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ABSTRACT

In modern array processing or spectral analysis, mostly two different
signal models are considered: the conditional signal model (CSM)
and the unconditional signal model. The discussed signal models are
Gaussian and the parameters are connected either with the expecta-
tion value in the conditional case or with the covariance matrix in the
unconditional one. We focus on the CSM where several independent
observations of the same individual signals are available, which are
allowed to perform a Gaussian random walk between observations.
In the proposed generalized CSM, the parameters are connected with
both the expectation value and the covariance matrix, which is a sig-
nificant change in comparison with the usual CSM. Even if the batch
form of the associated generalized conditional maximum likelihood
estimators (GCMLEs) can be easily exhibited, it becomes uncom-
putable as the number of observations increases. As a main contri-
bution, we introduce a recursive form of GCMLEs which allows to
explore, by Monte-Carlo simulations, their asymptotic performance
in terms of mean-squared error. We exhibit non consistent GMLEs
when the number of observations tends to infinity, which highlights
the consequence of combining (even slightly) dependent observa-
tions.

Index Terms— Deterministic parameter estimation, conditional
maximum likelihood estimators, mean-squared error, consistency

1. INTRODUCTION

In many practical problems of interest (radar, sonar, communication,
...) dealing with deterministic parameters estimation, the observa-
tions consists of a complex circular vector [1][2]. In this instance,
one of the most studied estimation problem is that of identifying
the components of observations (y1) formed from a linear superpo-
sition of P individual signals (x1) to noisy data (v1) [3][4][5][6]:
y1 = H1 (θ) x1 + v1, y1,v1 ∈ MC (N1, 1)1, where the mix-
ing matrix depends on an unknown deterministic parameter vector
θ. This problem has received considerable attention during the last
fifty years, both for time series analysis [5] and array processing [6].
In the first case, one usually has to estimate the frequencies of com-
plex sine waves from a single experiment data. In the second case,
one looks for the directions of arrival (or spatial frequencies) of mul-
tiple plane waves impinging on a narrow-band array of sensors using
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1Throughout the present paper, scalars, vectors and matrices are repre-
sented, respectively, by italic, bold lowercase and bold uppercase characters.
I is the identity matrix. MC (N,P ) denotes the vector space of complex
matrices with N rows and P columns. The matrix resulting from the vertical
concatenation of k matrices A1, ... , Ak of same column number is de-
noted Ak . The scalar/matrix/vector transpose conjugate is indicated by the
superscript H .

multiple snapshots. Theses two problems have been merged into the
framework of modern array processing [6][7] where mostly two dif-
ferent signal models are considered: the conditional signal model
(CSM) and the unconditional signal model [4][8][9]. The discussed
signal models are Gaussian and the angular/frequency dependency is
given by parameters which are connected with the expectation value
in the conditional case and with the covariance matrix in the uncon-
ditional one. In this paper, we focus on the CSM where k indepen-
dent observations of x1 are available: yl = Hl (θ) x1 + vl, and
yl,vl ∈ MC (Nl, 1), 1 ≤ l ≤ k, 2 ≤ k. In the standard CSM,
vl ∼ CN

(
0, σ2

vI
)

and the individual signals x1 are assumed to
remain perfectly constant during the k observations. If one concate-
nates the observation vectors yl on a horizon of k observations from
the first observation, i.e. yTk =

(
yT1 , . . . ,y

T
k

)
, then one obtains the

following global CSM:

yk = Hk (θ) x1 + vk, yk ∼ CN
(
Hk (θ) x1, σ

2
vI
)
, (1a)

where yk,vk ∈ MC (Nk, 1), Hk (θ) ∈ MC (Nk, P ), Nk =∑k
l=1Nl. However, in a real-life experiment some experimental

factors may prevent from observing perfectly constant individual
signals x1 (see Section 4). In that perspective, we address the case
where the P signals x1 are allowed to perform a Gaussian random
walk between observations:

xl = Fl−1xl−1 + wl−1, 2 ≤ l ≤ k, (2a)
yl = Hl (θ) xl + vl, 1 ≤ l ≤ k, (2b)

where xl,wl−1 ∈ MC (P, 1), Fl−1 ∈ MC (P, P ), and the Gaus-
sian fluctuation noise sequence {wl}k−1

l=1 is white and uncorrelated
with the Gaussian measurement noise sequence {vl}kl=1. The Gaus-
sian random walk (2a) of the individual signals x1 allows to define a
more general class of CSM. The most noteworthy point introduced
by the proposed generalized CSM, is that the parameters θ are now
connected with both the expectation value and the covariance matrix,
which is a significant change in comparison with the usual CSM. In-
deed, since:

xl = Bl,1x1 +
l−1∑
q=1

Bl,q+1wq, Bl,q =

∣∣∣∣∣∣
Fl−1Fl−2...Fq, l > q

I , l = q
0 , l < q

,

an equivalent form of (2b) is:

yl = Al (θ) x1 + nl, Al (θ) = Hl (θ) Bl,1,∣∣∣∣ n1 = v1

nl = vl + Hl (θ) Glwl−1, 2 ≤ l ≤ k
, (3a)

where Glwl−1 =
∑l−1
q=1 Bl,q+1wq , Gl ∈ MC (P, (l − 1)P ),

leading to:

yk = Ak (θ) x1 + nk, yk ∼ CN
(
Ak (θ) x1,Cnk (θ)

)
. (3b)



As shown in Section 2, even in the simplest case where the set
of unknown parameters is restricted to x1 and θ, the MLEs of θ
based on yk (3b), so-called in the following the generalized CMLE
(GCMLE) of θ, is the solution of the maximization of a non-linear
multidimensional optimization problem involving the computation
of C−1

nk
(θ) and

∣∣Cnk(θ)

∣∣, where Cnk(θ) is not block diagonal (ex-
cept if Cwl = 0, 1 ≤ l ≤ k − 1). Therefore, at first sight, the
computation of the GCMLE of θ seems to become computation-
ally prohibitive as the number of observations k increases, which
would limit the interest of the proposed model. Fortunately, the ob-
servation model of interest (2a-2b) belongs to the general class of
linear discrete state-space (LDSS) models [10][11] represented with
the state (2a) and measurement (2b) equations. By exploiting some
new results on linear minimum variance distortionless response fil-
ters (LMVDRFs) for LDSS models [12], we show that the GCM-
LEs of x1 and θ can be recursively computed from observation to
observation without the need to compute at each new observation
C−1

nk
(θ) nor

∣∣Cnk(θ)

∣∣. The recursive form of the GCMLE allows to
explore, by Monte-Carlo simulations, its asymptotic performance in
terms of mean-squared error (MSE). For instance, the example given
in Section 4 exemplifies the non negligible impact of an amplitude
fluctuation which introduces a lower limit in the achievable MSE
of GCMLEs. From a practical point of view, the existence of this
lower limit shows that, when signal sources fluctuate, there exists an
optimal number of observations that can be combined coherently in
order to estimate their amplitudes and other unknown associated pa-
rameters with the minimum (or almost minimum) achievable MSE.
From a theoretical point of view, we exhibit non consistent MLEs
when the number of observations tends to infinity, which highlights
the consequence of combining (even slightly) dependent observa-
tions. Last but not least, the recursive form of GCMLEs is also a key
feature for real-world applications [10][11] where the observations
become available sequentially and, immediately upon receipt of new
observations, it is desirable to determine new estimates based upon
all previous observations (including the current ones).

2. BATCH FORM OF GCMLES

For the sake of simplicity, we assume that σ2
v, {Fl}k−1

l=1 , {Cwl}
k−1
l=1

are known. Thus the set of unknown parameters is restricted to x1

and θ. Since yk ∼ CN
(
Ak (θ) x1,Cnk (θ)

)
(3a-3b), the log like-

lihood function, is up to a constant value, defined as [5][6][7]:

L (yk;θ,x1) = − ln
∣∣Cnk(θ)

∣∣
−
(
yk −Ak (θ) x1

)H
C−1

nk(θ)

(
yk −Ak (θ) x1

)
, (4)

leading to the following definition of the GCMLEs of x1 and θ:(
x̂1|k, θ̂k

)
= arg max

x1,θ
{L (yk;θ,x1)} . (5)

It is then well known [5][6][7] that x̂1|k = x1|k

(
θ̂k
)

where:

x1|k (θ) =
(
A
H
k (θ) C−1

nk(θ)
Ak (θ)

)−1

A
H
k (θ) C−1

nk(θ)
yk, (6)

θ̂k = arg max
θ

{
L
(
yk;θ,x1|k (θ)

)}
, (7)

or equivalently:

θ̂k = arg max
θ
{Ik (θ)− Jk (θ)} , (8a)

Ik (θ) =

∥∥∥∥Π
C−1

nk(θ)

Ak(θ)
yk

∥∥∥∥2
C−1

nk(θ)

, Jk (θ) = ln
∣∣Cnk(θ)

∣∣ , (8b)

where ΠC
A = A

(
AHCA

)−1
AHC and ‖u‖C denote, respec-

tively, the orthogonal projection matrix on span {A} and the norm
of vector u for the Hermitian inner product defined by the Hermi-
tian positive-definite matrix C. According to (8a-b), the GCMLE
of θ is the solution of the maximization of a non-linear multidimen-
sional optimization problem involving the computation of C−1

nk
(θ)

and
∣∣Cnk(θ)

∣∣, where Cnk(θ) is not block diagonal (except if Cwl =
0, 1 ≤ l ≤ k − 1). As a consequence, if one resorts to a grid
search approach to solve the maximization problem, for each se-
lected value θi of the grid, the evaluation of Ik

(
θi
)

and Jk
(
θi
)

request O
(
N 3
k

)
multiplications, where Nk =

∑k
l=1Nl, which be-

comes rapidly computationally prohibitive as the number of obser-
vations k increases.

3. RECURSIVE FORM OF GCMLES

In this section, we consider the computation of x1|k (θ) (6) and
{Ik (θ) ,Jk (θ)} (8b) for a selected value θ of the parameter space.
We show that

{
x1|k (θ) , Ik (θ)

}
and Jk (θ) can be computed re-

cursively by means of two distinct recursions; a first one associated
with a LMVDRF and a second one associated with a KF.
For legibility, we omit the dependency of Hk on θ and Hk (θ) is
simply denoted Hk; the same applies to Cnk (θ), x1|k (θ), Ik (θ)
and Jk (θ) simply denoted Cnk , x1|k, Ik and Jk.

3.1. Background on LMVDRFs

In Bayesian estimation, if the estimate of xk is based on mea-
surements up to and including time l, it is denoted as x̂k|l ,
x̂k|l (y1, . . . ,yl). A filter estimates xk based on measurements

up to and including time k. Let Wk =
[
Dk−1
Wk

]
where Dk−1 ∈

MC (Nk−1, P ) and Wk ∈ MC (Nk, P ). From (3a-3b), Wk

defines the following filtering:

W
H
k yk =

((
W

H
k Ak

)
x1 + Gkwk−1

)
+ W

H
k nk −Gkwk−1.

Therefore, a filter Wk is distortionless iff:

W
H
k yk = xk + W

H
k nk −Gkwk−1 ⇔ W

H
k Ak = Bk,1. (10)

If H1 and Cv1 are full rank, there exists a best distortionless filter
in the MSE sense, aka the LMVDRF, defined by2 [12]:

W
b
k = arg min

Wk

{
Pk|k

(
Wk

)}
s.t. W

H
k Ak = Bk,1, (11a)

where Pk|k
(
Wk

)
= E

[(
W

H
k yk − xk

)(
W

H
k yk − xk

)H]
,

which is equivalent to [12]:

W
b
k = arg min

Wk

{
E
[
r̂k (r̂k)H

]}
s.t. W

H
k Ak = Bk,1,

r̂k = W
H
k nk −Gkwk−1. (11b)

Then, provided that:

Cwl−1,yl−1
= 0, Cvl,yl−1

= 0, 2 ≤ l ≤ k, (12)

and Cnl , 2 ≤ l ≤ k, are invertible, the solution of (11a-11b) shares
the same recursion as the Kalman Filter (KF)[12][13], except at time
k = 1 where Wb

1 = C−1
v1

H1P
b
1|1, Pb

1|1 =
(
HH

1 C−1
v1

H1

)−1
.

2The superscript b is used to remind the reader that the value under con-
sideration is the ”best” one according to a given criterion.



3.2. Recursive form of x1|k and Ik

By noticing that:

Π
C−1

nk

Ak
yk = Ak

(
A
H
k C−1

nk
Ak

)−1

A
H
k C−1

nk
yk = Akx1|k,

Ik can be rewritten as:

Ik = xH1|kP
−1
1|kx1|k, P1|k =

(
A
H
k C−1

nk
Ak

)−1

. (13)

In order to exhibit a recursive formulation of x1|k (6) and Ik (8b),
firstly, one builds from (2a-b) an auxiliary LDSS model consisting of
the same observations associated with an augmented state for k ≥ 2:

l = 1 : y1 = H1x1 + v1,

l = 2 :

∣∣∣∣∣∣∣∣
(

x2

κ2

)
=

[
F1

I

]
x1 +

(
w1

0

)
y2 =

[
H2 0

]( x2

κ2

)
+ v2

l ≥ 3 :

∣∣∣∣∣∣∣∣
(

xl
κl

)
=

[
Fl−1 0

0 I

](
xl−1

κl−1

)
+

(
wl−1

0

)
yl =

[
Hl 0

]( xl
κl

)
+ vl

that is, in short:∣∣∣∣ x′1 = x1

y1 = H′1x
′
1 + v1

,

∣∣∣∣ x′l = F′l−1x
′
l−1 + w′l−1

yl = H′lx
′
l + vl

, (14)

where H′1 = H1, and (3a) becomes:

yl = A′lx1 + n′l, A′l = H′lB
′
l,1,

∣∣∣∣ n′1 = v1

n′l = vl + H′lG
′
lw
′
l−1

.

By definition:

B′l,1 = F′l−1 . . .F
′
2F
′
1 =

[
Bl,2 0
0 I

] [
F1

I

]
=

[
Bl,1

I

]
,

A′l = H′lB
′
l,1 =

[
Hl 0

] [ Bl,1

I

]
= HlBl,1 = Al.

Moreover since G′lw′l−1 =
∑l−1
q=1 B′l,q+1w

′
q =

(
Glwl−1

0

)
, then:

n′l = vl + H′lG
′
lw′l−1 = vl + HlGlwl−1 = nl.

Secondly, since H′1 and Cv1 are full rank, if we consider the LDSS
model (14), the LMVDRF of x′k exists and is defined by (11a):

W
b
k = arg min

Wk

{
Pk|k

(
Wk

)}
s.t. W

H
k A

′
k = B′k,1, (15a)

where Pk|k
(
Wk

)
= E

[(
W

H
k yk − x′k

)(
W

H
k yk − x′k

)H]
,

which is equivalent to (11b):

W
b
k = arg min

Wk

{
E
[
r̂′kr̂′

H

k

]}
s.t. W

H
k A′k = B′k,1,

r̂′k = W
H
k n′k −G′kw′k−1, Wk =

[
W

x
k W

κ
k

]
. (15b)

Since W
b
k is analogous to a linearly constrained Wiener filter [14,

§2.5], its batch form is given by [14, §2]:

Cn′
k
W

b
k = A′k

(
A′

H
k C−1

n′
k
A′k

)−1 (
B′k,1

)H
+ (16a)(

I−A′k
(
A′

H
k C−1

n′
k
A′k

)−1

A′
H
k C−1

n′
k

)
Cn′

k
,G′

k
w′

k−1
,

that is, since n′k = nk and A
′
k = Ak:

CnkW
b
k = Ak

(
A
H
k C−1

nk
Ak

)−1 [
BH
k,1 I

]
+ (16b)(

I−Ak

(
A
H
k C−1

nk
A
′
k

)−1

A
H
k C−1

nk

)[
Cnk,Gkwk−1 0

]
.

Therefore, (15a-15b) yields the following separable solutions:(
W

x
k

)b
= C−1

nk
Ak

(
A
H
k C−1

nk
Ak

)−1

BH
k,1+

C−1
nk

(
I−Ak

(
A
H
k C−1

nk
A
′
k

)−1

A
H
k C−1

nk

)
Cnk,Gkwk−1 ,(

W
κ
k

)b
= C−1

nk
Ak

(
A
H
k C−1

nk
Ak

)−1

, (17)

leading to κ̂bk|k =
(
A
H
k C−1

nk
Ak

)−1

A
H
k C−1

nk
yk = x1|k, and

E
[(
κ̂bk|k − κ̂k|k

) (
κ̂bk|k − κ̂k|k

)H]
=
(
A
H
k C−1

nk
Ak

)−1

, P1|k.

Thirdly, the conditions (12) hold since: a) the noise sequences {w′l}
and {vl} are zero-mean, white, uncorrelated with known covari-
ances Cw′

l
and Cvl , b) x′1 = x1 is uncorrelated with {w′l,vl}.

Based on these facts, the solution of (15a-15b) can also be computed
recursively, since the LMVDRF shares then the same recursion as
the KF [12][13]. Finally, x1|k (6) and Ik (8b) can be computed
recursively as follows:

Ik = xH1|kP
−1
1|kx1|k,

∣∣∣∣∣∣∣
x1|k =

[
0 I

]
x̂′
b

k|k

P1|k =
[

0 I
]
Pb
k|k

[
0
I

] , (18)

where x̂′
b

k|k and Pb
k|k follow the recursion [12][13]:

x̂′
b

k|k =
(
I−WbH

k H′k

)
F′k−1x̂′

b

k−1|k−1 + WbH
k yk, (19a)

Pk|k−1 = F′k−1P
b
k−1|k−1F

′H
k−1 + Cw′

k−1

Wb
k =

(
H′kPk|k−1H

′H
k + Cvk

)−1

H′kPk|k−1 (19b)

Pb
k|k =

(
I−WbH

k H′k

)
Pk|k−1, (19c)

except at time k = 1 where: x1|1 = Pb
1|1H

H
1 C−1

v1
y1, Pb

1|1 =(
HH

1 C−1
v1

H1

)−1
.

3.3. Recursive form of Jk

Firstly, according to [15, 14.17]:

|Cnk | =
∣∣∣∣[ Cnk−1 Cnk−1,nk

CH
nk−1,nk

Cnk

]∣∣∣∣ =
∣∣Cnk|nk−1

∣∣ ∣∣Cnk−1

∣∣ ,
Cnk|nk−1

= Cnk −CH
nk−1,nk

C−1
nk−1

Cnk−1,nk .



Secondly, according to (3b): Cnk , Cyk
and Cnk|nk−1

,

Cyk|yk−1
. Therefore Cnk|nk−1

, Cyk|yk−1
can be computed

by the KF recursion associated to the LDSS model resulting from
the addition to (2a-2b) of the following initial state equation:

x1 = F0x0 + w0, Cx0 = 0, F0 = I, Cw0
= 0. (20)

Indeed then Cnk|nk−1
, Cyk|yk−1

, Sk|k [10][11] given by:

Pk|k−1 = Fk−1Pk−1|k−1F
H
k−1 + Cwk−1 , (21a)

Sk|k = HkPk|k−1H
H
k + Cvk , Kb

k = Pk|k−1H
H
k S−1

k|k, (21b)

Pk|k =
(
I−Kb

kHk

)
Pk|k−1. (21c)

Finally Jk can be computed recursively as: Jk = ln
∣∣Sk|k∣∣+Jk−1.

4. MEASUREMENT OF THE BACKSCATTERING
COEFFICIENT OF A TARGET

Fig. 1. MSE of the GCMLE of θ (22) versus k

Let us consider a radar system consisting of a 1-element antenna
array receiving scaled, time-delayed, and Doppler-shifted echoes of
a known complex bandpass signal eT (t) ej2πfct, where fc is the
carrier frequency and eT (t) is the envelope of the emitted signal.
The antenna receives a pulse train (burst) of L pulses with a pulse
repetition interval T , backscattered by a ”slow” moving target [16]
(no range migration during the burst and the Doppler effect on eT (t)
is negligible). The target is assumed to have a radial motion towards
the radar with an imposed constant radial speed v (r (t) = r0 + vt)
and a constant aspect angle, which leads to a constant complex
backscattering coefficient ρ along the trajectory. At observation
time tl, a simplified observation model at the output of the range
matched filter is given by [16]: yl = hl (ν)

(
β/r2l

)
ρ + vl, where

hTl (θ) =
(

1, . . . , ej2πθ(L−1)
)

, θ = −2vT/λc, −0.5 ≤ θ ≤ 0.5,

is the normalized Doppler frequency of the target, λc = c/fc is
the wavelength, β represents the complex factor including transmis-
sion power, antenna gain and signal processing gains, and vl is a
temporally white thermal noise with known power σ2

v. Indeed, in a
radar system, the thermal noise power is accurately estimated from

Fig. 2. MSE of the GCMLE of x1 (22) versus k

snapshots obtained while the transmitter is turned off. In order to
increase the precision of the measurement of ρ, k observations are
made along the trajectory. For the sake of illustration, the time tl,
1 ≤ l ≤ k, are set such that r2l = r20/f

l. However, in a real-life
experiment some experimental factors generally prevent from hav-
ing a constant backscattering coefficient. For instance, it may be
difficult for a target to keep a strictly constant radial trajectory, or
fluctuation of the propagation medium are sometime unavoidable
during the whole observation time interval. All these factors can
be taken into account globally by introducing a random fluctuation
from observation to observation:

yl = hl (θ)βxl−1 + vl, xl = fxl−1 + wl−1, x1 =
ρ

r21
. (22)

Secondly, due to adverse wind conditions, the true velocity of the
target may differ from the desired one, and therefore the normalized
Doppler frequency θ must be estimated as well. In this setting, the
joint estimation of (x1, θ) in the ML sense leads to GCMLEs x̂1|k
and θ̂k (6-8a), which MSEs are displayed respectively on figures (1)
and (2), where L = 10, θ = 0.1, x1 = (1 + j) /

(
2
√

2
)
, and f =

1.01, which means that the range of the target changes significantly
as the number of observations increases (1 ≤ k ≤ 120). GCMLEs
x̂1|k and θ̂k are obtained via the recursive form of x1|k (θ), Ik (θ)
and Jk (θ) computed over a discretization of ]−0.5, 0.5[ with a step
of 1/2048. The empirical MSEs are assessed with 2104 Monte-
Carlo trials. In order to highlight the impact of a target fluctua-
tion on GCMLEs, we consider two cases with small fluctuations(
σ2
wl

= σ2
w ∈

{
10−4, 10−3

})
and, for comparison, we also provide

the ideal case with no fluctuation (σ2
wl

= 0) and the associated well
known conditional Cramér-Rao bound (CRB) for θ and x1. Figure
(1) and (2) exemplifies the non negligible impact of a target fluctua-
tion on the MLEs asymptotic performance which introduces a lower
limit in the achievable MSE. Practically speaking, this lower limit
shows that, when a target fluctuates, there exists an optimal number
of observations that can be combined coherently in order to estimate
its parameters with a nearly minimum achievable MSE. Theoreti-
cally speaking, we exhibit non consistent MLEs when the number of
observations tends to infinity, which highlights the consequence of
combining (even slightly) dependent observations.
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