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Abstract—In this work, we develop a fault detection method-
ology based on the use of selected narrow band time series
signals. It is based on the Kullback Leibler Divergence (KLD)
and selected components obtained from the Empirical Mode
Decomposition (EMD) applied to non stationary time series
vibration signals. The EMD decomposes the signal into narrow
frequency bands components called Intrinsic Mode Functions
(IMFs). A first selection of the most energised and consequently
the most sensitive IMFs to fault occurrence is proposed. Thanks
to the IMF to Noise Ratio computation. Thus, the retained
components are timely analysed using the Kullback Kullback
Leibler Divergence to proceed the fault detection. A quantitative
sensitivity criteria is derived to evaluate the fault detection
performances and confirmed by a probabilistic analysis. The
proposed methodology is validated using an experimental dataset
from the Case Western Reserve University with three different
fault severities and operating load conditions. With this proposed
methodology a 100% probability of detection is obtained with
each of the first six selected IMFs, the best results being achieved
with IMF2.

Index Terms—Fault Detection and Diagnosis; Empirical Mode
Decomposition; Intrinsic Mode Function Selection; Feature selec-
tion; Statistical Analysis; Kullback Leibler Divergence; Bearing
faults

I. INTRODUCTION

Rolling bearings are key components of electrical machines
that operate in various industrial applications. Unfortunately,
these components are the major cause of the rotating machines
failure with a varying rate ranging from 40% to 90% from
small to large devices [1]. Therefore, a preventive or condition-
based maintenance of the bearings is necessary to keep the
process operating, increasing its availability and reliability. As
a consequence this field of research is becoming intensively
investigated with various approaches for fault detection and
diagnosis. They can be broadly classified into physics-based,
human experience-based and data driven-based methods [2],
[3]. The latter is used in this work hereafter with the vibration
signals collected from accelerometers as they contain huge
amount of information on the system dynamics. Moreover it is
undoubtedly one of the most used method for condition moni-
toring and diagnosing of rotatory machineries [4] compared to
Motor Current Signature Analysis (MCSA) [5]. In this work,

we propose to use the Empirical Mode Decomposition (EMD)
in the preprocessing step as mechanical faults have significant
signatures with multiple frequency components. Indeed, this
technique which deals with the real physical behaviour of
the system, consists of decomposing a non stationary signal
into a finite number of modes called Intrinsic Mode Functions
(IMFs) by means of numerical approximations [6], [7]. These
IMFs will then be mono-component narrow frequency band
signals containing a part of the original signal information.
In the literature, this technique is widely used for mechanical
type fault detection purpose (induction motors broken bars,
bearings, gear box, ...) [8], [9]. It is a powerful and advan-
tageous technique dealing with nonlinear and non-stationary
signals for fault diagnosis. Most of the time, the extracted
IMFs are studied in the frequency domain using a spectral
analysis to characterise the faulty behavior. Nevertheless, all
the extracted modes are not affected by the fault and without
an a priori knowledge on the system characteristics (bearing
dimensions,gear size, ...) it is difficult to estimate the frequency
range and IMFs related to the presence of the fault. In
this blind case, a selection technique for eliminating all the
extracted modes not or less affected by the fault is necessary.
The work proposed here concerns first the selection of the most
relevant IMFs for the fault diagnosis. In second, we propose
to analyse the IMFs in the time domain and then evaluate the
fault detection in considering the selected features. A particular
analysis of these features based on the Kullback Leibler
Divergence (KLD) as a fault presence indicator because of
its high sensitivity to incipient faults [10] is evaluated. For all
this methodology, a validation is proposed using bearings data.
For these kind of data, bearing ball faults are considered as the
most difficult ones to be detected properly [11], [12] for bear-
ings diseases. We propose then to focus on these bearing ball
faults with small severity. The final detection performances of
the methodology are evaluated through the Receiver Operating
Curves (ROC) applied on the KLD iterations of the retained
IMFs.

The remainder of this paper is organised as follows. Section
II introduces the procedure and describes the preprocessing
step and feature extraction used to sort the IMFs. In Section
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III, bearing ball fault detection application is addressed
through the KLD applied on the selected IMFs. The detection
perrmances are then presented and discussed. Section IV
draws the conclusion.

II. PREPROCESSING AND FEATURE EXTRACTION

The main steps of Fault Detection and Diagnosis (FDD)
methodology are recalled in Figure 1. Because an accurate
physics-based model for the faulty characteristics of the bear-
ings is tedious to obtain, taking advantage of the available
historical data, a data driven approach is adopted in the first
step [13], [14].

Fig. 1. Flowchart of the Fault Detection Methodology

Mechanical type faults mostly modify the power spectrum
of electrical and mechanical characteristics. Therefore the
preprocessing (second step of the methodology) will consist of
transforming the initial vibration signal from the time domain
to the frequency domain. However because the operating
conditions are variable, the signals are non stationary. In the
literature, the Empirical Mode Decomposition (EMD) and its
derivatives like Ensemble EMD, Complete Ensemble EMD
are recognised as efficient methods for decomposing non
stationary signals. Despite the limiting conditions (boundary
effects and stopping criteria for sifting) we have adopted EMD
to extract the fault features from the vibration signals in the
frequency domain.

A. Experimental setup description
For this work, vibration signals which encompass all work-

ing conditions are obtained using the Case Western Reserve
University (CWRU) Bearing Data Center [15]. According
to the provider, the data were collected under the different
following conditions:
• 2 hp Reliance Electric motor.
• 12 kHz for the sampling frequency.
• Acquisition using three accelerometers located respec-

tively in the load zone, orthogonal to the load zone and
in the bearing clearance zone.

• Three single point faults ranging from 0.007 to 0.021 inch
at the balls.

• Experiments are repeated for the motor being unloaded
(0%), 50% loaded, full loaded (100%) and over loaded
(150%).

The principle of the test used for these data is given in
Figure 2.

Fig. 2. CWRU Bearing test bed

B. Data preprocessing

As previously mentioned, the EMD is adopted for the
preprocessing step.

1) Empirical Mode Decomposition brief description: In-
troduced by Huang et al [6], the EMD can decompose a non
stationary signal S(t) into a finite number N of narrow band
oscillatory mono-components known as Intrisic Mode Func-
tions (IMFs) and a non-zero mean residue r(t) representing
the central tendency of S(t):

S(t) =

N∑
i=1

IMFi(t) + r(t) (1)

The main steps of the decomposition are summarized as
below:

Step 1: Identifying all the local extrema of S(t)
Step 2: Estimating the Upper/Lower envelops through the

cubic spline interpolation
Step 3: Computing the mean envelope by averaging the

Upper/Lower envelops
Step 4: Generating the actual IMF, hk(t), by subtracting the

mean envelop from S(t)
Step 5: Checking if hk(t) is an IMF

• If NO: Set S(t) = hk(t) and go to Step 1
• If YES:

Step 6: Set hk(t) to be the nth IMF and the residue function
r(t) = S(t)−

∑n
i=1 IMFi(t)

Step 7: Is r(t) a monotonic trend?
• If NO: Let S(t) = r(t) and go to Step 1
• If YES: The decomposition process is finished

and r(t) is the final residue
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An IMF must satisfy the following two conditions:
1) In the whole data set, the number of extrema and the

number of zero crossings should be equal or differ by
one at most.

2) At any point, the local average of the upper and lower
envelops is zero. This extraction is ensured by a sifting
process.

C. Feature Extraction: Selection of the most relevant IMFs

The decomposition of the healthy signal using the EMD
leads to a finite number of IMFs. In our application, the
decomposition lead to 17 IMFs and a residue. Each IMF will
contain a part of the energy in the original signal. The higher is
this energy, the more sensitive will be the corresponding IMF.
Therefore not all the extracted IMFs can be used to detect the
fault occurrence. As a consequence, a selection of the most
sensitive components is proposed with the method described
in Figure 3.

Fig. 3. IMF selection procedure

The methodology, consists of the following steps:
Ext 1: Addition of a weak white Gaussian Noise leading

to a Signal to Noise Ratio SNR = 60dB in the
original healthy signal. The EMD decomposition of
the resulting noisy signal is very close to the original
one because of the weak noise level.

Ext 2: Decomposition of the resulting signal to obtain the
N IMFs.

Ext 3: The ratio of the variance of each IMF to the variance
of the added noise (IMF to Noise Ratio denoted
SNRIMFi ) is calculated.

Figure 4 depicts the evolution of the SNRIMFi
along with

the IMF rank i under the different load conditions: as the
variance of the noise is always constant (SNR = 60dB) the
decrease of the IMF’s Signal to Noise Ratio means that the
IMF’s variance or energy is degrading. In the following all the
IMF with a SNRIMFi

decreasing more than 20% from the
maximum value will not be considered for fault detection. In
our case it corresponds to the IMFs with a rank > 8 whatever
the load conditions.
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Fig. 4. IMF selection procedure

This methodology has been successfully applied by Z.
Mezni et al [16] when using the first two statistical moments
Mean and Variance as detection criteria for bearings ball fault
detection problem. For this work, we intend to improve the
detection in the case of incipient faults and retrieve more IMFs
able to lead to an accurate fault detection. In this work, the
proposed detection criteria is the Kullback-Leibler Divergence
(KLD).

III. BALL FAULT DETECTION USING KULLBACK LEIBLER
DIVERGENCE (KLD)

A. KLD basics

The KLD is an informational measure and an instance of
f-divergence family. It has been used in many signal process-
ing applications such as fault diagnosis, pattern recognition,
anomaly detection [17], [18]. It computes the dissimilarity
between two Probability Density Functions (PDF) m(z) and
n(z) of a continuous random variable z through the Kullback
Leibler Information (KLI) from m to n as [19]:

KLI(m||n) =
∫ +∞

−∞
m(z) log

m(z)

n(z)
dz (2)

The KL Divergence is then defined as the symmetric version
of the KL Information [20] denoted by:

KLD = KLI(m||n) +KLI(n||m) (3)

Previous works have compared the Hotelling T 2, the Squared
Prediction Error SPE and Q traditional statics [10], [21] to the
KLD. The results have shown that the KLD is most sensitive
to incipient fault. It is therefore adopted to analyse the fault
features extracted from the EMD.

B. Bearing ball fault detection

The KLD will be evaluated for each of the retained IMF
according to the following method:

A1 : Compute the EMD on the original healthy signal.
A2 : Compute the probability density functions (PDF) for

each selected IMF.
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Fig. 5. KLD evolution for each retained IMF

A3 : Repeat Step A1 and Step A2 500 times by gener-
ating each time a weak White Gaussian Noise with
SNR = 60dB and add it to the original signal.

A4 : Compute the EMD on the resulting noisy signal
signal.

A5 : Compute the PDF for each retained IMF and then:
1) Compute the corresponding PDF
2) Evaluate the KLD for the 500 realisations

A6 : Repeat Step A1 to Step A5 for the faulty signal.
The results of this evaluation are presented in Figure 5 for the
different loaded operating conditions and for the smallest ball
fault severity 0.007 inch:
• The realisations are made in such a way that R = [1 :

500] are dedicated to the healthy state and R = [501 :
1000] to the faulty one.

• Loads conditions : 0%, 50%, 100% and 150%
Figure 5 displays only the unloaded case (a) and the full one

(b). From the depicted results, we can draw the conclusion that
only the first six IMFs exhibit a significant sensitivity to the
fault occurrence. Therefore IMFs 7 and 8 will not be such
efficient for fault detection. In this case, these IMFs can be
removed and not being considered for the rest of study for the
fault detection process.

C. KLD fault detection efficiency

In this section, we evaluate the sensitivity of the KLD to
the fault severities and load variations. The sensitivity criteria
is defined as in [13]:

S(KLD) =
KLDf −KLDh

max(KLDh −KLDh)
(4)

Where:
KLDh: Mean of the KLD iterations of the healthy signal.
KLDf : Mean of the KLD iterations of the faulty signal.
The value of the sensitivity is related to the fault detection

performances through the Probability of Detection (PD) as
follows:

• If | (S(KLD) |> 2: PD = 1; the fault is detected in
100% of the cases.

• If | (S(KLD) |< 2: PD < 0.5; the fault is detected in
less than 50% of the cases.

In this work, the sensitivity is evaluated according to the
flowchart in Figure 6.

Fig. 6. Flowchart of the KLD sensitivity evolution

In fact, the methodology is carried out through the following
steps :

B1: EMD decomposition of the healthy signal Sh(t);
B2: PDF computation for each retained IMFs;
B3: Step B1 and Step B2 are conducted for 500 times;
B4: Repeat Step B1 to Step B3 for the faulty signal

Sf (t);
B5: KLD computation;
B6: Sensitivity evaluation for the first six IMFs;
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Fig. 7. KLD sensitivity evaluation for no load case
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Fig. 8. KLD sensitivity evaluation for full load case

For the no load case, the results depicted displayed in Figure
7 are consistent with the data in Table I. For all the remaining
IMFs the sensitivity is higher than 2 with the best results
obtained for IMF2. In the full load case, the results are even
better as it can be deduced from both graphically in the Figure
8 and Table II where the poorest value of sensitivity is equal
to 18.382. For all the operating conditions and the three fault
severities, the fault is detected with no error.

TABLE I
KLD SENSITIVITY EVALUATION FOR EACH IMF IN UNLOADED CASE AND

WITH THREE FAULT SEVERITIES

Healthy Fault 1 Fault 2 Fault 3

IMF1 0 6.375 6.546 6.602

IMF2 0 62.644 66.654 61.61

IMF3 0 23.381 26.162 24.663

IMF4 0 5.014 5.338 5.039

IMF5 0 1.526 2.223 3.74

IMF6 0 4.483 6.465 3.74

D. Fault detection and diagnosis performances

The present part of work aimed to investigate the
performances of the fault detection based on the KLD, using
the Receiver Operating Characteristic (ROC) curves analysis.

TABLE II
KLD SENSITIVITY EVALUATION FOR EACH IMF IN FULL LOAD CASE AND

WITH THREE FAULT SEVERITIES

Healthy Fault 1 Fault 2 Fault 3

IMF1 0 102.341 102.319 102.301

IMF2 0 125.803 125.803 126.062

IMF3 0 115.512 115.209 1114.379

IMF4 0 19.119 18.382 18.737

IMF5 0 50.578 51.473 52.051

IMF6 0 18.795 24.008 22.578

In fact, ROC methodology is pertaining to signal diagnosis
field [22] where it was used to ascertain if an electronic
receiver is capable to sufficiently differentiate between signal
and noise. It has been applied in several areas such as medical
imaging and radiology, non-destructive testing [23].
For this performance evaluation technique, the most commonly
used global index of diagnostic accuracy is the Area Under
the ROC curve (AUC) [24] which is widely recognized
as the measure of a diagnostic test’s discriminatory power.
Considering the ROC curves, the Probability of Detection
(PD) along with the Probability of False Alarm (PFA) will
be displayed according to the AUC variation between non-
informative (AUC = 0.5), less accurate (0.5 < AUC ≤ 0.7),
moderately accurate (0.7 < AUC ≤ 0.9), highly accurate
(0.9 < AUC < 1) and perfect performances (AUC = 1)
[25].

For our case, in order to evaluate the KLD ball fault
detection performances, the ROC curves will be plotted for
the IMF1 to IMF6 as shown to be the most relevant ones.
Figure 9 displays the results for the two operating points (no
load L0 and full load L2) and the two fault levels (0.007 inch
denoted F1 and 0.021 inch denoted F3).

From the above results displayed on Figure 9 we notice
that all the AUC values for all the 6 selected IMFs and under
the different work conditions have reached the maximum
value 1. This leads to point out the high performance and
proves the sensitivity of the proposed method towards fault
detection even if with small severity at an early stage of
development.

IV. CONCLUSION

In this paper, we have evaluated the performances of the
Kullback Leibler Divergence (KLD) for bearing ball fault de-
tection in specifically selected narrow frequency band signals.
The KLD was applied on the fault features extracted with
the Empirical Mode Decomposition (EMD) used to process
the non stationary time series vibration signals components.
First a selection of the most energized components denoted
as Intrinsic Mode Functions (IMFs) is performed. Applied to
Bearing ball fault detection, 6 IMFs over 17 are selected. Then
in a second time, the fault detection capability is performed
with the application of the KLD on these time series selected
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Fig. 9. KLD ROC curves

components. Results are computed for several conditions of
load and faults severities on the ball bearing. The sensitivity
of the method has been quantitatively evaluated and correlated
to the Probability of Detection. Finally the fault detection
performances are examined using the Receiver Operating
Curves (ROC) of the KLD iterations for the six first IMFs
and the results show that the ball fault is perfectly detected
(AUC = 1) with zero false alarms. For this work, the
whole methodology has been applied to experimental raw data
obtained from the Case Western Reserve University database.
The results presented highlights that from the first six selected
IMFs, the second one denoted IMF2 is the most sensitive one
for all the operating points and for all the fault severities.
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