVB8, measured the input reflectivityΓin(ν) of the
cables over the frequency range 100 kHz to 6 GHz. According
to the VNA manual, a maximum relative uncertainty of 5 %
should be expected for measurements involving a reflectivity
< 0.1, with a minimum absolute uncertainty equal to 0.03.

Each cable was terminated by a 50Ω impedance, in order
to reduce reflections from its far end. The rationale for this
choice was that given the short length of the cable and the
close proximity of its far end to the fault (less than 15 cm),
echoes from the cable end would superpose to those from
the faults for most choices of the test bandwidthfM . In most
practical settings, for long cables of several tens meters or even

fault

coaxial cable

matched
load

N to SMA
transition

Figure 10. The experimental setup with the vector network analyzer used for
characterizing the cables.

more, such occurrence would be unlikely. The use of short
rigid coaxial cables was intended to avoid using longer ones
that would have not allowed to apply controlled impedance
modifications, as those in Fig. 9, because they would have
needed to be pliable in order to be rolled and thus less
easily machineable. For similar reasons, the frequency range
of test was in the GHz range because of the limited extent
of the faults, again a choice dictated by the use of a compact
validation setup.

Given the weak intensity of fault reflectivity, even small
reflections from the N to SMA connector in Fig. 10 can be
an issue. Careful calibration after the connector was applied
using the full 1-port correction procedure available for this
VNA. Fault echoes were isolated from residual reflections
from the 50Ω far-end load by means of time gating. This
approach should be applied systematically in cable testing, in
order to allow frequency-domain procedures as the one here
proposed, starting from data obtained from TDR techniques.
Alternatively, wavelet expansions could be used, as they also
allow effective data denoising while capturing a signal over a
limited time interval. This kind of approach allows processing
data presenting multiple echoes of interest, by processingthem
on a one-by-one basis.

Fig. 11 shows the reflectivity of the faults thus charac-
terized. The wide frequency range allowed to access the
high-frequency behavior of the faults, in order to provide
accurate identification that served as a reference throughout
the validation of the low-frequency identification procedure.

From |ΓF (ν)| in Fig. 11 it is possible to estimate the faults
severity |Γo| by applying the procedure introduced in [14].
|ΓF (ν)| reaches its first maximumΓM at the frequencyν⋆ =
fc/4, with (4) giving

ΓM = |ΓF (fc/4)| =
2|Γo|

1 + Γ2
o

. (29)

Since all faults in Fig. 9 are fundamentally local impedance
changes that do not introduce any measurable losses,Γo ∈ R,
hence inverting (29) yields

|Γo| =
1 −

√

1 − Γ2
M

ΓM

≃ ΓM

2
, (30)

while the fault length can be estimated aswe = v/4ν⋆. A
direct fit was applied for fault (iv), as no local maximum
is reached. Since the propagation speed along the fault is
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Table I
FAULT PARAMETERS: do , dc AND w ARE GEOMETRICAL DISTANCES

MEASURED ON THE FAULTS WITH AN EXPECTED UNCERTAINTY

UNIFORMLY DISTRIBUTED SPANNING A ±0.5 MM RANGE. we AND |Γo|
ARE THE FAULTS PARAMETERS ESTIMATED ACCORDING TO THE

PROCEDURE RECALLED INSEC. III. T HEORETICAL RESULTS PREDICTED
BY (4) FOR THESE SETS OF PARAMETERS ARE SHOWN INFIG. 11. THE

FAULTS CRITICAL AND CHARACTERISTIC FREQUENCIES, RESPECTIVELY

fo AND fc , WERE COMPUTED FROMwe AND |Γo|.

Faults do dc w we |Γo| fo fc

(cm) (cm) (mm) (mm) (GHz) (GHz)

(i) 13.9 16.1 44 44 0.042 0.79 5.0
(ii) 15.0 16.0 21 20 0.091 1.7 11
(iii) 15.4 16.0 14 14 0.13 2.4 16
(iv) 16.0 16.4 6 7 0.22 4.4 30

not necessarily equal tov, differences betweenw and we

are expected, whereas estimates of|Γo| are expected to be
accurate. Using these estimates with (4) leads to the results
shown in Fig. 11 as solid black lines, in close agreement
with experimental results. Average residual errors between
measurements and (4) were smaller than2% of |Γo|.

The fault parameters thus obtained are shown in Table
I and will be used throughout this section as references.
Other parameters pertaining to the faults are presented in
Table I, such as the distancedo where the fault starts and
its lengthw. A uniformly distributed uncertainty spanning a
±0.5 mm range is assumed1 for these geometrical distances,
due to 1 mm resolution of the rigid meter used during the
measurements. Faults involving a transition like in the two
crushed cables had their length measured from center to center
of the two transitions. From these parameters, the criticaland
characteristic frequencies were estimated and shown in the
same table.

1i.e., a type B evaluation of uncertainty.
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Figure 11. Frequency-domain reflection coefficients of the four faults in
Fig. 9, comparing experimental results (thick background gray curves) and
theoretical description from (4) once the fault parametersare identified (black
curves). White circles mark the critical frequencyfo for each fault, below
which their responses are well approximated by a linear function.
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Figure 12. Estimates of fault severity|Γ̂o|, obtained from a polynomial fit
of order N = 1 (gray lines) andN = 2 (black lines), as functions of the
test bandwidthfM , going from 10 MHz up to2fo for each fault, but for
case (iv), where2fo > 6 GHz. Thin horizontal lines reproduce the reference
values for the severity found in Table I. Plots (a) to (d) correspond to the four
faults in Fig. 9, respectively from (i) to (iv).

A. Fault identification

The identification procedure detailed in Sec. II-A was ap-
plied to the data shown in Fig. 11. Only the amplitude|Γin(ν)|
was used, selecting only samples belowfM , which was made
to vary over the frequency range10 MHz to 2fo, having used
the fo estimates in Table I for each of the four faults. Tests
were not carried out at higherfM , sincefc/4 ≃ foπ/2 < 2fo

and that data atfc/4 are sufficient to identify the fault directly
[14].

The results of the identification procedure were compared
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Figure 13. Same as in Fig. 12, but results here pertain to estimates of the
fault lengthw.

for the case of polynomial fits of orderN = 1 and N = 2,
in order to verify the validity of the analysis in Sec. II-B,
where criteria for choosing the order of the polynomial fit
were presented.

Results for this analysis are shown in Figs. 12 and 13, to-
gether with the fault parameters estimated from high-frequency
samples presented in Table I, serving as references. The choice
of the polynomial fit has a direct impact on the results, with
N = 1 providing the best results forfM < fo, while N = 2
performs better at higher frequencies. The analysis in Sec.II-B
predicted that forN = 1 the estimates of the fault parameters
should be precise up to about 5 % for|Γo| = 0.1 which is
consistent with estimates aroundfo for the first three faults,
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Figure 14. Estimates of the critical frequencyfo for the four faults, based
on (23) for a polynomial fit withN = 1, as a function of the test bandwidth
fM .

while for the fourth one, which is more severe, is expected
to be closer to the 36 % error predicted for|Γo| = 0.3. As
N = 2, the estimators error should be smaller than 5 % of the
real parameters, consistently with all of the faults, apartfor
the most severe, for whichN = 3 should be used approaching
the frequency2fo.

At frequencies below aboutfo/3 ≃ fc/20 all estimates start
to fluctuate. These errors are caused by the accrued sensitivity
of the least-square fit (10) to even minor deviations between
the theoretical model (4) and the experimental results, e.g., due
to noise but also limitations of the model (4) which neglects
border effects and transitions at the ends of the faults.

This kind of behavior is consistent with the analysis in
Sec. II-B, where a minimumfM > fα was discussed as
necessary in order to ensure a robust least-square fit. The
fact that estimates break down belowfc/20 can be compared
with the results in Fig. 5, inferring that the ratiop1/p0 of the
polynomial coefficients for the experimental dataset is subject
to variations close to 2 % from the theoretical model. The same
figure predicts that for more severe faults the estimator should
behave better at lower frequency, as the curvature of|ΓF (ν)|
is more pronounced, thus easier to identify. The results in Figs.
12 and 13 for the case (iv) support this last prediction, witha
region free of fluctuations extending to lower frequencies.

The pertinence of introducing a minimum frequencyfα is
confirmed, making it fundamental to know if any attempt to
identifying a fault parameters is carried out over a sufficiently
wide frequency range. For this reason thefo estimator (23)
was also tested, with results reported in Fig. 14. Estimatesof
fo were found to be precise to within±20% for fM > 0.5fo

for the four faults tested, while at lower frequencies rapid
fluctuations are observed. A simple criterion ensues, where
the estimate offo can be expected to be reliable only when
weakly affected by a changingfM .

B. Standard TDR echoes

This section explores the issue of how TDR echoes can be
ambiguous if interpreted under the usual paradigm applied to
hard faults, i.e., that their intensity is a measure of how severe
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a fault is. Two sets of signals were considered: those observed
with standard TDR and alternatively those obtained with the
equalization approach presented in Sec. II-C.

The test signalp(t) was chosen to be a base-band pulse
with a Fourier spectrumP (ν) given by a Kaiser window
[21], spanning a bandwidthfM . The rationale for this choice
was driven by the ability of Kaiser windows to approximate
Slepian functions, which in turn are the optimal solution
for maximal energy concentration, or minimum time-span, of
p(t), for a given bandwidthfM . A taper parameterβ = 5
was used, approximatively corresponding to a 30 dB taper
in the frequency domain and a 36 dB side-lobe level in
time domain, in order to reduce the appearance of side lobes
while minimizing loss of temporal and spatial resolution.
While this choice is guided by the need for a highly resolved
pulse, any pulse shape is ultimately subject to the uncertainty
principle intrinsical to Fourier transform [22], implyingthat
for a bandwidthfM , a pulse would occupy a spatial interval
at best equal tov/fM . In other words, a fault of lengthw
could be resolved only forfM & fc/2.

The TDR echoese(t) were computed from the input re-
flection coefficientΓin(ν) of each faulty cable, by inverse-
transforming Γin(ν)P (ν), having taken care to normalize
P (ν) such thatp(t) peaked to one, in order to simplify any
comparison of results. Results are presented in Fig. 15, for
test signals extending over three different bandwidthsfM . Fig.
15(a) shows TDR echoes forfM = 1 GHz, for which all four
faults are tested well below their critical frequencyfo, apart
for case (i). The resulting echoes are very similar, apart for a
changing sign between cases (i)-(ii) and (iii)-(iv). As pointed
out in [14], such TDR signals would be associated to faults of
similar severity, even though|Γo| goes from0.042 up to0.22.
Switching tofM = 3 GHz partially removes this ambiguity, as
shown in Fig. 15(b), where the echo from fault (i) has peaked
to its respective|Γo|, while the remaining echoes still display
similar amplitudes. Using the full bandwidthfM = 6 GHz
results in more insightful results in Fig. 15(c), with case (i)
now clearly featuring two separate echoes from the ends of the
faulty section, as well as cases (ii) and (iii), even though the
two echoes are not yet fully separated for these last two cases.
The echo from fault (iv) only peaks at 0.13, thus making it
unlikely to suspect a much more severe impedance mismatch
of 0.22.

Fig. 15(c) suggests that standard TDR, if applied to a
sufficiently wide bandwidth, can still be used for assessinga
impedance fault. In order to understand under what conditions
this approach is feasible, two further estimators were tested:
the fault severity was assessed by measuringmaxt |e(t)| and
the fault length from the time delay between the two peaks
observed in standard TDR echoes, corresponding to a distance
wp. Fig. 16 shows how these estimators fare for a changing
test bandwidth. The results for the four faults are thoroughly
consistent and superpose to provide a continuum.

Therefore, a naive interpretation of TDR echoes can work
only for fM > fc/2. Yet, it is important to stress how unlikely
it is to have the opportunity of testing faults at such high
frequencies, with Fig. 15(a) a likelier outcome that servesas
a sobering remainder of the ambiguities of interpreting TDR
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Figure 15. Standard TDR echoes for the four faults tested with base-band
pulsesp(t) with a bandwidthfM : (a) 1 GHz, (b) 3 GHz and (c) 6 GHz.
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Figure 17. Synthetic TDR echoes obtained after the equalization (25), for a
bandwidthfM : (a) 1 GHz and (b) 3 GHz. Results should be compared with
those in Fig. 15(a)-(b).

echoes in the case of soft faults. Results in Fig. 16 are in
sharp contrast with those in Figs. 12 and 13, and prove the
effectiveness of the procedure presented in Sec. II-B, where
data collected forfM = 1 GHz were largely sufficient to
precisely estimate the fault parameters within a few percent
points of the reference values.

C. Equalized TDR echoes

When applying the equalization procedure (25) presented
in Sec. II-C fault echoes are transformed into those shown
in Fig. 17, obtained by using the fault parameters estimated
in Figs. 12 and 13 with polynomial fits with :N = 1 for
fM = 1 GHz, in Fig. 17(a) and withN = 2 for fM = 3
GHz in Fig. 17(b), respectively. Three main effects can be
noticed: first, the disappearance of the monocycle shape, with
echoess(t) now proportional to the original test signalp(t),
as expected for hard faults. Second, the echoes display a peak
that is positioned at the left end of the faulty section of a
cable. Finally, the polarity, or sign, ofΓo is clearly apparent,
as demonstrated by the results in Fig. 17. The fact that the
peak amplitude of the echoes after equalization be equal to
one is a by-product of (25) and a gauge of the accuracy of the
fault identification.

As argued in the previous sections, standard TDR testing
of faults below their critical frequencyfo not only yields
ambiguous results, as the fault severity cannot be estimated,
but also the exact position of the fault is not directly apparent.

The accuracy offered by the equalization procedure can
be assessed from the results in Fig. 17. The distanced̂o for
which their peaks are observed is reported in Table II, and the

Table II
FAULT LOCATION USING EQUALIZATION : ESTIMATES OF THE LEFT-END

POSITION OF THE FAULTY SECTIONdo IN CASE THE FAULT PARAMETERS

ARE IDENTIFIED AND OF THE DISTANCE TO THE FAULT CENTERdc WHEN

NO IDENTIFICATION IS APPLIED, FORfM = 1 GHZ (STANDARD

TYPEFACE) AND fM = 3 GHZ (ITALICS ). ERRORS ARE EVALUATED WITH
RESPECT TO THE REFERENCE RESULTS INTABLE I.

Faults
d̂o d̂o − do d̂c d̂c − dc

(cm) (mm) (cm) (mm)

(i) 14.1 2 16.2 1
13.9 0 16.1 0

(ii) 15.2 2 16.1 1
15.0 0 16.0 0

(iii)
15.6 2 16.2 2
15.4 0 16.1 1

(iv) 16.0 0 16.5 1
15.9 -1 16.4 0

Table III
VERY-LOW FREQUENCY(fM /fc ≪ 1) FAULT LOCATION USING

EQUALIZATION WITHOUT FAULT IDENTIFICATION , BASED ON
POLYNOMIAL FITS OF ORDERN = 1.

fM = 0.2 GHz fM = 0.5 GHz

Faults
de de − dc fM /fc de de − dc fM /fc

(cm) (mm) % (cm) (mm) %

(i) 17.5 14 4.0 16.4 3 10
(ii) 16.6 6 1.9 16.2 2 4.8
(iii) 17.2 12 1.3 16.4 4 3.2
(iv) 17.4 10 0.60 16.7 3 1.4

error with respect to the geometrical distancedo where the
beginning of faulty section was measured. Errors are smaller
than 2 mm when testing withfM = 1 GHz, and drop below
1 mm for fM = 3 GHz. Geometrical distances are expected
to come with an uncertainty of about±0.5 mm. These values
of fM should be compared with the minimum test bandwidth
fc/2 required with TDR, as estimated in Table I.

If faults are tested forfM /fc ≪ 1 where fault identification
may not work, an equalization can still be applied, by using
the polynomial fit (10) in (25) instead of the fault model (4).
Echoes similar to those expected for a full equalization are
expected, but they would now reach their peaks fort = T +τ ,
corresponding to a distancede expected to be equal to the
distancedc at which the center of the fault is found, rather than
its left end. Results obtained with this procedure are reported
in Table III, where the four faults were tested atfM = 0.2 and
0.5 GHz, were their parameters cannot be reliably estimated.
This equalization is still rather accurate, and results in errors
about 1 cm forfM = 0.2 GHz, and 3 mm forfM = 0.5 GHz.

IV. CONCLUSIONS

This paper has introduced an identification approach capable
of determining the nature of impedance faults along a cable.It
has the remarkable advantage of allowing a fault identification
without needing to address simultaneously the problem of
locating it, which is otherwise known to lead to an ill-
posed estimation problem. The factorization is made possible
by the fact that the proposed approach only uses amplitude
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information in the frequency domain, which are practically
independent from the position of the fault.

The identification procedure was proven to be effective at
frequencies as low asfo/3 ≃ fc/20, i.e., about 10 % of the
bandwidthfc/2 required with standard TDR, a limitation due
to the uncertainty principle of Fourier transform. Moreover,
it was shown to be capable of accurately estimating the
impedance mismatch, or severity, of the fault together with
its length, even in cases where standard TDR cannot resolve
partial reflections from the tested soft faults. This procedure
is well-posed and does not rely on any initial guess. It is
easily implemented and numerically light, as it is based on a
polynomial regression of low-order. An equalization procedure
can then be applied in order to remove the ambiguities
intrinsical to standard TDR signals for this class of faults.

Although the identification assumes a lossless propagation
along the cable, losses can be accommodated by using an
iterative approach, compensating most of them by first roughly
estimating the distance to the fault from the time-of-flight,
proceeding to a first identification of the fault that will
subsequently be used in order to provide a better estimate
of the fault distance. Such procedure could then be iterated,
if needed. Future work will focus on the case of lossy and
dispersive cables.

Minimum conditions that ensure the feasibility of the pro-
posed procedure were derived, explaining the reasons for the
difficulties in detecting and interpreting this class of faults.
These results are expected to pave the way to quantitative
methods for designing early-warning testing methods allowing
automatic systems to reliably decide whether echoes may be
caused by severe impedance faults, before they develop into
hard faults, even when they still generate weak echoes.
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