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Abstract—In this paper, we study the influence of the prior
distribution on the Weiss-Weinstein bound (WWB) in the ubiq-
uitous multiple change-point estimation problem. As by product,
we derive a closed form expressions of the WWB for different
commonly used prior. Numerical results reveal some insightful
properties and corroborate the proposed theoretical analysis.

I. INTRODUCTION

Lower bounds for the mean square error (MSE) are com-
monly used to assess the estimation performance for a given
problem. The most widely used lower bound is the Cramér-
Rao bound (CRB) since it is known to be a tight bound under
some regularity conditions [1]. One of these regularity condi-
tions is the differentiability of the log-likelihood function. In
the estimation of discrete parameters context, the CRB does
not exist, which requires the use of other lower bounds [2].

An important example of discrete parameter estimation
problem is the change-point problem, in which the distribution
of the observations abruptly changes at an unknown time
instant, named “change-point”. Other lower bounds, then the
CRB, with relaxed regularity conditions have been derived
for the change-point problem, as Barankin-type lower bounds
[3], in the case of a single change [4] and later extended to
multiple changes [5], yielding coarse approximations of the
change-point estimation behavior. The use of the Bayesian
point of view, in which the unknown change-point location
is assumed to be a random parameter, allows to derive the
Weiss-Weinstein bound (WWB) which is generally tight, even
for low information regimes [2], [6]. In such low information
conditions, as for instance under low signal-to-noise ratio
(SNR), prior plays an important role, and for this reason,
it is interesting to assess its influence on the WWBs. The
prior influence has been studied for linear models in [7]. In
this paper, we propose to study this prior influence in the
context of multiple change-points. A WWB for this problem
was recently derived using a particular uniform random walk
as the prior [8]. We extend this work here to a wider class of
prior distribution for the change locations.

II. PROBLEM SET-UP

In this section, we first present the signal model and the
associated estimation problem we consider in this paper. Us-
ing the Bayesian point of view, we then present the different
prior distributions investigated for this problem.

A. The multiple change-point problem

We consider a classical multiple change-point framework,
where a time series x , [x1, . . . , xN ] made up of N

independent observations is separated into Q+1 independent
segments, delineated by Q unknown change-points t1, . . . , tQ:

xn ∼ pη1(xn) for n = 1, . . . , t1
...

...
xn ∼ pηQ+1

(xn) for n = tQ + 1, . . . , N

(1)

For this model, defining the unknown parameter vector t ,
[t1, . . . , tQ], the likelihood of the observations can be written
as p(x | t) =

∏Q+1
q=1

∏tq+1

n=tq+1 pηq (xn).

B. Various priors for the Bayesian approach

From the Bayesian setting, the vector t is assigned a prior
distribution π(t). In the change-point context, when changes
are known to occur in the observation window, the support
of the prior distribution, denoted by T, is finite. Here, we
assume that there are Q changes, thus we have T ⊆ {t ∈
NQ | 0 < t1 < . . . < tQ < N}. The joint distribution of
the observations and the parameter vector t is denoted by
p(x, t) , p(x | t)π(t). Let us now enumerate the various
prior distributions considered throughout this paper, and give
their expressions. Some them have been used in the literature
[8]–[10]

1) Uniform on independent segments (UIS) distribution:

πuis(t) =

Q∏
q=1

1Jτq−1+1,τqK(tq)

τq − τq−1
(2)

where τq = qb(N−1)/Qc, τ0 , 0, and b.c the floor function.
2) Uniform random walk (URW): tq = tq−1 + εq (q =

1, . . . , Q, t0 , 0), where εq is distributed according to a
uniform distribution U(Jd ,DK), with d and D some freely
chosen integers satisfying 1 ≤ d < D ≤ bN/(Q+ 1)c (since
we assumed the total number of changes equals Q).

πurw(t) =

Q∏
q=1

1

∆
1Jtq−1+d,tq−1+DK(tq) (3)

where we have defined ∆ , D − d+ 1.
3) Globally uniform (GU) distribution:

πgu(t) =

Q∏
q=1

1(
N−1
Q

)1Jtq−1+1,N−Q+q−1K(tq). (4)

Notice that is the most uninformative distribution among those
considered in this paper.



4) Truncated Poisson random walk (PRW): Finally, the
last prior distribution investigated in this paper is a trun-
cated Poisson random walk. This means that each change-
point tq , given the previous one tq−1, can be written as
tq = tq−1+1+uq , q = 1, . . . , Q, where uq follows a truncated
Poisson distribution with parameter λ. This parameter λ
actually denotes the a priori mean length (minus 1) of the
segments [tq−1 , tq] in the time series. Consequently, we set
λ = N/(Q+ 1)− 1. Hence, the joint a priori distribution of
the change-points is given by

πprw(t) =

Q∏
q=1

Pr(Tq = tq |Tq−1 = tq−1 and
Tq−1 + 1 ≤ Tq ≤ N −Q+ q − 1)

=
λtQ−Q 1Jtq−1+1,N−Q+q−1K(tq)

Q∏
q=1

(
(tq − tq−1 − 1)!

∑N−Q+q−2−tq−1

i=0
λi

i!

) (5)

in which the capitalized versions Tq−1, Tq, Uq of tq−1, tq, uq
denote the associated random variables (note: these random
variables are omitted elsewhere in the paper for sake of
shortness). This prior distribution is inspired from that used
in [10], and adapted to the case of a known number Q of
changes (i.e., truncated).

III. DERIVATION OF THE WWB FOR THE MULTIPLE
CHANGE-POINT PROBLEM WITH VARIOUS PRIORS

A. Background on the WWB

For any Bayesian estimator t̂(x) of a parameter vector
t , [t1, . . . , tQ] ∈ T ⊂ RQ, based on the observations
x, the Weiss-Weinstein bound is a lower bound for the
mean square error of t̂(x). For Q ≥ 2, the WWB is a
matrix W (H) parameterized by the so-called “test-point
matrix” H , [h1, . . . ,hQ], whose column vectors hq, q =
1, . . . , Q (the “test-points”) belong to H , {h ∈ RQ |
p(x, t + h) > 0}. According to [2], the matrix differ-
ence Ex,t

{
[t̂(x)− t][t̂(x)− t]T

}
−W (H) is positive semi-

definite, where W (H) , HG−1HT, and G , G(H) is a
Q×Q matrix whose elements are given by

[G]a,b =

Ex,t


(√

p(x,t+ha)
p(x,t) −

√
p(x,t−ha)
p(x,t)

)
×
(√

p(x,t+hb)
p(x,t) −

√
p(x,t−hb)
p(x,t)

)


Ex,t
{√

p(x,t+ha)
p(x,t)

}
Ex,t

{√
p(x,t+hb)
p(x,t)

} . (6)

The tightest bound can then be obtained by maximizing
W with respect to H: WWB , supHW (H). In order
to make the derivation of G tractable, we assume matrix
H is diagonal, i.e., its column vectors hq have their q-
th component that is nonzero: [hq]i = hq δi,q , where δi,q
denotes the Krönecker delta. Note that the original version
of the WWB from [2] also depends on auxiliary parameters
sq ∈ ]0 , 1[, q = 1, . . . , Q, with respect to which the
maximization of W has to be performed. However, it has
been noticed that in a number of applications (see [6] for
instance), the values sa = sb = 1/2 lead to the tightest
bound. It is the case for the multiple change-point estimation
problem as well, as it has been noticed in [8] after extensive

simulations. For this reason, and to simplify the exposition,
these values have been set into (6).

B. WWBs for the multiple change-point problem

In this section, we derive expressions of the WWBs for
the multiple change-point estimation problem presented in
Section II-A. Note that for this problem, the parameter space
T is discrete and finite (T ⊂ NQ), thus the set H and the set
of lower bounds W , {W (H) |H ∈ H} are discrete and
finite as well. Hence, as explained in [8], the supremum of
W (that is the tightest WWB) can be obtained by finding the
matrix W ? associated with the minimum volume centered
hyper-ellipsoid that covers all the centered hyper-ellipsoids
associated with matrices W ∈ W. Such a task can actually
be set as a convex optimization problem [11], which can be
solved efficiently using an appropriate CVX toolbox.

Before doing so, we first need to obtain the expressions
for the elements in matrix G. By developing the numerator
of (6), we obtain

[G]a,b =

ξ(ha,hb) + ξ(−ha,−hb)
− ξ(ha,−hb)− ξ(−ha,hb)
ξ(ha,0) ξ(hb,0)

(7)

where

ξ(ha,hb) , Ex,t

{√
p(x, t + ha) p(x, t + hb)

p(x, t)

}
=
∑
t∈T

ν(ha,hb, t)M(ha,hb, t) (8)

with the following definitions of ν(ha,hb, t) and
M(ha,hb, t):

ν(ha,hb, t) ,
√
π(t + ha)π(t + hb) (9)

on the one hand, and

M(ha,hb, t) ,
∫

Ω

√
p(x | t + ha) p(x | t + hb) dx (10)

on the other hand. Note that in (8), the discrete summation
sign “

∑
t∈T” stands for the Q sums

∑
t1
. . .
∑
tQ

.
We only derive the upper triangle terms from G (i.e., for

b ≥ a) and deduce the others by symmetry.
We use the following methodology to derive the elements

in G:
– derive M(ha,hb, t);
– derive ν(ha,hb, t) for the various priors proposed in

Section II-B;
– derive ξ(ha,hb) (and deduce [G]a,b when simplifications

appear).
Expressions of M(ha,hb, t) and ν(ha,hb, t) depend on

whether we consider i) the diagonal terms (b = a , d), ii)
the first super-diagonal terms (b = a + 1) or iii) the other
terms in the upper triangle of G (b > a+ 1).



1) Expressions of M(ha,hb, t): These expressions do not
depend on the chosen prior, and we derived them for the
multiple change-point problem in [8]. Using the independence
of the observations and the fact that only one component of
ha and hb is nonzero (as explained in Section III-A), we find
the following expressions for M(ha,hb, t):
• if b = a (diagonal terms of G)

M(ha,h
′
a, t) =


1 if h′a = ha

ρ
|ha|
a,a+1 if h′a = 0

ρ
2|ha|
a,a+1 if h′a = −ha

(11)

where, for a = 1, . . . , Q,

ρa,a+1 ,
∫

Ω′

√
pηa(x) pηa+1(x) dx (12)

denotes the Bhattacharyya distance between the distributions
in the a-th and the (a+1)-th segments (Ω′ denotes the single
observation space, i.e., Ω′ × . . .× Ω′ = (Ω′)N = Ω);
• if b > a (upper triangle terms of G), and ta + ha ≤

ta+1 + ha+1 (if b = a+ 1)

M(ha,hb, t) = M(ha,hb) = ρ
|ha|
a,a+1 ρ

|hb|
b,b+1 (13)

• “overlap” between two consecutive test-points, that is,
if b = a + 1, ha = |ha| > 0, ha+1 = −|ha+1| < 0 and
ta + ha > ta+1 + ha+1 (with a < Q)

M(ha,ha+1, t) = ρ
|ha|
a,a+1 ρ

|ha+1|
a+1,a+2R

ta+1−|ha+1|−ta−|ha|
a (14)

where, for a = 1, . . . , Q− 1,

Ra ,
ρa,a+1 ρa+1,a+2

ρa,a+2
. (15)

Note that in this last case only, M(ha,hb, t) actually
depends on t. In the following, in order to make these
dependences or independences on t more visible, we denote
M(ha,ha+1, t) by M̃(ha,ha+1, t) in the “overlap” case
only, whereas we will denote M(ha,ha+1, t) merely by
M(ha,hb) in all the other cases.

2) Expressions of ν(ha,hb, t) for a general prior: To
expose the methodology, let us consider a generic prior
distribution for the change-points that covers those introduced
in Section II-B, i.e.,

π(t) =

Q∏
q=1

π(tq | tq−1) (16)

with t0 , 0.

• For b = a (diagonal terms of G), we have ν(ha,ha, t) =
π(t + ha) on the one hand, and on the other hand, we have

ν(ha,−ha, t) = ν(2ha,0, t
′)

=

(
Q∏
q=1

q 6=a,a+1

π(t′q | t′q−1)

)√
π(t′a + 2ha | t′a−1)π(t′a | t′a−1)

×
√
π(t′a+1 | t′a + 2ha)π(t′a+1 | t′a) (17)

for a < Q, and

ν(hQ,−hQ, t) = ν(2hQ,0, t
′)

=

(
Q−1∏
q=1

π(t′q | t′q−1)

)√
π(t′Q + 2hQ | t′Q−1)π(t′Q | t′Q−1)(18)

for a = Q, after setting t′ = t− ha to obtain (17) and (18).

• For b = a+ 1 (superdiagonal terms of G), and a < Q− 1,
we have

ν(ha,ha+1, t)

=

(
Q∏
q=1

q 6=a,a+1,a+2

π(tq | tq−1)

)√
π(ta + ha | ta−1)π(ta | ta−1)

×
√
π(ta+1 | ta + ha)π(ta+1 + ha+1 | ta)

×
√
π(ta+2 | ta+1 + ha+1)π(ta+2 | ta+1)

(19)

As in the previous case, if a = Q − 1, the last factor (with
ta+2) in (19) disappears.

• For b > a + 1 (other upper triangle terms of G), finally,
similar expression can be obtained. If b < Q, we have

ν(ha,hb, t)

=

(
Q∏
q=1

q 6=a,a+1,b,b+1

π(tq | tq−1)

)√
π(ta + ha | ta−1)π(ta | ta−1)

×
√
π(ta+1 | ta + ha)π(ta+1 | ta)

×
√
π(tb + hb | tb−1)π(tb | tb−1)

×
√
π(tb+1 | tb + hb)π(tb+1 | tb),

(20)

and if b = Q, as in the previous cases, the last factor (with
tb+1) in (20) disappears.

3) Derivation of ξ(ha,hb): For the derivation of
ξ(ha,hb), some attention has to be given to the bounds of
the Q discrete sums in (8), since the support of the prior
distribution is finite. The general form of the summation
domain in (8) is

T ′−ha,−hb
, T ∩ (T − ha) ∩ (T − hb) (21)

where, with abuse of notations, we denote T − h , {t− h |
t ∈ T}, and we recall that T is the support of the prior
distribution, that can be deduced from the range of the
indicator functions in its expression, cf. Section II-B.

• For b = a (diagonal terms of G), after plugging (11) into
(8), we have, on the one hand,

ξ(ha,ha) =
∑

t∈T′−ha,0

π(t + ha), (22)

that is generally lower than 1, and, on the other hand,

ξ(ha,−ha) = ξ(−ha,ha) = ρ
2|ha|
a,a+1

∑
t′∈T′−2ha,0

ν(2ha,0, t
′)

= ρ
2|ha|
a,a+1

∑
t′1

π(t′1)
∑
t′2

π(t′2 | t′1) . . .

. . .
∑
t′a

√
π(t′a + 2ha | t′a−1)π(t′a | t′a−1)



∑
t′a+1

√
π(t′a+1 | t′a + 2ha)π(t′a+1 | t′a) . . .

. . .
∑
t′a+2

π(t′a+2 | t′a+1) . . .
∑
t′Q

π(t′Q | t′Q−1). (23)

Note that the Q − (a + 1) last sums in (23) equal 1.
Consequently, after plugging (22) and (23) into (7), we obtain

num([G]a,a) =
∑

t∈T′−ha,0

π(t + ha) +
∑

t∈T′ha,0

π(t− ha)

− 2ρ
2|ha|
a,a+1

∑
t′∈T′−2ha,0

ν(2ha,0, t
′)

(24)
and

den([G]a,a) = ρ
2|ha|
a,a+1

( ∑
t′∈T′−ha,0

ν(ha,0, t
′)

)2

(25)

in which num([G]a,a) and den([G]a,a) respectively denote
the numerator and the denominator of [G]a,a from (7).

• For b = a + 1 (superdiagonal terms of G), in cases with
no overlap between the test points, we obtain expressions for
ξ(ha,ha+1) similar to (23), using (13) and (19):

ξ(ha,ha+1) = ρ
|ha|
a,a+1 ρ

|ha+1|
a+1,a+2

∑
t∈T′−ha,−ha+1

ν(ha,ha+1, t). (26)

If ha = |ha| > 0 and ha+1 = −|ha+1| < 0, we have to
split the (a + 1)-st sum in (8) between the “overlap terms”
for which M(ha,ha+1, t) = M̃(ha,ha+1, t), for ta+1 <
ta + |ha| + |ha+1|, and the “non overlap terms” for which
M(ha,ha+1, t) = M(ha,ha+1), for ta+1 ≥ ta + |ha| +
|ha+1|. This yields

ξ(|ha|,−|ha+1|) = ρ
|ha|
a,a+1 ρ

|ha+1|
a+1,a+2(S1 + S2) (27)

in which

S1 =
∑
t1

π(t1)
∑
t2

π(t2 | t1) . . .

. . .
∑
ta

√
π(ta + ha | ta−1)π(ta | ta−1)

R
ta+|ha|+|ha+1|
a∑

ta+1<ta+|ha|+|ha+1|

Rta+1
a

√
π(ta+1 | ta + ha)π(ta+1 + ha+1 | ta)

∑
ta+2

√
π(ta+2 | ta+1 + ha+1)π(ta+2 | ta+1)

(28)
and

S2 =
∑
t1

π(t1)
∑
t2

π(t2 | t1) . . .

. . .
∑
ta

√
π(ta + ha | ta−1)π(ta | ta−1)∑

ta+1≥ta+|ha|+|ha+1|

√
π(ta+1 | ta + ha)π(ta+1 + ha+1 | ta)

∑
ta+2

√
π(ta+2 | ta+1 + ha+1)π(ta+2 | ta+1)

(29)

after seeing the Q− (a+ 2) last sums equal 1. This leads to

num([G]a,a+1)

=

(∑
t∈T′−|ha|,−|ha+1|

ν(|ha|, |ha+1|, t) +
∑
t∈T′|ha|,|ha+1|

ν(−|ha|,−|ha+1|, t)

−
∑
t∈T′|ha|,−|ha+1|

ν(−|ha|, |ha+1|, t)− S1 − S2

)
sign(ha ha+1)

(30)

and

den([G]a,a+1) =

(∑
t′∈T′−ha,0

ν(ha,0, t
′)

)(∑
t′∈T′−ha+1,0

ν(ha+1,0, t
′)

)
(31)

• For b > a+ 1 (other upper triangle terms of G), from (13)
and (20), it can be shown that ξ(ha,hb) = −ξ(ha,−hb)
by using the variable change t′b = tb − hb in the latter.
Consequently, we also have ξ(−ha,−hb) = −ξ(−ha,hb).
This implies, from (7), that, for |b− a| > 1,

[G]a,b = 0 (32)

i.e., the matrix G has a tridiagonal structure. This was shown
in [8] for the particular case of the URW prior.

C. Expressions of the WWB for the different proposed priors

1) Uniform on independent segments (UIS): For the UIS
prior, it is worth noticing that the range of admissible test-
points hq is J1− bNQ c , b

N
Q c − 1K. Consequently, it is incom-

patible with the condition that there is at least one “overlap
term” in S1. Indeed, for ha > 0 and ha+1 < 0, the upper
bound of the sum w.r.t. ta in (8) is τa−|ha|, while the lower
bound w.r.t. ta+1 is τa + |ha+1| + 1, which implies that the
condition ta + |ha| > ta+1 − |ha+1| cannot be met, given
the range of admissible values for ha. Hence, for this prior
distribution, we obtain that [Ga,a+1] = 0 as well, i.e., the
matrix G is diagonal, whose diagonal terms are given by

[Ga,a] =
2
(

1− |ha|
bN/Qc − ρ

2|ha|
a,a+1

(
1− 2|ha|

bN/Qc

))
ρ

2|ha|
a,a+1

(
1− |ha|

bN/Qc

)2 . (33)

2) Uniform random walk (URW): The results for the URW
prior are given in [8] in the special case d = 1. Analogous
expressions can be obtained using the following results:

∑
t∈T′−ha,0

π(t±ha) =
∑
t′∈T′−ha,0

ν(ha,0, t
′) =



(
1− |ha|

∆

)2

if a < Q

1− |hQ|
∆

if a = Q

0, otherwise,

(34)

∑
t∈T′−ha,−ha+1

ν(ha,ha+1, t) =


(∆−|ha|)(∆−|ha+1|)

∆3 , if a < Q
∆−|hQ|

∆2 , if a = Q

0, otherwise,
(35)
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Figure 1. Simulation results in the case of Q = 2 unknown changes in the
mean of N = 80 observations. Empirical GRMSE of the MMSE estimator
of the change-points (green circles), and associated WWBs for the different
priors introduced in Section II-B.

S1 + S2 =

(∑
t∈T′−ha,−ha+1

ν(ha,ha+1, t)

)(
D − |ha| − |ha+1|+ 1

−1−Rd−min{|ha|,|ha+1|}
a

1−Ra

)
.

(36)

It is worth noticing that, with these superdiagonal terms,
the WWB directly depends on the distance between the
successive change-points through parameters d and D.

3) Globally uniform distribution (GU): Considering the
GU prior from (4), we obtain the following results:

∑
t∈T′−ha,0

π(t± ha) =
∑
t′∈T′−ha,0

ν(ha,0, t
′) =

(
N−1−|ha|

Q

)(
N−1
Q

) , (37)

∑
t∈T′−ha,−ha+1

ν(ha,ha+1, t) =

(
N−1−|ha|−|ha+1|

Q

)(
N−1
Q

) , (38)

and

S1 + S2 =

(
N−|ha|−|ha+1|

Q

)(
N−1
Q

) (39)

+
∑
t1

. . .
∑
ta−1

∑
ta

(
R−ta−|ha|−|ha+1|
a

∑
ta+1

(N−1−ta+1

Q−(a+1)

)(
N−1
Q

) Rta+1
a

)

where tq ∈ Jtq−1 + 1 , N − Q + q − 1K, q = 1, . . . , a − 1,
ta ∈ Jta−1 + 1 , N −Q+ a− |ha| − 1K, and ta+1 ∈ Jta + 1 +
max{|ha|, |ha+1|} , ta + |ha|+ |ha+1| − 1K.

4) Truncated Poisson random walk (PRW): Given its more
complex expression, the PRW prior does not have any in-
teresting closed form expression. However, it fits the kind
of prior described by (16), thus the results from Section
III-B apply. Since only discrete and finite sums appear in the
expressions for the elements of matrix G, the computation
of the WWB with this prior is possible, although computa-
tionally more costly than with the aforementioned other prior
distributions.

IV. NUMERICAL RESULTS AND CONCLUDING REMARKS

In this section, we present numerical results obtained in
the case of changes in the mean of Gaussian observations,
i.e., for q = 1, . . . , Q and n = tq−1 + 1, . . . , tq , we have
xn ∼ N (µq, σ

2). Expressions of ρa,a+1 and Ra for this
specific distribution have been derived in [8], and depend
essentially on the so-called “amount of change” (also some-
times called signal-to-noise ratio, SNR), that we will denote
by v. In the case of mean changes, the amount of change
between the q-th and the q + 1-th segment is defined by
vq,q+1 , (µq+1 − µq)2/σ2. In our simulations, we consider
Q = 2, and we set σ2 = 1, µ1 = 1. For a given amount
of change v, we set µ2 = µ1 +

√
v σ2, and µ3 = µ1.

The evolution of the empirical global root mean square
error (GRMSE) of the minimum mean square error (MMSE)
estimator and the associated WWBs are displayed in Figure
1. The MMSE estimator is computed for the GU prior, and
its squared error is averaged over 5000 Monte-Carlo runs.
At each run, two new change-points t1 and t2 are randomly
generated according to the GU prior. Asymptotically (in terms
of amount of change), the WWBs tend to a common value
regardless of the prior. In practice, this effect is visible for
an amount of change v higher than 5 dB. Conversely, as the
amount of change decreases, the WWBs differ progressively
depending on the prior. It is worth mentioning that the
chosen prior plays a significant role in the computation of the
WWB. In the case of multiple change-point estimation, the
PRW prior can be well-suited for some applications, but the
computation of the WWB is very involved. On the contrary,
the URW prior provides an interesting trade-off between
computation complexity and the parameter space exploration.
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