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Abstract—This paper investigates performance bounds for
joint estimation of signal change point and time delay estima-
tion between two receivers. This problem is formulated as an
estimation of the beginning of a well known message and the
time shift of its arrival on two receivers from a noisy source.
This scenario could be viewed as an extension of the classical
time delay estimation [1], [2] with an additional change on the
transmitted message. A theoretical derivation of the Barankin
bound and a simplified version of this bound are proposed in
order to predict the Maximum Likelihood Estimator (MLE)
behavior. Simulations illustrate the validity of both bounds but
it is pointed out that the MLE seems asymptotically efficient for
the normalized time shift estimation contrary to the estimation
of message’s starting time.

Index Terms—Performance bounds, Change point estimation,
Time delay estimation

I. INTRODUCTION

Time delay estimation between two spatially separated
sensors is fundamental for localization and tracking problems
in radar, acoustics and ultrasonic applications [2], [3]. It turns
out that this problem could also be interesting for physically
separated sensors synchronization [4]. Previous studies on this
problem always assume that the shape of reference signal did
not change over time. But this hypothesis might not be verified
for an opportunity source and only a portion of the reference
signal can be exploited. To solve this problem, our method
will be based on retrospective change point estimation with
an additional parameter (time delay) to estimate. Change point
estimation/detection problems have been widely investigated
in the literature e.g. [5] for a general introduction and [6]
for the specific offline change point estimation. In terms of
performance analysis, the first asymptotic results concerning
the MLE for very specific problems have been proposed
in [7] and recently reanalyzed in [8] and [9]. The term
“asymptotic” generally refers to the case where a large number
of observations are collected before and after the change and
then the asymptotic behavior of MLE in terms of probability
density function (pdf) can be derived for most of the time.
However, from a practical point of view, these results are
currently hard to be useful. This is why the signal processing
community has tried to bypass this drawback by focusing on
lower bound on the Mean Square Error (MSE) and not directly
on the pdf of the MLE.

In the context of change point estimation, the discrete nature
of parameters to estimate implies that the regularity conditions
are not satisfied in order to apply the classical Cramér-Rao

bound [10], [11] similarly to the case of cyclic parameters
estimation [12] or when the support of data pdf depends on
the parameters to estimate [13]. Then, other bounds requiring
less regularity conditions have been proposed to overcome
this difficulty. The Chapman-Robbins bound has been derived
in [14] in the context of one change point and extended to
the multiple change point problem in [15]. In the Bayesian
context, the Weiss-Weinstein bound has been studied in [16]–
[18]. In this paper, we stay in the non-Bayesian context
to study the Barankin (or McAulay-Seidman bound) [19],
[20] for a change point estimation problem when (contrary
to previous works) two sets of non synchronized data are
available. Consequently, one has to additionally estimate the
time delay between both receivers. We first start by presenting
the mathematical framework of our analysis. Then, we derive
the Barankin bound and propose also a simplified hybrid
bound which is found to be surprisingly simple to compute.
Finally, some simulation results are presented in order to show
the interest of the proposed bounds.

II. MODEL SETUP

The application context of our paper is trying to synchronize
multiple receivers on a well known message m (t) (sinus,
chirp, etc...) sent by a well located opportunity source e (t)
(could be a radio station, communication channel, etc...). For
readability, we restrict our analysis to two receivers denoted r1

and r2. The geometry of both emitter and receivers are known,
so we can easily compensate the radial distance difference
between e to r1 and e to r2 by introducing a time delay
on the received signals. Nevertheless, in order to simplify
the analytic expression of the proposed bound, these two
sensors are assumed to be equidistantly located from the
opportunity source. The main goal here is to take advantage
of this well known message m (t) in order to synchronize
our receivers. Therefore, the synchronization tasks consist in
three steps: detect m (t) then estimate exactly the starting
time of this message. This time will be denoted by τ in the
following. And finally, use this message to synchronize r1

and r2 by estimating the normalized time shift denoted by
∆ between the received signals which could be viewed as
the time delay between receivers. Since our goal is trying
to establish performance bounds on the estimation of τ and
∆, we will skip the detection part. Mathematically, we can
formulate the estimation problem as following:



Assume that we have already detected a single message
m (t) received by r1 and r2 between the time interval [0;NTe]
where Te is the common sampling interval of r1 and r2. We
only assume phase jump between receivers’ clock and no
frequency drift, otherwise it will be useless to synchronize
them. Additionally, the sampling interval should respect the
Nyquist-Shannon sampling theorem, i.e. 2BTe < 1, where B
is the bandwidth of m(t). This condition is sufficient for not
loosing information on m(t) when sampling. Therefore, we
can model the received signal as

r1 [k] = s (kTe) + n1[k], k = 1, . . . , N (1)

for the first receiver and

r2[k] = s (kTe + ∆Te) + n2[k], k = 1, . . . , N (2)

for the second receiver where s (t) is the noiseless signal of
form

s (t) =

{
0, if t ≤ τ
m (t) , if t > τ,

, (3)

N is the total number of observations, ∆Te represents the fact
that these two receivers are not synchronized (0 < ∆ < 1) and
the receivers noise are represented by ni[k], i = 1, 2, assumed
to be independent and identically distributed (i.i.d.).

This model is similar to the classical time delay estimation
problem proposed in [1]–[4] but with an additional parameter
on the reference signal change. Indeed, the shape of the refer-
ence signal is assumed to be not static. Therefore the receivers
should be synchronized on the portion of reference signal
that provides useful information on the time shift between
receivers signal. Additionally, the time delay considered is on
the receivers sampling time and not on the (noiseless version
of) received signal itself, this is why we can restrict the
estimation of ∆ between 0 and 1.

Consequently, the pdfs of both receivers signal can be
formulated as:

ri[k] ∼
{
f1 (ri[k]) if k ≤ ν
f2 (ri[k]) if k > ν

(4)

with ν =
⌊
τ
Te

⌋
(b.c denotes the floor function). In order to

simplify notations, we will work with normalized frequency
which is equivalent to take the sampling period Te = 1.
One can also regroup equations (1) and (2) into a single
formula r (t) = s (t) + n (t) such that r (k) = r1 [k] and
r (k + ∆) = r2 [k] with n (t) a strict stationary signal with the
same pdf than the pdf of n1[k]

d
= n2[k] (“ d=” means equality

in distribution).
An illustration of the aforementioned problem is shown in

figure (1) where the message m(t) is sinusoidal with a signal
change at τ = 0.00015 and a sampling shift of ∆ = 0.5
between both receivers. The goal will be to retrieve parameters
τ and ∆ from collected data r1[k] and r[k].

Consequently, the received signals are modeled by:

r1 [k] ∼
{
f1 (r (k)) if k = 1, . . . , ν
f2 (r (k)) if k = ν + 1, . . . , N

r2[k] ∼
{
f1 (r (k + ∆)) if k = 1, . . . , ν
f2 (r (k + ∆)) if k = ν + 1, . . . , N

(5)
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Fig. 1. Example of data collected on the receivers from a sinusoidal source
with τ = 0.00015 and ∆ = 0.5

Finally, we can concatenate all information into a single
observation vector given by:

r = [r1 [1] r2[1] · · · r1 [N ] r2[N ]]
T

= [r (1) r (1 + ∆) · · · r (N) r (N + ∆)]
T
. (6)

We denote θ = [ν ∆]
T the vector of unknown parameters.

Contrary to the classical performance bound analysis, the
unknown parameter ν only takes integer value and does not
parameterize pdfs f1 and f2. This information should be taking
into account in order to derive a relevant bounds. This is
why in the following Section, we present the Barankin (or
McAulay-Seidman) bound and a simplified hybrid version in
the aforementioned context. A first general expression is given
whatever the pdf of the noise is and we then detail in the
Gaussian noise case.

III. PROPOSED BOUNDS

A. Relation to prior work

On the one hand, performance bounds have recently been
developed for change point estimation [14], [15]. However,
this bound did not take into account the estimation of an ad-
ditional continuous parameter (time delay between receivers).
On the other hand, time delay estimation with a change on
the reference signal has not been investigated. Therefore,
we establish in this paper a lower bound on the MSE in
order to predict the accuracy of both parameters: time when
signal pattern changes called “change point” and time delay
between receivers. Since the time delay is estimated over a
compact interval, we treat here an hybrid estimation problem.
Consequently, the proposed bound differs from existing lower
bounds in the literature.

B. General bound

The Barankin bound is the tightest lower bound on the
variance of any unbiased estimator. In this paper, the bound
is denoted BB (θ) and is given by [20, Eqn. 2]:

BB (θ) = sup
hν ,h∆

[h1 h2]D−1 (θ,h) [h1 h2]
T (7)



with h1 = [hν 0]
T and h2 = [0 h∆]

T . The so-called
test-points hν and h∆ are chosen such that ν + hν ∈
{2, . . . , T − 1} and ∆ + h∆ ∈ ]0; 1[. The elements of the
matrix D (θ,h) are defined as follows:

Di,i (θ,h) = E

[(
f (r;θ + hi)

f (r;θ)

)2
]
− 1, i = 1, 2 (8)

and

D1,2 (θ,h) = D2,1 (θ,h)

= E
[
f (r;θ + h1) f (r;θ + h2)

f2 (r;θ)

]
− 1. (9)

Since all component of observations vector r are independent,
thus its pdf is given by:

f (r;θ) =

ν∏
k=1

f1 (r (k)) f1 (r (k + ∆)) (10)

×
N∏

k=ν+1

f2 (r (k)) f2 (r (k + ∆))

We first start by analysing the expression of D1,2 (θ,h) =
D2,1 (θ,h). If one assumes hν > 0 then

f (r;θ + h1) f (r;θ + h2)

f2 (r;θ)
=

ν+hν∏
k=ν+1

f1 (r (k)) f1 (r (k + ∆))

f2 (r (k)) f2 (r (k + ∆))

×
ν∏
k=1

f1 (r (k + ∆ + h∆))

f1 (r (k + ∆))

N∏
k=ν+1

f2 (r (k + ∆ + h∆))

f2 (r (k + ∆))
(11)

After some cumbersome calculus, one obtains

D1,2 (θ,h) + 1 = (12)
ν+|hν |∏
k=ν+1

∫
f1(r(k + ∆))

f2(r(k + ∆))
f2(r(k + ∆ + h∆))dr(k + ∆)

Lets continue with D1,1 (θ,h) = E
[
f

2
(r;θ+h1)

f2 (r;θ)

]
− 1, it is

almost the previous one with h2 = h1, therefore one has

D1,1 (θ,h) + 1 = (13)
ν+|hν |∏
k=ν+1

∫
f

2

1 (r (k)) f
2

1 (r (k + ∆))

f2 (r (k)) f2 (r (k + ∆))
dr (k) dr (k + ∆)

Finally, D2,2 (θ,h) = E
[(

f(r;θ+h2)
f(r;θ)

)2
]
− 1 is obtained

similar by previous calculus

D2,2 (θ,h) + 1 =

ν∏
k=1

∫
f2

1 (r (k + ∆ + h∆))

f1 (r (k + ∆))
dr (k + ∆)

×
N∏

k=ν+1

∫
f2

2 (r (k + ∆ + h∆))

f2 (r (k + ∆))
dr (k + ∆) . (14)

This expression can be applied to any problem by specifying
the probability density functions f1 and f2. We next study the
Gaussian case.

C. Gaussian case

Let us assume that ni[k], i = 1, 2 are complex circular
Gaussian with zero mean and variance σ2. Then the pdf
f1 (r (k)) and f2 (r (k)) are

f1(r(k)) =
1

πσ2
e−

1
σ2 ‖r(k)‖2 , f2(r(k)) = f1 (r(k)−m(k))

By plugging the above expressions in D1,1 (θ,h), one obtains

D1,1(θ,h) + 1 =

ν+|hν |∏
k=ν+1

1

π2σ4

∫ (
e−

2
σ2 (‖r(k)‖2+‖r(k+∆)‖2)

e
1
σ2 (‖r(k)−m(k)‖2+‖r(k+∆)−m(k+∆)‖2)

)
dr(k)dr(k + ∆).

(15)

By noticing that ∀t∫
1

πσ2
e−

2
σ2 ‖r(t)‖

2+ 1
σ2 ‖r(t)−m(t)‖2dr (t) = e2

‖m(t)‖2

σ2 ,

one can obtain a simple expression for D1,1 (θ,h)

D1,1 (θ,h) = e
2
σ2

ν+|hν |∑
k=ν+1

(‖m(k)‖2+‖m(k+∆)‖2)
− 1. (16)

Concerning D1,2 (θ,h), by noticing that ∀t∫
f1(r(t))

f2(r(t))
f2(r(t+ h∆))dr(t) =

1

πσ2

∫ (
e
‖m(t)‖2−‖r(t)‖2

σ2

× e−
1
σ2 (Re(r∗(t)(m(t)−m(t+h∆)))+‖m(t+h∆)‖2)

)
dr(t). (17)

Let us set

‖r (t)‖2 + 2 Re (r∗ (t) (m (t)−m (t+ h∆))) (18)

= ‖r(t) +m(t)−m(t+ h∆)‖2 − ‖m(t)−m(t+ h∆)‖2 ,

then∫
f1 (r (t))

f2 (r (t))
f2 (r (t+ h∆)) dr (t)

= e
1
σ2 (‖m(t)−m(t+h∆)‖2−‖m(t+h∆)‖2+‖m(t)‖2),

and finally

D1,2 (θ,h) + 1 (19)

= e

1
σ2

ν+|hν |∑
k=ν+1

 ‖m (k + ∆)−m (k + ∆ + h∆)‖2

−‖m (k + ∆ + h∆)‖2 + ‖m (k + ∆)‖2

.

The last expression of D2,2 (θ,h) is obtained by noticing that∫
f2

1 (r (t+ h∆))

f1 (r (t))
dr (t) = 1,

and that∫
f2

2 (r(t+ h∆))

f2(r(t))
dr(t) =

1

πσ2

∫ (
e−
‖r(t)‖2−‖m(t)‖2

σ2

× e−
2
σ2 (Re(r∗(t)(m(t)−2m(t+h∆)))+‖m(t+h∆)‖2)

)
dr(t).

(20)



By letting

‖r(t)‖2 + 2 Re (r∗(t)(m(t)− 2m(t+ h∆))) (21)

= ‖r(t) +m(t)− 2m(t+ h∆)‖2 − ‖m(t)− 2m(t+ h∆)‖2,

one obtains∫
f2

2 (r(t+ h∆))

f2(r(t))
dr(t)

= e
1
σ2 (‖m(t)−2m(t+h∆)‖2−2‖m(t+h∆)‖2+‖m(t)‖2), (22)

and finally

D2,2 (θ,h) + 1 = e
1
σ2

N∑
k=ν+1

‖m(k+∆)−2m(k+∆+h∆)‖2

× e
1
σ2

N∑
k=ν+1

‖m(k+∆)‖2−2‖m(k+∆+h∆)‖2

. (23)

D. Simplified bound

Since the synchronization shift ∆ lies in a compact set, the
Cramér-Rao bound can be calculated for it, but one has to keep
the Barankin bound for the change point location ν. This can
be done from the aforementioned proposed bound by noticing
that the Barankin bound tends to the Cramér-Rao bound when
the test-points tend to zero. Here, one consequently needs to
study the behavior of the Barankin bound when h∆ → 0 [21].

By noticing that around h∆ → 0,

m (k + ∆ + h∆) = m (k + ∆) + h∆
∂m (k + ∆)

∂∆
+ o (h∆)

(24)
one can obtain (after simple calculus)

ν+|hν |∑
k=ν+1

‖m(k + ∆)−m(k + ∆ + h∆)‖2 (25)

− ‖m(k + ∆ + h∆)‖2 + ‖m(k + ∆)‖2

=

ν+|hν |∑
k=ν+1

− 2h∆ Re

(
m(k + ∆)

∂m(k + ∆)

∂∆

)
+ o (h∆) ,

and
N∑

k=ν+1

‖m(k + ∆)− 2m(k + ∆ + h∆)‖2 (26)

− 2‖m(k + ∆ + h∆)‖2 + ‖m(k + ∆)‖2

=

N∑
k=ν+1

2h2
∆

∥∥∥∥∂m(k + ∆)

∂∆

∥∥∥∥2

+ o
(
h2

∆

)
.

By using these expressions into D (θ,h), one obtains a
”hybrid” Cramér-Rao-Barankin bound, denoted B̃B (ν,∆) ,
which is very simple. This bound will be given in the next
Section for a particular function m (t) .

IV. SIMULATIONS

Let’s consider two receivers for which their receiving data
respectively follow the model given in equations (1) and (2).
This model assumes that receivers are equidistant from the op-
portunity source. Otherwise, a preprocessing step is necessary

to compensate the time delay introduced by the radial distance
gap from the opportunity source to each receiver.

The sent message is of sinus form given by m [k] ,
m (kTe) = ej2πfkTe = ej2πf0k where f0 = fTe is the
normalized frequency. In order to estimate message arrival and
the normalized time shift, i.e., θ = [ν ∆]

T , we perform the
MLE given by

θ̂ = arg max
ν,∆

f (r;ν,∆)

where r is given in equation (6) with

f(r; ν,∆) =

ν∏
k=1

f1(r(k))f1(r(k + ∆))

N∏
l=ν+1

f2(r(l))f2(r(l + ∆)).

Additionally, if we assume that both receiver noise
follow a i.i.d. zero mean Gaussian distribution i.e.
n1[k] = n2[k] ∼ N

(
0, σ2

)
, then, after some calculus,

the ML criterion is given by the following expression:

θ̂=arg max
ν,∆

ν +
N∑

k=ν+1

Re
(
e−j2πf0k

(
r(k) + r(k + ∆)e−j2πf0∆

))
.

Since parameter ν is discrete and ∆ belongs to [0; 1[, the
implementation of the MLE is performed by maximizing the
above criterion over a grid search [|1;N |]× [0; 1[ with a step
δ∆ = 10−3 for parameter ∆.
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SNR [dB]
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Fig. 2. Comparison of MLE MSE, BB and B̃B for estimation of ∆. The yaxis
is the amplitude of the MSE expressed in the square unit of the normalized
time.

By using the formula developed in the Gaussian noise case
(see Section III-C), the Barankin bound (7) is obtained with
the following information matrix

D (θ,h) =

 e
4|hν |
σ2 − 1 e

4|hν | sin2(πf0h∆)
σ2 − 1

e
4|hν | sin2(πf0h∆)

σ2 − 1 e8N−ν
σ2 sin2(πf0h∆) − 1

.

However, the estimation problem is linear w.r.t normalized
time ∆, so we can expect no threshold effect for its MLEs
MSE. Therefore, we can simplify this bound by mixing with
the Cramér-Rao bound for the estimation of ∆. Then, by using



the formula developed in Section (III-D), our simplified bound
is given by:

B̃B (ν,∆) =

 sup
hν

h2
νσ

2(
e

4|hν |
σ2 −1

) 0

0 σ2

8π2f2
0 (N−ν)

 . (27)

We compare the MSE of the MLE to the Barankin bound
and its simplified form for estimation of ∆ and ν in the
following setup: f0 = 0.1, N = 45, ν = 25 and ∆ = 0.4.
The Barankin bound is the maximization of the criterion in
(7) over a grid search with steps δhν = 1 and δh∆ = 10−3

and the simplified bound is obtained with the same step for ν
but does not depend on ∆. The MSE of the MLE is estimated
with 1000 Monte-Carlo trials. In the figure (2), the Barankin
bound and its simplified form give the same result since the
estimation problem w.r.t. ∆ is linear. The performance of MLE
estimate for ∆ is well predicted by both bounds. In figure
(3), the MSE of the MLE for ν is lower bounded by both
Barankin bound and its simplified form. The simplified form
gives almost the same performance than the Barankin with
a lower computational cost. However, the prediction is not
accurate when the SNR becomes higher than 15dB.

4 6 8 10 12 14 16 18 20
10−10
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10−4

10−1

102

SNR [dB]

B̃B for ν
BB for ν

MLE MSE for ν

Fig. 3. Comparison of MLE MSE, BB and B̃B for estimation of ν. The yaxis
is the amplitude of the MSE expressed in the square unit of the normalized
time.

This difference is probably explained by the fact that ν is
a discrete parameter. Indeed, it is proved in [22] that there is
no asymptotic efficiency of the MLE when estimating discrete
parameters from an i.i.d. sequence. Here we are in the more
constrained case where the observations are independent but
not identically distributed and consequently, there is no reason
that the MLE becomes efficient.

V. CONCLUSION

In this paper, we established the Barankin bound and a
simplified version of this bound for a synchronization problem
where an opportunity source is used. The MLE’s accuracy for

the normalized time shift is well predicted by our proposed
bounds. Therefore, the MLE seems asymptotically efficient for
estimation of ∆. However, the prediction of MLEs MSE still
need to be improved for parameter ν because of its asymptotic
inefficiency for discrete parameter estimation.
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Birkhäuser Basel, 2000.

[7] D. V. Hinkley, “Inference about the change-point in a sequence of
random variables,” Biometrika, vol. 57, no. 1, pp. 1–18, 1970.

[8] S. B. Fotopoulos, S. K. Jandhyala, and E. Khapalova, “Exact asymptotic
distribution of change-point MLE for change in the mean of Gaussian
sequences,” The Annals of Applied Statistics, vol. 4, no. 2, pp. 1081–
1104, Nov. 2010.

[9] S. B. Fotopoulos and S. K. Jandhyala, “Maximum likelihood estimation
of a change-point for exponentially distributed random variables,” EL-
SEVIER Statistics and Probability Letters, vol. 51, pp. 423–429, 2001.

[10] H. Cramér, Mathematical Methods of Statistics, ser. Princeton Mathe-
matics. New-York: Princeton University Press, Sep. 1946, vol. 9.

[11] C. R. Rao, “Information and accuracy attainable in the estimation of
statistical parameters,” Bulletin of the Calcutta Mathematical Society,
vol. 37, pp. 81–91, 1945.

[12] T. Routtenberg and J. Tabrikian, “Non-Bayesian periodic Cramér-Rao
bound,” IEEE Transactions on Signal Processing, vol. 61, no. 4, pp.
1019–1032, Feb 2013.

[13] Q. Lu, Y. Bar-Shalom, P. Willett, F. Palmieri, and F. Daum, “The multi-
dimensional Cramér-Rao-Leibniz lower bound for likelihood functions
with parameter-dependent support,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 53, no. 5, pp. 2331–2343, Oct 2017.

[14] A. Ferrari and J. Tourneret, “Barankin lower bound for change points
in independent sequences,” in Proc. of IEEE Workshop on Statistical
Signal Processing (SSP), St. Louis, MO, USA, Sep. 2003, pp. 557–560.

[15] P. S. La Rosa, A. Renaux, A. Nehorai, and C. H. Muravchik, “Barankin-
type lower bound on multiple change-point estimation,” IEEE Trans.
Signal Process., vol. 58, no. 11, pp. 5534–5549, Nov. 2010.

[16] L. Bacharach, A. Renaux, M. N. El Korso, and E. Chaumette, “Weiss-
Weinstein bound for change-point estimation,” in Proc. of IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), Cancún, Mexico, Dec. 2015, pp. 477–480.

[17] ——, “Weiss-Weinstein bound on multiple change-points estimation,”
IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2686–2700, May 2017.

[18] L. Bacharach, M. N. El Korso, A. Renaux, and J.-Y. Tourneret, “A
Bayesian Lower Bound for Parameter Estimation of Poisson Data
Including Multiple Changes,” in Proc. of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans,
LA, USA, Mar. 2017, pp. 4486–4490.

[19] E. W. Barankin, “Locally best unbiased estimates,” The Annals of
Mathematical Statistics, vol. 20, no. 4, pp. 477–501, Dec. 1949.

[20] R. J. McAulay and L. P. Seidman, “A useful form of the Barankin lower
bound and its application to PPM threshold analysis,” IEEE Trans. Inf.
Theory, vol. 15, no. 2, pp. 273–279, Mar. 1969.

[21] H. L. Van Trees and K. L. Bell, Eds., Bayesian Bounds for Parameter
Estimation and Nonlinear Filtering/Tracking. New-York, NY, USA:
Wiley/IEEE Press, Sep. 2007.

[22] C. Choirat and R. Seri, “Estimation in discrete parameter models,”
Statistical Science, vol. 27, no. 2, pp. 278–293, 2012.


