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Abstract — The HVAC system represents the main 

auxiliary load in electric vehicles (EVs) and requires 

efficient control approaches that balance energy saving and 

thermal comfort. In fact, passengers always demand more 

comfort, but on the other hand the HVAC system consumption 

strongly impacts the vehicle driving range, which constitutes the 

major concern in EVs. In this paper, dynamic programing is 

applied to develop an HVAC system supervisor that optimizes the 

thermal comfort on a given journey, for given climatic conditions 

and energy available. The electric vehicle model and the 

optimization approach are presented. Two test-cases, 

corresponding to hot climate, are simulated. In the first one, the 

energetic cost of improved comfort is quantified, while in the 

second one the trade-off between driving speed and thermal 

comfort is analyzed.  

Keywords— Electric Vehicle; Thermal comfort; HVAC; energy 

management; Dynamic Programming. 

I. INTRODUCTION  

Energy saving and thermal comfort are two important topics 
in heating, ventilating and air conditioning (HVAC) control 
field. The HVAC system of an electric vehicle must maintain an 
acceptable thermal comfort inside the cabin regardless of the 
surrounding context. In fact, its electric consumption depends on 
the climatic conditions and the passengers comfort 
requirements, and it may be quite significant. In general, it 
represents 20% of the total vehicle consumption, and up to 60% 
in urban area and harsh conditions. Effective control approaches 
are therefore required to provide an acceptable balance between 
energy consumption and passengers’ comfort [1], so as to 
preserve the vehicle autonomy range in given conditions. 

The present paper addresses the issue of thermal comfort 
management and optimization for a given trip, with given 
climatic conditions. Dynamic programming is used to develop 
an off-line HVAC supervisor that optimizes the passengers’ 
global comfort, while ensuring the EV-trip completion. The 
trade-off between travel time and thermal comfort is also 
considered, which may help the driver to adjust the vehicle 
driving profile accordingly. 

 The remainder of the paper is structured as follows. Section 
2 introduces some research works related to efficient energy 
management systems for EVs. The HVAC system and 
powertrain dynamic models of EVs are presented in Section 3. 
In Section 4, the optimization problem is formulated, and the 
principle of dynamic programming is introduced. Test-case 

scenarios and results are presented in Section 5. Conclusions and 
future work are given in Section 6. 

II. RELATED WORK 

 In the past few years, several approaches have been 
developed for managing comfort and energy consumption for 
either buildings or vehicles and can be categorized into two main 
classes. The first one aims to drive the system, at every time, to 
specific set points using control algorithms, while the second 
one has a ‘supervision’ role, in which the system follows 
trajectories that optimize comfort and energy consumption in 
wide time span.  

A. Control approaches 

A variety of control approaches for HVAC systems have been 
proposed and reported in the literature. Classical control has 
been widely adopted in building energy systems due to its 
simplicity in design and low computational complexity when 
determining the control signals. Rule-based control includes for 
instance on/off or bang-bang controllers, very common in old 
building systems without digital control. Proportional-integral-
derivative control is usually implemented in modern buildings, 
where heating and cooling systems are equipped with digital 
control and variable frequency drives in order to control, in the 
most cases, the temperature and humidity ratio [2]. The use of 
PID control-based approaches in automotive HVAC systems is 
rare. However, advanced methods from classical control theory, 
such as sequential quadratic programming, can handle the 
complexity of automotive HVAC systems [3]. 

One problem of PID or self-tuning PID method is that, more 
than one controller is required to obtain the objectives of 
multivarible-coupled MIMO A/C systems, which increases the 
design complexity of controllers. Decoupling procedure like 
back-stepping controllers [4] and decentralized nonlinear 
adaptive controllers [5] are required. 

 The learning-based techniques from artificial intelligence 
(AI) area offer a different approach to the energy management 
problem compared to conventional methods. AI-based control 
can indeed handle complex systems, deal with noisy or 
incomplete data, and with nonlinearities in the system. The most 
common AI approach is artificial neural networks (ANNs), that 
have been used extensively for predictions and building HVAC 
control strategies [6,7]. In automotive domain, an adaptive 
neural network tuned PID controller was proposed in [8] to 
improve the energy efficiency associated with the air 



conditioning unit operation. Results showed an energy reduction 
by almost 14%.  

Fuzzy logic controllers also offer a potential solution, 
coupling and integrating the management of all the different 
criteria and components of an HVAC system. Authors in [9], 
proposed an adaptive fuzzy output feedback controller, based on 
an observer for the HVAC system. A fuzzy controller for HVAC 
system of an automobile cabin is developed in [10]. This 
controller uses thermal comfort instead of temperature as its 
feedback. In [11] authors developed a fuzzy controller enhanced 
with a look ahead system that grants the air conditioning system 
a load-prediction ability, and a reduction of energy consumption 
in EV by 3%. 

Genetic algorithms (GAs) are optimization tools that can be 
used to improve the parameters of control techniques. In 
building domain, for instance, they have been extensively used 
for tuning the parameters of classical controllers [12] and fuzzy 
logic controllers [13]. Genetic algorithms can also be the solving 
algorithm for an optimization problem aiming to maximize 
comfort and safety in EVs [14]. 

Model predictive control has shown great potential to control 
HVAC systems in building and automotive domains. It is 
generally accepted that the reasons for this are their ability to 
control multivariable systems under various constraints in an 
optimal way. The multi-objective control, such as multivariable 
control (e.g., air temperature and relative humidity) [15], the 
decrease of operation cost (e.g. energy saving) [16] together with 
improvement of air quality [17,18], and enhancement of steady-
state performance and robustness [15,19], could be easily 
realized with the MPC structure. 

B.  Supervision approaches 

In this category of approaches, dynamic programming (DP) 
constitute one of the most efficient algorithm to find optimal 
trajectories to a specific optimization problem, namely in our 
case, comfort and consumption optimization. These trajectories, 
are considered as reference trajectories, and constitute a base to 
develop real time controls. 

 Authors, in [20], proposed a dynamic programming 
optimization of heating load shifting, in which the ambient 
temperatures, solar gains, and internal loads, are known in 
advance. The load shifting of the customers was performed in 
two steps. The first step is based on the utility rate and the second 
step depends on the amount of carbon emission. Load shifting 
was performed within a small indoor temperature variation to 
maintain the customer comfort and save energy cost from 
heating the building within 19 °C. Obtained results show the 
effectiveness of DP, as a supervision algorithm, in maintaining 
a good balance between energy consumption and comfort, and 
constitute a first step to develop controls that will follow state 
trajectories computed by DP.  

In this work, we investigate DP to develop an energy 
management system based on an optimal compromise between 
thermal comfort and energy consumption in electric vehicle. 
Before introducing the proposed approach, we present the model 
of different parts of the system (HVAC system, powertrain and 
battery), and specify the comfort criteria. 

III. EV MODELING  

This section presents the system model, which is composed 
of three sub-systems: the HVAC system, the powertrain and the 
battery, which feeds both of them. 

A. HVAC system model 

 

Fig. 1 Schematic diagram of the HVAC system 

The HVAC system diagram is shown in Fig. 1. The outside 
air and recycled cabin air flows are mixed, blown and cooled 
through the refrigeration cycle evaporator, before being injected 
into the cabin zone. The air flow rate is denoted by 𝑚̇ and 𝛽 
represents the fraction of recycled cabin air in this flow. Heat 
exchanges between the cabin and the external environment take 
place by convection, air circulation and solar irradiation. 𝑇 
represents the temperature while 𝑥 refers the specific humidity, 
which is defined as the mass of water vapor present in a unit 
mass of moist air. These quantities are defined at different points 
of the system: before and after the evaporator, at the condenser 
surface (subscript 𝑠𝑢𝑝), in the cabin, and outside the cabin.  

The cabin temperature evolution is governed by (1), where 
𝐶𝑐𝑎𝑏  is the cabin thermal capacitance (including walls and 
seats). 𝑃𝑐𝑜𝑛𝑣  is the thermal power exchanged through the 
windshield and walls by convection. It is given by (2), where 𝐻 
is the convection factor. 𝑃𝑒𝑛𝑡ℎ corresponds to the heat exchange 
due to air circulation and given by (3), where ℎ2 (resp. ℎℎ𝑎𝑏) 
denotes the massic enthalpy of the air blown into the cabin (resp. 
extracted from the cabin), which is calculated according to (4). 
𝑃𝑠𝑜𝑙  represents the solar irradiation power and solely depends on 
meteorological conditions. 

𝐶𝑐𝑎𝑏

𝑑𝑇𝑐𝑎𝑏

𝑑𝑡
(𝑡) = 𝑃𝑐𝑜𝑛𝑣(𝑡) + 𝑃𝑒𝑛𝑡ℎ(𝑡) + 𝑃𝑠𝑜𝑙(𝑡) 

(1) 

𝑃𝑐𝑜𝑛𝑣(𝑡) = 𝐻. [𝑇𝑒𝑥𝑡(𝑡) − 𝑇ℎ𝑎𝑏(𝑡)]  (2) 

𝑃𝑒𝑛𝑡ℎ(𝑡) = 𝑚̇. [ℎ2(𝑡) − ℎℎ𝑎𝑏(𝑡)] (3) 

ℎ(𝑇, 𝑥) = 1006. 𝑇 + 𝑥. (2500130 + 1823. 𝑇) (4) 

The cabin specific humidity evolves according to the water mass 
balance equation (5), where 𝑉𝑐𝑎𝑏  and 𝜌𝑎𝑖𝑟  denote the cabin 
volum and the air density respectively. 

𝑉𝑐𝑎𝑏 . 𝜌𝑎𝑖𝑟 .
𝑑𝑥𝑐𝑎𝑏

𝑑𝑡
= 𝑚̇. [𝑥2 − 𝑥𝑐𝑎𝑏]  (5) 

Part of the return air from the cabin is mixed with the outside air 
and re-circulated back. The temperature and the specific 
humidity of the mixed air are given by (6) and (7), where the 

CABIN 
𝑇𝑐𝑎𝑏 , 𝑥𝑐𝑎𝑏 

𝑇1, 𝑥1 𝑇2, 𝑥2 

𝑚̇ 

𝛽𝑚̇ 

(1 − 𝛽)𝑚̇ 

OUTSIDE 
𝑇𝑒𝑥𝑡, 𝑥𝑒𝑥𝑡  

Refrigeration  
cycle 

𝑇𝑠𝑢𝑝, 𝑥𝑠𝑢𝑝 
Evaporator 



recycling ratio 𝛽  is controlled according to the external 
temperature. 

𝑇1 = 𝛽 𝑇𝑐𝑎𝑏 + (1 − 𝛽)𝑇𝑒𝑥𝑡    (6) 

𝑥1 = 𝛽 𝑥𝑐𝑎𝑏 + (1 − 𝛽)𝑥𝑒𝑥𝑡 (7) 

The mixed air is blown through the evaporator of the 
refrigeration cycle, where it is cooled and dried. The evaporator 
is one of the four components of the refrigeration cycle, the 
others being the compressor, the condenser and the thermal 
expansion valve [21]. In the evaporator, the refrigerant liquid 
absorbs heat from the air, producing a temperature drop and 
condensation. The temperature and specific humidity after the 
evaporator are given by equations (8) and (9),where 𝜂  is the 
evaporator efficiency, 𝑇𝑠𝑢𝑝  and 𝑥𝑠𝑢𝑝  are the evaporator 

superficial temperature and specific humidity. 𝑇𝑠𝑢𝑝  is 

approximately equal to the refrigerant temperature, which is 
controlled by the compressor speed. 

𝑇2 =  𝑇1 − 𝜂. (𝑇1 − 𝑇𝑠𝑢𝑝)   (8) 

𝑥2 =  𝑥1 − 𝜂. (𝑥1 − 𝑥𝑠𝑢𝑝) (9) 

The cooling power absorbed by the refrigerant liquid is given by 
(10), where 𝐶𝑝 is the air specific heat capacity and 𝐿 is the water 

latent heat of condensation. 

𝑃𝑐𝑜𝑜𝑙 = 𝑚̇ [𝐶𝑝(𝑇2 − 𝑇1) + 𝐿(𝑥2 − 𝑥1)] (10) 

The refrigerant cycle needs energy in order to compress and 
pump the refrigerant liquid. The electric consumptions of the 
different components depend on the external temperature 
according to tabulated data provided by PSA Group. The total 
electric consumption of the HVAC system can be formulated in 
the following synthetic form 𝑃𝐻𝑉𝐴𝐶(𝑃𝑐𝑜𝑜𝑙 , 𝑇𝑒𝑥𝑡). 

 Despite its simplicity, the previous model is accurate enough 
for our purpose: it allows to calculate the influence of the system 
control variable 𝑇𝑠𝑢𝑝 on the cabin temperature and humidity, and 

the corresponding HVAC electrical power consumption.  

B. Powertrain model 

The second sub-system is the powertrain. The electrical 
machine provides a torque 𝑇𝐸𝑀 , which is transmitted to the 
wheels and converted there into a tractive force 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. The 
resulting vehicle speed evolution is calculated according to (11), 
where 𝑚  is the vehicle equivalent mass, accounting for all 
moving parts, and 𝐹𝑟𝑜𝑎𝑑 denotes the sum of the external forces 
the vehicle is subjected to: aerodynamic drag, gravitational 
force, and rolling 𝑣  [22,23].  𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  is negative during 
regenerative braking. 

𝑚.
𝑑𝑣

𝑑𝑡
(𝑡) = 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡) + 𝐹𝑟𝑜𝑎𝑑(𝑡) 

(11) 

The transmission chain between the electrical machine and the 
wheels is modelled by a fixed speed ratio and a variable 
efficiency given by tabulated data as a function of torque and 
speed.  The electrical machine and its control electronics are 
modelled by a measured losses map. Hence, the electrical 
machine power consumption 𝑃𝐸𝑀 is given by (12), where  𝜔𝐸𝑀 
denotes the machine rotation speed, which is proportional to the 
vehicle speed. 

𝑃𝐸𝑀 = 𝑇𝐸𝑀𝜔𝐸𝑀 − 𝑙𝑜𝑠𝑠𝑒𝑠(𝑇𝐸𝑀 , 𝜔𝐸𝑀) (12) 

In the present study, we consider that the driver is modeled as a 
PI regulator which controls the electrical machine torque in 
order to follow the speed profile of a given driving cycle. The 
actual speed profile 𝑣(𝑡)  and the resulting electrical 
consumption 𝑃𝐸𝑀(𝑡) are calculated according to the equations 
afore mentioned.  

C. Battery model 

The battery provides energy to the traction machine, the 
HVAC system and various auxiliaries, according to (13). 

𝑃𝑏𝑎𝑡 = 𝑃𝐸𝑀 + 𝑃𝐻𝑉𝐴𝐶 + 𝑃𝑎𝑢𝑥  (13) 

The battery is modeled by its open circuit voltage 𝑉𝑏𝑎𝑡  and 
internal resistance 𝑅𝑏𝑎𝑡. Formula (14) and (15) give the current 
as a function of the power and the resulting battery state of 
energy 𝑆𝑂𝐸 variation. 𝐸0 is the nominal battery energy. 

𝑖𝑏𝑎𝑡(𝑡) =
𝑉𝑏𝑎𝑡 − √𝑉𝑏𝑎𝑡

2 − 4𝑅𝑏𝑎𝑡𝑃𝑏𝑎𝑡(𝑡)

2𝑅𝑏𝑎𝑡

 
(14) 

𝑑𝑆𝑂𝐸

𝑑𝑡
(𝑡) =

𝑉𝑏𝑎𝑡

𝐸0

𝑖𝑏𝑎𝑡(𝑡) 
(15) 

IV. OPTIMAL ENERGY MANAGEMENT 

The objective of the HVAC management system is to control 
the cabin temperature and relative humidity, so that the 
passengers feel comfortable at the lowest energy cost. On the 
other hand, the driver first priority is to reach his destination, and 
the battery state of charge may be too low to insure ideal comfort 
during the whole trip. Hence, it may be necessary to limit the 
power provided to air conditioning, in order to extend the vehicle 
driving range up to its final destination. This energy 
management problem can be described as an optimal control 
problem and we propose to use dynamic programing to solve it. 
In the rest of this section, we first introduce the comfort criteria 
and then formulate the optimal energy management problem. 

A. Thermal comfort criteria 

Thermal comfort is a complex notion that involves the 
surrounding temperature and the relative humidity as main 
factors. At a given pressure, the relative humidity, denoted by 
HR, depends on the temperature and the specific humidity 𝑥 
calculated by our model. As a first approximation, thermal 
comfort is defined by temperature and relative humidity ranges 
perceived as being comfortable by the vehicle passengers, as 
expressed by (16) and (17).  

𝑇𝑟𝑒𝑓 − 0.5∆T ≤ T ≤ 𝑇𝑟𝑒𝑓 + 0.5∆T (16) 

𝐻𝑅𝑟𝑒𝑓 − 0.5∆HR ≤ HR ≤ 𝐻𝑅𝑟𝑒𝑓 + 0.5∆HR (17) 

Typical values used by PSA Group are : 𝑇𝑟𝑒𝑓 = 25℃ with ∆T =
1℃  and 𝐻𝑅𝑟𝑒𝑓 = 45%  with ∆HR = 30% . As a first 

approximation, we propose a quadratic discomfort criterion 
defined by (18). 

𝐿(𝑇, 𝐻𝑅) = 0.5 (
T−𝑇𝑟𝑒𝑓

∆T
)

2

+ 0.5 (
HR−𝐻𝑅𝑟𝑒𝑓

∆𝐻𝑅𝑟𝑒𝑓
)

2

  
(18) 



B. Problem formulation 

The role of the proposed energy management is to determine 
the best HVAC system control, in order to reach the lowest 
thermal discomfort for a given trip. The trip is modeled by a 
driving cycle, known in advance. The powertrain model is used 
to calculate the instantaneous power that will be required by the 
electric machine 𝑃𝐸𝑀(𝑡), and then the total energy required for 
traction over the considered trip. The difference between the 
energy embedded in the battery at the beginning of the trip and 
the  energy needed for traction gives the energy available for air 
conditioning. 

The control and the state variable are defined by 𝑢 = [𝑇𝑠𝑢𝑝]′ 
and 𝑥 = [𝑇𝑐𝑎𝑏  𝐻𝑅𝑐𝑎𝑏  𝑆𝑂𝐸]′ respectively. The outside weather, 
assumed to be known, is included in the disturbance variable 
defined by 𝑤 = [𝑇𝑒𝑥𝑡  𝑅𝐻𝑒𝑥𝑡  𝑃𝑠𝑜𝑙   𝑃𝐸𝑀]′. With these notations, 
the system’s dynamic equation described in sections III.A and 
III.C can be rewritten according to (19). 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))  (19) 

An important operational constraint is the battery power 
limitation, expressed as an interval constraint (20). When 𝑃𝐸𝑀 
reaches the battery limit, there is no power left for air 
conditioning. Other operational constraints are active, but they 
are not all detailed here. 

|𝑃𝑏𝑎𝑡(𝑡)| ≤ 𝑃𝑏𝑎𝑡 𝑚𝑎𝑥  (20) 

The optimization problem consists in determining the command 
that minimizes the global discomfort (21) on the considered trip. 

𝐽(𝑢) = ∫ 𝐿(𝑇𝑐𝑎𝑏(𝑡), 𝐻𝑅𝑐𝑎𝑏(𝑡)) 𝑑𝑡
𝑡𝑓𝑖𝑛

0
  (21) 

The finite energy constraint is an inequality end constraint (22). 

SOE(𝑡𝑓𝑖𝑛) ≥ 0  (22) 

This optimization problem can be numerically solved using a 
dynamic programming algorithm. Dynamic programming is a 
sequential optimization method, which provides an optimal set 
of commands over the considered time interval. It consists in a 
recursive optimization procedure, which builds the solution of 
the overall N-stage problem by first solving a one-stage problem 
and sequentially including one stage at a time until the overall 
optimum is found. Usually, computations are done backward, 
starting from the final state. In our case, the final state is not 
known, which enforce us to do a forward dynamic 
programming. 

V. SIMULATION RESULTS 

This section focuses on the evaluation of the proposed 
approach and shows its effectiveness in minimizing and 
managing thermal discomfort on a given trip, for given 
meteorogical conditions. Two scenarios are considered. The first 
one highlights the tradeoff that can be achieved between energy 
consumption and thermal comfort. The second one illustrates 
how the speed profile can be adjusted to improve thermal 
comfort. 

A. Simulation data and technical characteristic of the vehicle 

For both scenarios, we considered an electric vehicle initially 

parked outside and used to make a 115 km trip lasting about one 

hour. The driving cycle is the succession of four highway 

Artemis driving cycles. The weather conditions are very hot, 

with an outside temperature 𝑇𝑒𝑥𝑡  between 33°C and 34°C, as 

shown in Fig. 3, and a constant 50% relative humidity rate. The 

solar radiation is correlated with the outside temperature, equal 

to 900 𝑊/𝑚2  when  𝑇𝑒𝑥𝑡 =  34 °𝐶  and 1000 𝑊/𝑚2  for 

𝑇𝑒𝑥𝑡 = 35 °𝐶. The initial temperature and relative humidity in 

the cabin are respectively 37 ° C and 50%.  

 The vehicle corresponds to a small size car, with a nominal 

power around 60 kW and a 40 kWh Li-ion battery.  Fig. 2 shows 

that at high speed, due to power limitations, the actual vehicle 

speed (red curve) does not exactly follow the Artemis cycle. At 

these times, the HVAC system must be turned off.  

 

   
Fig. 2 Highway Artemis driving cycle 

B. Scenario 1: Thermal discomfort vs energy cost trade-off 

 In this scenario, we consider different initial battery state of 

charge. The battery energy is sufficient to ensure the traction on 

the entire trip (23 kWh=59%), but there is more or less energy 

available for air conditioning. The DP algorithm computes the 

control that optimizes the thermal comfort according to the 

energy available for air conditioning. 

 

Fig. 3 Pareto frontier: thermal discomfort versus initial battery state 

of energy (SOE).  The temperature and the humidity profiles 

corresponding to the colored dots are plotted in Fig. 4 

 Fig. 3 shows the resulting thermal discomfort as a function of 

the initial battery state of energy. This curve corresponds to the 

Pareto frontier, with respect to the thermal comfort and energy 

consumption criteria. For an initial SOE below 70.6%, there is 

not enough energy to keep the HVAC system on until the end of 

the trip. For an initial SOE between 71.1% and 71.63%, the 
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thermal discomfort decreases, as there is more energy available. 

For example, the discomfort is reduced from 4 to 2.2 at an 

additional energy cost of 200 Wh (0.5% of the battery capacity).  

 

 

Fig. 4 Cabin temperature and relative humidity trajectories 

computed  by DP, for different initial battery SOE. 

Fig. 4 shows the evolution of the temperature and the relative 
humidity in the passenger compartment during the trip, for 
different initial state of energy (colored marks of Fig. 3). As 
already underlined, each trajectory corresponds to the best 
reachable comfort for the considered energy. The most 
uncomfortable and energy-consuming phase takes place at the 
beginning of the trip, when the hot cabin needs to be cooled 
down. This phase cannot be reduced below a certain time due to 
the thermal inertia of the system and the maximum power of the 
air conditioner. The temperature is afterwards maintained at best 
around the temperature set point. We note that the temperature 
rises when the HVAC is turned off due to battery power 
limitations, and that the dynamic programming algorithm 
anticipates this temporary lack of power by lowering the cabin 
temperature in order to maintain at best the temperature in the 
comfort zone.  

C. Scenario 2: Travel time vs thermal comfort trade-off 

In the second scenario, the driving cycle is modified, so that 
the driver travels the same distance at a lower speed. Less energy 
is required for traction, and more is available for air 
conditioning. 

A scaling factor 𝑘 < 1 is applied to the speed as follows: 

𝑣𝑛𝑒𝑤,𝑐𝑦𝑐𝑙𝑒(𝑡) = 𝑣𝑐𝑦𝑐𝑙𝑒(𝑡). 𝑘 

Simulations have been conducted for a given initial SOE equal 
to 71.1%, which does not allow to reach optimal comfort over 
the considered trip. By decreasing the values of 𝑘, one reduces 
the power needed for traction and comfort is improved, as shown 
by Fig. 5. The cabin temperature and relative humidity are closer 
to ideal values all over the journey. If the driver travels at a lower 
speed, accepting to increase the trip duration, he can improve the 
thermal comfort because there is more energy available for air 
conditioning. By driving at lower speed, he also avoids reaching 
the battery power limit, and hence undesired HVAC switching 
off. This can be seen in the reduced amplitude of temperature 
rises throughout the cases. 

 

 

Fig. 5 Cabin temperature and relative humidity trajectories 

computed  by DP, for different values of the parameter k 

Table I summarizes the results: the traction, the AC and the 
surplus energies, together with the thermal discomfort as a 
function of the time travel increase. At first, the whole battery 
energy is needed to improve the comfort, but when slowing 
down, optimal comfort is reached without using the whole 
battery energy. Fig. 6 gives a graphical representation of these 
results.   

TABLE I.  ENERGIES (KW.H) AND THERMAL DISCOMFORT 

∆𝑡 (%) 
Traction  

energy 

(kWh) 

AC 

energy 

(kWh) 

Surplus 

energy 

(kWh) 

Discomfort 

(a.u) 

0 

 
 

23.01 2.69 0 4.06 

0.60 22.84 2.85 0 2.26 

0.81 22.79 2.9 0 2.09 

1.01 22.74 2.94 0.02 2.03 

2.04 22.45 2.99 0.26 1.98 

5.26 
 

21.56 3.13 1.01 1.85 
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Fig. 6 Energy and discomfort versus travel time increase 

VI. CONCLUSION AND FUTUR WORK 

This paper presented an optimal control of comfort in EV cabin 
by using a dynamic programming approach. Simulations have 
been conducted in two different scenarios and results show that 
the cabin comfort can be improved if a small additional amount 
of energy is allocated for air conditioning, in driving contexts 
with hot weather.  

The results show also the usefulness of using PD for thermal 
comfort management. Despite that the thermal comfort criterion 
used is too simple to be qualitatively interpreted our ongoing 
work will focus on evaluating thermal comfort by indexes, 
which account for thermo-physiologic phenomena in human 
body. 
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