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I. Abstract 
The Boltzmann transport equation is one of the most relevant framework to study the heat transport at the 

nanoscale, beyond the diffusive regime and up to the micrometer-scale. In the general case of three-dimensional 

devices, the particle Monte Carlo approach of phonon transport is particularly powerful and convenient, and 

requires reasonable computational resources. 

In this work, we propose an original and versatile particle Monte Carlo approach parametrized by using ab-initio 

data. Both the phonon dispersion and the phonon-phonon scattering rates have been computed by DFT calculation 

in the entire 3D Brillouin zone. To treat the phonon transport at rough interfaces, a combination of specular and 

diffuse reflections has been implemented in phase space.  

Thermal transport has been investigated in nanowires and thin films made of cubic and hexagonal Silicon, 

including edge roughness, in terms of effective thermal conductivity, phonon band contributions and heat flux 

orientation. It is shown that the effective thermal conductivity in quasi-ballistic regime obtained from our Monte 

Carlo simulation cannot be accurately fitted by simple semi-analytical Matthiessen-like models and that spectral 

approaches are mandatory to get good results. Our Full Band approach shows that some phonon branches 

exhibiting a negative group velocity in some parts of the Brillouin zone may contribute negatively to the total 

thermal flux. Besides, the thermal flux clearly appears to be oriented along directions of high density of states. The 

resulting anisotropy of the heat flux is discussed together with the influence of rough interfaces.  

II. Introduction 
The optimization of the thermoelectric conversion is an active subject of research. The main applications are 

related to energy harvesting for power supply autonomous systems as well as heat management in CPU cooling. 

Yet, common and efficient thermoelectric materials such as Bismuth Telluride, Lead Telluride, etc., often rely on 

unfortunately rare and toxic compounds. Their replacement by Silicon and Germanium which are more abundant 

and widely used in microelectronics would be appealing if their naturally poor thermoelectric properties could be 

significantly improved, especially close to room temperature.  

The thermoelectric efficiency of a material is characterized by a unitless thermoelectric figure of merit 𝑍𝑇 =

𝑆2𝜎𝑇/𝜅 that depends on the electrical conductivity 𝜎, the Seebeck coefficient S and the thermal conductivity 𝜅. 

To improve the conversion efficiency, 𝑍𝑇 has to be increased. Consequently, 𝜅 must be reduced while 𝜎 must be 

preserved as far as possible. As these two parameters are strongly inter-dependent in common bulk materials, ZT 

optimization remained very limited for decades[1]. 

However, nanotechnologies provide new routes to optimize the thermoelectric conversion[2] For instance, 

nanostructures with a characteristic width 𝑊 both larger than the mean free path of electrons 𝑙𝑚𝑓𝑝
𝑒  and smaller 

than the mean free path of phonons  𝑙𝑚𝑓𝑝
𝑝ℎ

 (𝑙𝑚𝑓𝑝
𝑒 < 𝑊 <  𝑙𝑚𝑓𝑝

𝑝ℎ
) can be used to specifically control and limit the 

effective phonon mean free path. This way, since heat transfer in non-degenerate semiconductors is mainly due to 

phonons, higher ratios 𝜎/𝜅 can be achieved and finally ZT can be significantly higher in such nanomaterials than 

in their bulk counterpart. For instance, experimental measurements in Silicon nanowires of appropriate 

diameters[3] i.e. on the order of 100 nm, have demonstrated a large reduction of the effective thermal 



conductivity[4–6], down to 2 orders of magnitude lower than bulk conductivity. Due to limited electrical 

conductivity reduction, 𝑍𝑇 values higher than 1 were demonstrated[7].  

To estimate numerically the thermal properties, ab-initio DFT (Density Functional Theory) simulations have been 

used for studying properties of bulk materials[8] or nanostructures of some nanometers size[9,10]. However, DFT 

simulation of nanostructures larger than 𝑙𝑚𝑓𝑝
𝑒 , i.e. a few tens of nanometers in common materials, becomes very 

expensive in terms of computational resources. Molecular Dynamics (MD) simulations have also been widely 

applied for modeling nanowires made of different crystalline structures[11] and of diameter up to 20 nm[12,13]. 

These atomistic simulations can describe the effect of rough interfaces in real space[14,15] and thus the resulting 

reflection of mechanical waves. However, MD relies on empirical inter-atomic potentials that must be properly 

adjusted and, in principle, this classical approach of transport is accurate only at high temperature, higher than the 

Debye’s temperature, that is 640 K in Si[16]. 

Complementarily, methods based on the resolution of the Boltzmann Transport Equation (BTE) for phonons are 

relevant for larger dimensions and over the full temperature range. The BTE can be solved analytically when 

simple phonon dispersions and scattering terms are considered as in pioneering works of Callaway[17] and 

Holland[18]. Mingo and co-workers[19]  have used a full-band dispersion relation and Kazan[20] a more complex 

model for rough boundaries.  

In 1D systems, the BTE can be solved by a direct approach[21], but for 3D problems, a stochastic particle Monte 

Carlo method[22] is much more efficient and it is able to include complex scattering terms[23]. This method has 

been adapted to phonon transport in the pioneering work of Ref. [24] and then has been continuously improved by 

refining the treatment of the three-phonon scattering processes [25] and boundary conditions [26], or by using a 

reduced variance method [27]. This versatile approach can solve accurately the BTE much beyond the linear 

approximation, even in complex device geometries [28] and is able to capture the transient response [29]. It has 

been used in bulk material configurations[24,27,30,31], porous nanofilms[32,33] and nanowires with regular 

shapes[25,34]. 

The reflection at external rough interfaces can be implemented considering specular reflections at boundary with 

realistic shape in real space i.e. a saw-tooth shape[35] or using a random surface[36] [37]. Other models consider 

a specific scattering term related to a diffusive reflection at the interface that tends to randomize the propagation 

direction of diffused phonons. Casimir has linked the thermal conductivity to the width of structures[38]. More 

recently, a probability of specular reflection[39,40] and a characteristic length of the diffusive reflections in the 

case of ultra-thin wires[41] were defined. In Soffer’s work[42], this probability depends on incident wave vector 

of phonons plus two empirical parameters: the surface roughness standard deviation and its tangential correlation. 

In many MC approaches, simple isotropic phonon dispersions are assumed and few works have used a Full-band 

dispersion, i.e. have considered the phonon modes in the entire 3D Brillouin Zone [43] [44]. The accuracy of semi-

empirical methods such as BTE or MD depends on the choice of their input parameters (inter-atomic potential, 

dispersion properties, phonon lifetimes, etc.). They are thus not convenient to study a new material for which such 

parameters are unknown. Recently, a methodology for solving the BTE in thin films without any adjustable 

parameter has been presented in Ref. [45] [46]. It makes use of BTE parameters, i.e. full-band dispersion and full-

band three-phonon scatterings rates, preliminarily extracted from ab-initio DFT calculation. 

This work extends the approach developed in Ref. [45] by the implementation of phonon reflection at rough 

interfaces in the full-band Monte Carlo simulation parametrized by ab-initio calculations. Thus, the originality of 

the presented approach is to include a full-band description of both dispersion and scattering rates and also a real 

space treatment of the boundary scattering mechanisms able to include the anisotropy and the quasi-ballisticity of 

the heat transfer in a large class of materials and devices. This advanced simulation method is used here to compute 

the thermal resistance in Si nanofilms and nanowires of several crystalline orientations and phases (cubic and 

hexagonal). The anisotropy of the heat transfer and the transition from ballistic to diffusive transport regimes are 

carefully investigated. Additionally, the relevance of semi-analytical models in such systems is discussed.  

In Section III, our ab-initio parametrized MC simulator, the rough interface model as well as the relevant semi-

analytical formalisms are detailed. In Section IV, the computed thermal conductivities of nanowires and thin films 

in both cross-plane and in-plane configurations are investigated. 



III. Models 

III.1 Ab-initio based material parameters 
 

To solve the transport equation for any kind of particles in a solid-state system, the prior knowledge of both the 

energy dispersion of particles and their scattering rates is required. For phonon transport, many previous works 

assumed a simple isotropic dispersion relationship[24,30,31,34,47]. However, this approximation cannot 

reproduce accurately both the heat capacity and the heat conductivity[48] using a single normalization parameter. 

In the present work, the energy dispersion, the phonon velocity as well as the phonon scattering rates in all 

directions have been considered. Indeed, all states belonging to the Brillouin Zone (BZ) have been considered in 

our “Full-Band” description.  

To determine all these “Full-Band” material parameters, a powerful ab-initio method was used, which is relevant 

to investigate accurately the phonon properties of a large range of materials. They were calculated by using DFT 

simulation as detailed in Ref. [45,49].  

The first BZ was discretized in N wave vectors, with 𝑁 = 31 × 31 × 31 = 29791 and 𝑁 = 31 × 31 × 19 =

18259 for cubic Silicon (Si3C) and hexagonal Silicon (Si2H), respectively. Si3C and Si2H have 6 and 12 phonon 

modes, respectively. In brief, DFT calculations were performed using the finite displacement method with PAW 

pseudopotentials, within the PBE approximation. This approach allows obtaining the forces on atoms, from which 

the harmonic and anharmonic force constants can be extracted. The phonon frequency and group velocity can then 

be computed from the dynamical matrix, while the lifetime due to phonon-phonon interactions is obtained as 

detailed in supplementary materials of Ref. [45,49]. The angular frequency, the group velocity and the phonon-

phonon scattering rates were calculated for each discrete state characterized by a couple of a wave vector �⃗� and a 

mode m. 

The only phonon scattering rates computed here by DFT are those related to the intrinsic phonon-phonon scattering 

mechanisms that are dominant in bulk materials. These rates 𝜆 were calculated via the finite displacement method 

detailed in supplementary materials of Ref. [45,49], for 101 temperatures ranging between 0 and 1000 K. 

Throughout the simulation, the values corresponding to intermediate temperatures were interpolated by using a 

cubic spline method. It should be mentioned that the rates 𝜆, computed for each phonon mode by DFT, correspond 

to the average relaxation times of the phonon population due over phonon-phonon scattering processes (Normal 

and Umklapp). 

The discrete nature of this description must be taken into account, in particular to define the iso-energy states used 

for instance to select the final state after any scattering event. The strict conservation of energy or frequency in 

this case must be relaxed to frequency variations smaller than a discretization step 𝛥𝜔. In our simulation 𝛥𝜔 was 

defined as 𝛥𝜔 = 𝜔𝑚𝑎𝑥/128 where ω𝑚𝑎𝑥 is the maximum phonon frequency in the material (this value of 𝛥𝜔 

leads to negligible average energy loss as shown in supplementary materials[50]). The resulting iso-energy curves 

of the first phonon mode in both cubic and hexagonal Silicon are plotted in Fig. 1. Parts (a) and (b) represent the 

BZ in face centered cubic and hexagonal lattices (for Si3C and Si2H, respectively) and their high symmetry points 

of interests (from Ref. [51]). Parts (c), (d), (e), and (f) map the angular frequency in the main cutting planes of the 

BZ. In the cutting plane ΓΧL of cubic silicon in (c), iso-energy curves are far from being circular (spherical in 3D) 

as in isotropic materials in the whole frequency range. In particular, the anisotropy between the L and U points is 

strong. In the hexagonal phase in (d), (e), and (f), an isotropic behavior is nearly achieved in all planes (𝐾𝛤𝑀, 

𝑀𝛤𝐴, and K𝛤𝐴, respectively) but only at low frequencies. In contrast, far from the  point the anisotropy becomes 

strong, in particular between the M and K points. 



 

FIG. 1. Cartography of the angular frequency  𝜔 in the BZ. Wave vectors qi,j are in [1010 2𝜋

𝑚
]. Schema of the BZ in (a) 

Si3C, (b) Si2H. Isoenergies in (c)the (110) plane of Si3C, (d),(e),(f) in planes of Si2H.  

III.2 Investigated devices 
Two different types of nanostructures, i.e. nanofilms and nanowires, were investigated. In nanofilms, the external 

interfaces, separated by a finite distance, are called the top and bottom interfaces. Both the in-plane and cross-

plane configurations were considered, depending on whether the thermal flux is parallel or perpendicular to the 

interfaces, respectively.  

As schematized in Fig. 2, to implement numerically the devices, a cubic mesh was used. A material (of arbitrary 

crystal orientation) is assigned to each cell. All cells are aligned and located in between a cold thermostat (blue 

plane) and a hot one (red plane). A face of a cell can be either transparent (when the adjacent cell is made of the 

same material), specular (no adjacent cell) or diffusive (green planes). The incident angle of a particle colliding 

with a specular face is equal to the reflected one. This reflected angle is of course different when a diffusive face 

is involved and must be selected carefully, as explained later. To mimic infinite dimensions, as needed in cross-

plane configuration for all directions except the transport one, specular reflections are implemented at both 

opposite boundaries. In this study, the heat transport is along the X-axis. The three devices are defined by the type 

of boundaries, as shown in Fig. 2, that is 

(a) CP nanofilm, i.e. orientated in the cross-plane direction, with only specular boundaries; 

(b) IP nanofilm, i.e. orientated along in-plane direction with specular (XZ planes) and diffusive (XY planes) 

opposite boundaries (colored in green in Fig. 2); 

(c) rough nanowire, with only diffusive boundaries. 

These devices are parameterized by their length 𝐿 (distance between thermostats along X axis) and their width 𝑊 

(along the 𝑍 axis). In this study, only nanowires with a square cross section are considered (i.e. with the height 

along Y direction equal to 𝑊). 

 

 

(a) 

 

(b) 

 

(c) 

(d)                     (e)                   (f) 

(a)                     (b)                  (c)          



FIG. 2. Schema of simulated nanostructures: (a) CP nanofilm in cross-plane configuration, (b) IP nanofilm in in-plane  

configuration, (c) rough nanowire. Red/blue faces for hot/cold thermostats. Transparent/green faces for specular/rough 

boundaries. 

III.3 Monte Carlo simulation 
 

The Boltzmann Transport Equation (BTE) describes the time evolution of the phonon distribution function in 

phase space 𝑓𝑗(𝑟, �⃗�, 𝑡), where 𝑗 is the phonon state, 𝑟 the position in real space, �⃗� the wave-vector and t the time. 

Its general expression is given by:  

 
𝜕𝑓𝑗

𝜕𝑡
+ �⃗�𝑗 ∙ ∇⃗⃗⃗𝑓𝑗 =

𝜕𝑓𝑗

𝜕𝑡
|

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
, (1) 

where �⃗�𝑗 is the phonon group velocity (�⃗�𝑗 =
𝜕𝜔𝑗

𝜕�⃗⃗�
, 𝜔𝑗 is the phonon angular frequency) and 

𝜕𝑓𝑗

𝜕𝑡
|

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
 is the rate 

of scattering from state 𝑗 to any another state. 

In order to solve the BTE, we use the particle Monte Carlo method for phonon transport[27]. In this stochastic 

approach, the trajectories of a large number of particles are randomly selected. These trajectories are described as 

a succession of free flights (linear trajectories in real space without any change in the reciprocal space) separated 

by instantaneous scattering events. The scattering mechanism ending a free-flight can be either a phonon-phonon 

scattering or a collision with the device boundary that modifies only the wave vector coordinates. The initial state 

of particles, the duration of each free flight, the type and the effect of each scattering event are chosen randomly 

according to all relevant scattering rates. Finally, the phonon distribution is reconstructed from summing over all 

the particles k belonging to the mode m at a given time: 

 𝑓𝑚(𝑟, �⃗�, 𝑡) = ∑ 𝛿[�⃗� − �⃗�𝑘(𝑡)] 𝛿[𝑟 − 𝑟𝑘(𝑡)]particles 𝑘  (2) 

The wave vector-dependent relaxation time approximation is used for the phonon-phonon scattering rate, as 

follows: 

 
𝜕𝑓𝑚

𝜕𝑡
|

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
= − (𝑓𝑚(𝑟, �⃗�, 𝑡) − 𝑓𝑚

𝑒𝑞(�⃗�, 𝑇𝑐)) 𝜆𝑚(�⃗�, 𝑇𝑐) (3) 

Thus, under the effect of particle scattering, the system tends “naturally” to recover its (Bose-Einstein) equilibrium 

distribution at the local temperature Tc. 

In the following sub-section, the overall Monte Carlo algorithm is presented. Then the different kinds of external 

boundaries are described. Finally, the implementation and the post-processing methods are detailed. 

III.3.1 Effective temperature 
The temperature in each device cell must be updated during the simulation, as the phonon-phonon scattering rates 

are temperature-dependent. The local effective temperature 𝑇𝑐 is related to the energy density 𝐸𝑉 through a 

relationship at equilibrium that has been preliminary tabulated according to Bose-Einstein statistics for each 

material. Then, during the simulation the energy density 𝐸𝑉,𝑐 in each cell (that it is proportional to the local particle 

density) is periodically updated and thus the local temperature is extracted through energy inversion: 𝑇𝑐 =

𝐸𝑉
−1(𝐸𝑉,𝑐). The equation for the energy and the resulting energy-density relationship are shown in Supplementary 

Materials[50]. 

III.3.2 Definition of simulated particles 
To reduce the particle number and thus the computational resources, in our model each simulated particle 

represents a packet of 𝑁𝜔 phonons with a frequency 𝜔. Considering phonon packets with a constant number of 

phonons 𝑁𝜔 = 𝑁 (and thus particles of different energies 𝐸𝑝 = 𝑁 × ℏ𝜔 according to 𝜔) would make difficult the 

treatment of elastic interactions[27]. Thus, the number of phonons in a packet 𝑁𝜔 was chosen depending on the 

frequency 𝜔 and it was tuned to guaranty the same total energy 𝐸𝑝 (= 𝑁𝜔 × ℏ𝜔) for all simulated particles 

whatever their frequency. This input parameter 𝐸𝑝 defines the energy resolution of the simulation. 

Since we are mainly interested in the deviation of phonon distributions from equilibrium state, we simulated only 

the excess particles with respect to the equilibrium distribution at a reference temperature 𝑇0 close to and usually 



below the actual temperature in the device. Every simulated particle gets a sign 𝑠 equal to +1 or -1 to represent an 

excess or a missing particle, respectively, with respect to the reference distribution. 

For instance, the density of particles in a state 𝑗 in equilibrium at temperature 𝑇 is: 

 𝑛𝑗
𝑒𝑞(𝑇) =

ℏ𝜔𝑗

𝐸𝑝
(𝑓𝐵−𝐸(𝜔𝑗 , 𝑇) − 𝑓𝐵−𝐸(𝜔𝑗 , 𝑇0))

𝑉𝑗

(2𝜋)3, (4) 

where 𝑓𝐵−𝐸   is the Bose-Einstein distribution, and 𝑉𝑗 the reciprocal volume of the state. 

This technique reduces both the simulation time and the numerical noise (see Supplementary Materials for more 

information[50]). All simulations presented in this work were based on this approach called "energy-based 

variance-reduced method" by Péraud and co-workers[27]. 

III.3.3 Particle Monte Carlo algorithm 
After initialization (see III.3.4), two nested loops are performed, i.e. one over time and the other one over particles. 

At every time step, particles are injected from the thermostats (see III.3.5). Then, the displacement of each particle 

is computed and its coordinates (𝑟, �⃗�) are updated (see III.3.6). During a time step, the events that can interrupt 

the free flight are either a collision with a cell boundary or a phonon-phonon scattering event (see III.3.7 and 

III.3.8). A flowchart diagram of this algorithm is included in Supplementary Materials[50]. 

III.3.4 Initial conditions 
In a cell of volume 𝑉𝑐, the initial number of particles 𝑁𝑚,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  in a mode 𝑚 is numerically calculated by using the 

equilibrium density 𝑛
𝑒𝑞

(𝜔𝑗 , 𝑇𝑐) defined in (4) and summing over all (m-mode) states as follows:  

 𝑁𝑚,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑉𝑐  ∑ |𝑛
𝑒𝑞

(𝜔𝑗 , 𝑇𝑐)|state 𝑗
of mode 𝑚

, (5) 

where Ep and 𝑇𝑐 are the energy of a simulated particle and the local temperature, respectively. 

For each initial particle, the angular frequency is selected according to a distribution proportional to the volume of 

each iso-energy state defined in III.1. Then, its wave-vector is randomly and uniformly selected among the iso-

energy states. The position in the cell is selected according to a uniform distribution. Finally, the sign of the particle 

(see III.3.2) is positive if the local temperature 𝑇𝑐 is higher than the reference temperature 𝑇0, otherwise the sign 

is negative. 

III.3.5 Thermostats 
Thermostats inject a constant flux of particles, according to their temperature. The number of particles injected 

during a time step 𝛿𝑡 through a surface is: 

 𝑁𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡(𝑇) = ∑ �⃗�𝑗 ∙ �⃗⃗�⊥ 𝐴 𝑑𝑡 𝑛𝑗
𝑒𝑞(𝑇)𝑠𝑡𝑎𝑡𝑒 𝑗

�⃗⃗�𝑗∙�⃗⃗�⊥>0

, (6) 

where �⃗⃗�⊥ is the unit vector normal to the thermostated face and 𝐴 is its area. 

As each particle keeps track of its own simulated time, we can initialize all of them at the beginning of the time 

step and make them behave as if they were injected continuously. 

Another possible method to simulate thermostats is to have an additional cell behind the thermostated face. Every 

face of that “blackbody” cell is specular, so that its phonon distribution is constant over time. When a particle 

collides with the face connected to the device, a duplicate particle is transmitted. We implemented both methods 

and confirmed they produce the same heat flux. The direct injection at surfaces was chosen, as it is less 

computationally intensive. 

III.3.6 Time of free flight and transport 
The free flight corresponds to the movement of a particle between two scattering events. The scattering events can 

be separated in standard (bulk material) scattering mechanisms such as phonon-phonon scattering and phonon-

boundary scattering. 

For each free flight, the time before the next standard scattering event 𝑡𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 is randomly selected according 

to the following formula: 

 𝑡𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = −
ln(𝑛𝑟𝑎𝑛𝑑𝑜𝑚)

𝜆𝑗(𝑇𝑐)
, (7) 



where 𝑛𝑟𝑎𝑛𝑑𝑜𝑚 is a uniform random number lying in the interval ]0; 1] and 𝜆𝑗(𝑇𝑐) is the total scattering rate from 

a phonon in a state 𝑗 at a local temperature 𝑇𝑐. These scattering rates 𝜆𝑗(𝑇𝑐) are assumed to be constant during a 

time step. In the general case, 𝜆𝑗(𝑇𝑐) is the sum of the scattering rates corresponding to the different scattering 

mechanisms, assumed to be independent. In this work, only the phonon-phonon scattering rates contribute to 

𝜆𝑗(𝑇𝑐). They are calculated by an ab-initio approach as previously mentioned. This method was first developed 

for electron transport[52]. 

The time before the next boundary collision is simply derived from the distance 𝑑 between the particle and the 

boundaries along its transport direction. As the phonon velocity is constant during a free flight, we have 

 𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = min (
𝑑𝑥

𝑣𝑗
𝑥 ,

𝑑𝑦

𝑣
𝑗
𝑦 ,

𝑑𝑧

𝑣𝑗
𝑧) (8) 

The free flight duration 𝑡𝑓𝑓 for the particle is thus limited by the first event that occurs, i.e. 

 𝑡𝑓𝑓 = min(𝑡𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 , 𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , 𝑡𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔), (9) 

where 𝑡𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is the remaining time before the end of the i-th time step 𝛿𝑡 for the particle. The interruption of 

a free flight by the end of a time step has no impact on the other scattering rates since they are Poissonian processes. 

 𝑡𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = (𝑡𝑖 + 𝛿𝑡) − 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘 (10) 

At the end of the free flight, the position in real space 𝑟𝑘 of the particle k with a velocity 𝑣𝑗⃗⃗⃗ ⃗ is updated according 

to:  

 𝑟𝑘(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘 + 𝑡𝑓𝑓) = 𝑟𝑘(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘) + 𝑣𝑗⃗⃗⃗ ⃗(𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘) 𝑡𝑓𝑓 (11) 

The update of the wave vector depends on the event that interrupts the free flight (phonon-phonon scattering, or 

boundary reflection). Finally, the time counter of the particle is updated. New free flights are selected for that 

particle until it has been simulated for the full timestep. 

 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡,𝑘 + 𝑡𝑓𝑓 (12) 

III.3.7 Phonon-phonon scattering 
If a phonon-phonon scattering event occurs at the end of the free flight (i.e. 𝑡𝑓𝑓 = 𝑡𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔) a new phonon state 

has to be selected. The memory of the initial state is lost[23], and the three-phonon processes are simplified into 

two-phonon processes: the scattered phonon is destroyed and the new one is randomly selected in order to recover 

an equilibrium distribution as proposed in the work of Lacroix et al.[25]. 

The probability of selecting a new state 𝑗 is proportional to the equilibrium density of particles weighted by the 

interaction rate of that state, i.e. 

 𝑃𝑗 ∝ 𝜆𝑗(𝑇𝑐) 𝑛𝑗
𝑒𝑞(𝑇𝑐) (13) 

III.3.8  Specular and diffusive boundaries 
When a particle collides with external boundaries, two kinds of reflection may occur, i.e. either a specular or a 

diffusive one.  

At smooth boundaries, the particle reflection is always specular, i.e. the wave-vector component normal to the 

surface boundary of the reflected particle (𝑞⊥0′) is the reverse of the incident one (𝑞⊥0 = −𝑞⊥0
′ ). It should be 

mentioned that the implementation of specular reflection is not easy within a full-band description when orientation 

of the boundary does not correspond to a high symmetry plane of the crystal. As such specular reflections have no 

impact on the thermal flux parallel to the interface, they are used in our simulations to emulate semi-infinite 

boundaries. 

In the case of a collision with a rough boundary, the particle has a given probability to undergo a diffusive reflection 

that randomizes the final wave vector instead of specular reflection. In this work, the following expression of 

probability of specular reflections has been used[42] : 

 𝑝𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟(|𝑞0⃗⃗⃗⃗⃗|, cos(𝜃0)) = exp[−(2 cos(𝜃0)  Δ |𝑞0⃗⃗⃗⃗⃗| )2] (14) 



where �⃗�0 is the incident wave-vector, Δ is an empirical surface roughness parameter and 𝜃0 is the incident angle 

defined as:   

 𝑐𝑜𝑠(𝜃0) =
𝑣⊥

|𝑣𝑗⃗⃗⃗⃗⃗|
 (15) 

where 𝑣⊥ is the component perpendicular to the boundary interface of the velocity 𝑣𝑗⃗⃗⃗ ⃗ of the incident phonon in 

state j. This definition is specific to the full-band dispersion in which the velocity and wave-vector of a given 

phonon state are not necessarily collinear.  

As a diffusive reflection conserves the energy, the final state 𝑗′ is selected among the states belonging to the same 

iso-energy surface and with a good orientation of the final velocity (i.e. 𝑣⊥. 𝑣⊥’<0). The probability of each 

reflected state is weighted by two factors: the complementary probability of a specular reflection for a reflected 

state 𝑗′ with an angle 𝜃𝑟, and the related normal component of group velocity as follows: 

 𝑝𝑗,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒(|�⃗�𝑗′|,  |�⃗�𝑗′|, cos(𝜃𝑟)) ∝ ( 1 − 𝑝𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟(|�⃗�𝑗′|, cos(𝜃𝑟))) |�⃗�𝑗′| cos(𝜃𝑟) (16) 

This angular distribution of the final state allows conserving the angular distribution of the heat flux at equilibrium 

temperature, which leads to a net flux along the normal direction equal to zero at the steady state (as in the 

Lambert’s law) across simulated adiabatic interfaces. This prevents an unphysical phonon accumulation from 

occurring near the rough boundary.  

III.3.9 Post-processing 
During the simulation, at each time step and in each cell, the local temperature 𝑇𝑐 is calculated as described in 

III.3.1 as well as the local thermal heat flux density 𝐽𝑐  [W m−2] by summing the contribution of all particles. 

The thermal conductivity of the simulated device is then calculated from the average heat flux density 𝐽𝐶  along the 

transport direction �⃗⃗� by  

 𝜅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐽𝑐∙�⃗⃗�

Δ𝑇
𝐿 (17) 

with the temperature difference Δ𝑇 and length L between the thermostats. The confidence interval at 95% was 

calculated for all simulations and was found smaller than 1 W m−1 K−1 except in long devices (𝐿 = 100µ𝑚) for 

which the precision was reduced to achieve reasonable simulation times.  

III.3.10 Simulation parameters 
We used several criteria to select the simulation parameters. First, we estimate the thermal relaxation time of the 

device from the appropriate diffusive thermal conductivity 𝜅 (see III.4), the volumetric heat capacity 
𝜕𝐸𝑉

𝜕𝑇
, and the 

distance 𝐿 between thermostats: 

 𝜏 =
𝜕𝐸𝑉

𝜕𝑇

𝐿2

𝜅
 (18) 

Then, the time step duration 𝛿𝑡 is set to 𝜏/20. The temperature and heat flux are averaged every 5 𝜏.  

Finally, to choose a relevant particle energy 𝐸𝑝, the temperature fluctuation due to one particle displacement in a 

volume Vc is chosen to remain below 𝛿𝑇 (typically equal to 0.01K) leading to: 

 𝐸𝑃 = 𝛿𝑇
𝜕𝐸𝑉

𝜕𝑇
𝑉𝑐  (19) 

These criteria result in an average number of 20 000 coexisting particles during the simulations. For a typical 

device of size 1 µm × 100 nm × 100 nm in Si3C, with a 4 K-temperature difference between thermostats and a 

reference temperature 𝑇0 = 295 𝐾, our selected parameters were 𝐸𝑝 ≈ 4 10−18 J and 𝛿𝑡 ≈ 1 ns, and the 

simulation lasted 20 minutes on a single thread. Besides, for devices of length ranging between 1 nm and 10 µm, 

the timestep 𝛿𝑡 was scaled between about 0.1 ps and 100 ns, which affected the computation times accordingly. 

III.4 Semi-analytic models for thermal conductivity 
In parallel with the numerical MC approach, the following ballistic and diffusive semi-analytic formula were used 

to estimate the conductivity for infinitely short and long CP nanofilms: 

 𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 =
𝐿

𝑉𝑠
∑ ℏ𝜔𝑗  |�⃗�𝑗  ∙ �⃗⃗�|state 𝑗  

𝜕𝑓𝐵𝐸

𝜕𝑇
(𝜔𝑗 , 𝑇𝑒𝑞), (20) 



 𝜅𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 =
1

𝑉𝑠
∑ ℏ𝜔𝑗state 𝑗  |�⃗�𝑗  ∙ �⃗⃗�|

2 1

𝜆𝑗
 
𝜕𝑓𝐵𝐸

𝜕𝑇
(𝜔𝑗 , 𝑇𝑒𝑞), (21) 

where 𝜆𝑗 is the phonon-phonon scattering rate for state 𝑗. Formula equivalent to Eq. (20) and Eq. (21) have been 

discussed for instance in Ref. [19]. Eq. (20) comes from ballistic Landauer’s formalism, i.e. without diffusive 

interaction and with a phonon transmission equal to 1. The resulting thermal conductivity is linearly dependent on 

the distance 𝐿 between thermostats. Eq. (21) is a solution of the linearized BTE within a diffusive transport 

approximation leading to a length-independent conductivity.  

A first attempt to model the transition between both limits is based on a Matthiessen’s rule that sums ballistic and 

phonon-phonon thermal resistances as follows: 

 
1

𝜅𝑀𝑎𝑡𝑡ℎ𝑖𝑒𝑠𝑠𝑒𝑛
=

1

𝑘𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒
+

1

𝜅𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐
 (22) 

In a more sophisticated approach, ballistic and phonon-phonon scattering rates are once again summed but their 

spectral dependences are considered. Indeed, the average distance over which a phonon moves in the transport 

direction �⃗⃗� before colliding with a thermostat is 

 �̅� =
𝐿

2
 (23) 

Similarly, in IP nanofilm or in nanowire, the average distance over which a phonon moves in a transverse direction 

�⃗⃗�⊥ before colliding with a rough boundary is 

 �̅� = 𝑊 (
1

1−𝑝𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟
−

1

2
), (24) 

by considering the probability of specular reflection 𝑝𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟  from Eq. (14). This model is equivalent to the one 

proposed in Ref. [39]. 

For CP and IP nanofilms and for nanowires (NW), the total scattering terms for a state 𝑗 become: 

 𝜆𝑗,𝑁𝐹𝐶𝑃 = 𝜆𝑗 +
|�⃗⃗�𝑗∙�⃗⃗�|

�̅�
, (25)  

 𝜆𝑗,𝑁𝐹𝐼𝑃 = 𝜆𝑗 +
|�⃗⃗�𝑗∙�⃗⃗�|

�̅�
+

|�⃗⃗�𝑗∙�⃗⃗�⊥,1|

�̅�
, (26) 

 𝜆𝑗,𝑁𝑊 = 𝜆𝑗 +
|�⃗⃗�𝑗∙�⃗⃗�|

�̅�
+

|�⃗⃗�𝑗∙�⃗⃗�⊥,1|

�̅�
+

|�⃗⃗�𝑗∙�⃗⃗�⊥,2|

�̅�
, (27) 

Finally, the associated thermal conductivities 𝜅𝑁𝐹𝐶𝑃 , 𝜅𝑁𝐹𝐼𝑃, and 𝜅𝑁𝑊 are calculated from Eq. (21) by replacing 𝜆𝑗 

by Eq. (25), (26), and (27) respectively. 

IV. Results 
In this section, we investigate the dependence of thermal conductivity and the related heat flux on several 

parameters in both CP (cross-plane) and IP (in-plane) nanofilms and nanowires by using the code described in the 

previous section. We observe especially the transition between ballistic and diffusive transport regimes, the 

anisotropy of the thermal properties and the role of rough boundaries. All the following Monte Carlo simulations 

were performed at an average temperature of 300K. The temperature difference between the thermostats is of 4K, 

and the reference temperature is set at 𝑇0 = 295𝐾. 

IV.1 Cross-plane thermal conductivity 
The first part of this section focuses on cross-plane thermal conductivity in CP nanofilms (see Fig. 2(a)) and the 

influence of their length 𝐿. The transport direction is along the X axis. In the studied cases for cubic Silicon (Si3C), 

this real space direction corresponds to the [100] (ΓX) direction in the BZ. The thermal conductivity sometimes 

called effective thermal conductivity was computed via Eq. (17). Its evolution is plotted in Fig. 3 as a function of 

length L in Si3C nanofilms. The Monte Carlo results (cross symbols) are compared with the different semi-

analytical models presented in III.4.  

In long devices, the thermal conductivity saturates to the diffusive value derived from Eq. (21) (dashed line). The 

calculated conductivity at the diffusive limit is 𝜅 = 138 [Wm−2k−1] at 300K. This value perfectly seems to fit the 

experimental value for natural Si but one should keep in mind that our derivation is performed without considering 



any phonon-impurity scattering mechanism (with just phonon-phonon scattering, see 3.1) and the simulated 

material is an isotopically pure Si [53]. However, our results obtained without any fitting parameters 

underestimates by only 10% the experimental measurements for isotopically pure Silicon [54]. It is a good 

estimation of the thermal conductivity of natural Silicon at ambient temperature. Hence, no other scattering 

mechanism was taken into account in our study of bulk Silicon. 

The thermal conductivity gradually changes from a diffusive regime of transport occurring in long nanofilms to a 

ballistic one in ultra-short films. We should note that for device length 𝐿 shorter than 10 nm, i.e. at the atomic 

scale, the considered phonon dispersion relation is not relevant and the indicated MC results are just a guide for 

the eyes illustrating the asymptotical behavior. Indeed, the linear behavior and the slope of the ballistic model 

(dotted line in Fig. 3) of Eq. (20) tends to be recovered in ultra-short films.  

 

Between these limit cases, the Matthiessen model (Eq. (22) and point-dashed line in Fig. 3), which is commonly 

used in the literature, cannot properly capture the transition regime, i.e. the quasi-ballistic transport regime. It 

exhibits a difference up to 60% above the MC simulation results at 𝐿 = 200 nm. However, the spectral NFCP 

model (Eq. (25) and solid line) is very close to MC results, with an underestimation lower than 4%.  

The same simulations were performed on the [10-10] (called Si2Hx) and [0001] (Si2Hz) lattice orientations of the 

hexagonal phase of Si, and the results are plotted in Fig. 4 in green and red symbols, respectively. The same 

ballistic and diffusive asymptotic behaviors as in Si3C are observed. The conductivities in the hexagonal phase 

are always lower than in its cubic counterpart. There is also a significant anisotropy between the orientations of 

the hexagonal phase, as the diffusive thermal conductivity of Si2Hz is 26% lower than that of Si2Hx (𝜅𝑆𝑖2𝐻𝑥
𝑑𝑖𝑓𝑓

=

100 Wm−2K−1, 𝜅𝑆𝑖2𝐻𝑧
𝑑𝑖𝑓𝑓

= 74 Wm−2K−1). Again, the spectral NFCP model (solid lines, see Eq. (25)) quite 

accurately reproduces the MC results in the quasi-ballistic region. 

 

FIG. 3.  Cross-plane thermal conductivity κ as a function of length L for [100] Si3C nanofilms. Crosses: Monte Carlo 

simulations. Dotted, dashed, point-dashed and solid lines stand for models from Eq. (20), Eq. (21), Eq. (22) and Eq. (25), 

respectively.  



 

FIG. 4. Cross-plane thermal conductivity κ as a function of length L for CP nanofilms of [100] Si3C, Si2Hx and Si2Hz. 

Crosses: Monte Carlo simulations. Dotted lines: ballistic and diffusive models. solid lines: NFCP model. T=300K 

 

IV.2 Cross-plane heat flux distribution 
 

We checked the spectral distribution of the particle energy and the heat flux of a 1 µm-thick film in Fig. 5(a) and 

(b), respectively. The different colors correspond to the contributions of the 6 modes of Si3C. As explained in 

III.3.3, the particles of a reference equilibrium distribution at 𝑇0 (taken at 295K) are not considered. In Fig. 5(a), 

the energy distribution in the simulated device (cross symbols) is equal to the theoretical equilibrium at the local 

temperature (solid lines). Due to the phonon-phonon scattering processes, phonon energy distributions very close 

to equilibrium are observed in this 1 µm-long-device. Even with this energy distribution close to equilibrium, Fig. 

5(b) shows that the cumulated heat flux is not perfectly described by the NFCP model (solid line), especially for 

the 3rd (LA) and 4th (LO) modes. This indicates the limit of the models based on linearized BTE (cf. Eq. (25)) to 

correctly account for the negative heat flux contributions present at high frequencies that are induced by some 

states that have group velocities 𝑣𝑗⃗⃗⃗ ⃗ oriented in an opposite direction to their wave vector.  

 

FIG. 5. [100] Si3C CP Nanofilm. Crosses: Monte Carlo simulations. (a) Angular frequency ω distribution of the energy 

density for each phonon mode. Solid lines: equilibirum distributions. (b) Cumulative cross-plane heat flux over 

frequencies. Solid line: NFCP model. 

 

The contribution of each mode to the total heat flux is detailed in Table I and Table II for Si3C and Si2Hx, 

respectively. The modes are numbered by ascending energy values. In Si3C, about 96% of the heat flux is 

transported by acoustic modes in Si3C. Moreover, the 4rd (LO) mode carries around 5% of the total heat flux while 

the 5th and 6th (TO) modes have a negative net contribution, but small enough to be neglected as within the margin 

error. Their negative contribution reveals the contribution of states with a negative group velocity. In Si2H, around 

(a) (b) 



90% of the heat is carried almost equally by the first 5th modes. For modes of higher energy than the 8th mode, the 

heat carried is fully negligible.  

To estimate the anisotropy of the materials, we have analyzed in Fig. 6 the angular distribution of the heat flux. 

Figure 6(a) shows a schema defining the polar and azimuthal angles 𝜃 and 𝜙, relatively to the transport direction 

oriented along the x-axis. Then, the left ((b), (d), and (f)) and (right (c), (e), and (g)) columns are for Si3C and 

Si2Hx, respectively. The second row (b) and (c) shows the angular distribution of density of states (DOS). The 

angular DOS is related to the number of discrete states in the Brillouin zone which have a velocity’s orientation 

within in a given solid angle (i.e. around the direction given by 𝜃 and 𝜙) and with a positive component of the 

velocity along X (vx>0). Similarly, the third row (d) and (e) represents the angular distribution of the heat flux. 

This flux results from a sum over all trajectories of all particles during the simulation. These figures exhibit some 

noise especially along the directions of low DOS. The last row (f) and (g) displays the contribution of the same 

heat flux integrated over the polar angle 𝜃 and the azimuthal angle 𝜙. In an isotropic system, the angular 

distribution of the flux is expected to be a smooth cosine function. In both cubic and hexagonal phases, the angular 

distributions exhibit peaks revealing that the heat flux is mostly transported along specific orientations. In Si3C, 

while the angular DOS is highest in <110> directions, the heat flux is mainly transported along the [100] direction 

(𝜃 = 𝜋/4 and φ=0) and secondly along the <111> directions (𝜃 = 𝜋/4 and φ= 𝜋/4). In the anisotropic Si2Hx 

material, the transport is mainly focused in the hexagonal plane with 𝜃 = 0. The main flux is along the [10-10] 

direction (φ=0) and the two lateral peaks are along the <21-30> directions. 

 

Mode 
Cross-

plane  

Rough 

Nanowires 

1 

(TA) 
29.5 % 37.0 % 

2 

(TA) 
41.5 % 39.9 % 

3 

(LA) 
25.2 % 18.9 % 

4 

(LO) 
4.2 % 4.8 % 

5 

(TO) 
-0.3 % -0.4 % 

6 

(TO) 
-0.1 % -0.2 % 

 

TABLE I. Relative heat flux contribution of Si3C phonon 

mode, in CP nanofilms and nanowires. 

Mode 
Cross-

plane  

Rough 

Nanowires 

1 20.0 % 18.4 % 

2 23.6 % 20.7 % 

3 17.5 % 20.0 % 

4 17.8 % 15.7 % 

5 14.4 % 14.5 % 

6 1.2 % 1.9 % 

7 1.8 % 2.7 % 

8 2.8 % 4.6 % 

9 0.2 %  0.3 % 

10 0.2 % 0.5 % 

11 0.3 % 0.4 % 

12 0.1 % 0.2 % 

 

TABLE II. Relative heat flux contribution of Si2Hx phonon 

mode, in CP nanofilms and in nanowires.  



 

 

FIG. 6. CP Nanofilms at 𝑇 = 300𝐾, 𝐿 = 1µ𝑚 of [100] Si3C: (b,d,f). [10-10] Si2H:(c,e,g). (a) “cross-plane”heat 

direction: x-axis, polar and azimuthal angles 𝜃 and 𝜙. (b) and (c) angular DOS. (d) and (e) angular distributions of the 

“cross-plane” heat flux. (f) and (g) integration over 𝜃 and 𝜙 of (d) and (e) , respectively.  

 

IV.3 Rough boundaries 
In the previous part dedicated to the CP nanofilm, the reflection is specular at all external boundaries. This second 

part deals with the effect of rough boundaries, in the case of IP nanofilms (cf. Fig. 2(b)) and nanowires (cf. Fig. 

2(c)) in which some reflections can be diffusive.  

(e) 

(f) (g) 

(d) 

(c) (b) 

(a) 



In FIG. 7, the evolution of thermal conductivity κ in an IP nanofilm and a nanowire is compared with that in CP 

nanofilm having no rough boundary. In Fig. 7 (a), the curve κ vs. length is plotted for W = 100 nm where W is 

either the width for nanofilms or the square cross section length for nanowires. Results provided by our MC 

simulation are indicated by crosses. In short devices in which the heat transport is ballistic, the thermal 

conductivities converge to the same values whatever the number of rough interfaces. This differs from the behavior 

in long devices as κ is reduced down to 87 and 69 W/m/K in IP nanofilms and nanowires, respectively, for a length 

of 100 µm. Thus, as expected, the conductivity reduction is directly related to the number of rough boundaries 

when the heat transport is diffusive. Besides, the semi-analytical models, indicated in solid lines, for IP nanofilms 

and nanowires do not fit MC results as well as in the case of CP nanofilm. For 𝐿=10 µm, the NFCP, NFIP, and 

NW models (cf. Eq. (25), (26) and (27), respectively) converge to a value 2%, 5% and 12% lower than the MC 

output, respectively (with 𝑊 = 100 nm and Δ = 0.5 nm).  

In FIG. 7(b) the width W dependence on thermal conductivity is plotted for 1 µm-long devices. IP nanofilms and 

nanowires show a similar behavior, i.e. starting from 𝜅 at 16 and 6 𝑊𝑚−1𝐾−1 resp., increasing at about the same 

rate in the transition regime, and reaching 95% and 90% of the CP nanofilm conductivity at 𝑊 = 1µm. The effect 

of rough boundaries thus becomes insignificant for wider devices. As all devices have a length of 1 µm, an 

intermediate heat transport regime occurs (see part 4.1). For devices wider than 1µm, the impact of rough 

boundaries is weak, and the cross-plane conductivity is recovered with a difference lower than 5%. For W in the 

range of 10 nm to 200 nm the relationships between κ and W are quasi-exponential for both IP nanofilms and 

nanowires.  

 

FIG. 7. Thermal conductivity κ as a function of (a) length L and (b) width W for IP and CP nanofilms and for nanowires 

of [100] Si3C. Solid lines: semi-analytical models. Dotted lines: long-device conductivity. 

Table I and Table II detail the contribution of each mode to the heat flux in nanowires made of Si3C and Si2Hx, 

respectively. With respect to simulations with smooth boundaries (CP nanofilm), the introduction of rough 

boundaries in nanowires reduces the heat flux by 49% and 39% in Si3C and Si2Hx, respectively. However, the 

heat flux reduction is not uniform across the different modes of the material and the most impacted modes are the 

2nd and 3rd ones in Si3C, and the 1st, 2nd and 4th ones in Si2Hx. 

The angular distribution of heat flux is plotted in Fig. 8 for a CP nanofilm and a nanowire made of Si2H oriented 

along the [100] direction and with a length L = 1 µm and width W =100 nm. The lateral peaks of the heat flux 

corresponding to direction with a high density of states survive in rough films. However, they are strongly 

suppressed in the nanowire where the flux is much more focused along the transport direction [10-10] which is 

here also a main direction.  

(b) (a) 



 

FIG. 8. Angular heat flux distribution as a function of azimuthal angle 𝜙, in [10-10] Si2Hx CP nanofilm  (solid line) and 

nanowire (dashed line).  

 

The evolution of the conductivity as a function of the surface roughness empirical parameter 𝛥 is plotted in Fig. 9 

for a 1 µm long nanofilm with a width W = 100 nm. Two plateaus can be observed. For ultra-small values of 𝛥 

lower than 0.1 nm, the diffusive reflections are negligible and then the cross-plane thermal conductivity is 

recovered. For value of 𝛥 higher than 1 nm, the conductivities of nanowires and nanofilms with in-plane 

configuration reach their minimum. This minimum is related to a fully diffusive regime in which all phonon 

reflections at the external boundaries are diffusive. Besides, these Monte Carlo trends are reproduced by the 

relevant semi-analytical models i.e. NFIP (Eq. 26) and NW (Eq. 27). Nevertheless, these models tend to 

systematically underestimate the MC results. 

 

 

FIG. 9. Thermal conductivity κ as a function of the surface roughness parameter 𝛥 for CP nanofilms, IP nanofilms  and 

nanowires of [100] Si3C. Crosses: MC resutls. Solid lines: semi-analytical models. 

 

In order to mimic very rough external boundaries, a model called “fully diffusive” has been implemented, in which 

the probability of having a specular reflection 𝑝𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟  is always zero (this is equivalent to Soffer ‘s model with 

𝛥 > 1 nm, see Fig. 9). To benchmark the Soffer’s and fully diffusive boundary models, the two resulting 

conductivities in nanowires are plotted in Fig. 10 as a function of the length L. A significant discrepancy between 

the two models can be observed only for 𝐿  higher than 500 nm. This indicates that phonons have an average mean 

free path above this length in rough Si3C nanowires. 



 

FIG. 10. Thermal conductivity κ as a function of device length L for [100] Si3C nanowires by using Soffer’s and fully 

diffusive boundary models. Crosses: MC resutls. Solid lines: semi-analytical models. 

 

Several experimental measurements of thermal conductivity in IP nanofilms and nanowires have been reported in 

the literature. We compared works from Ju[55], Liu[56] and Li[4] with results from our Monte Carlo simulation 

code in Fig. 11. In all these measurements, the device length 𝐿 is about 1 µm. In the case of IP nanofilms, the 

simulated thermal conductivities fit the experimental data of Liu[56] and slightly underestimate the conductivity 

from Ju[55]. For nanowires, our results are close to Li’s ones and the thermal conductivity relationship with the 

width are relatively well reproduced. However, even our fully diffusive model overestimates the experimental 

value.  

 

(a)

 

(b)

 

FIG. 11. Thermal conductivity κ as a function of the width W in Si3C devices. Our MC results (crosses with solid lines) vs. 

experimental measurements. 𝑇 = 300𝐾, 𝐿 = 1µ𝑚, 𝛥 = 0.5𝑛𝑚. (a) IP Nanofilms. Exp: Ju[55], Liu[56] (b) Nanowires. 

Exp: Li[4].  

 

IV.4 Crystalline orientations 
Even if only one crystalline orientation has been investigated for each crystalline phase in the previous sections 

our full-band approach allows a priori the study of arbitrary orientations. However, for our implementation of a 

specular reflection (although it is the standard one), the existence of a final state with a wave vector having a 

negative perpendicular component of the incident phonon (𝑞⊥0 = −𝑞⊥0
′ ) is mandatory. This condition requires that 

external faces of the device are aligned with a high symmetry plane of the crystal. This limitation does not apply 

in the fully diffusive model since the final state is randomly chosen among all the available final iso-energy states.  

As this fully diffusive model has been previously shown to be relevant to study experimental nanowires (cf. Fig. 

11 (b)), thermal conductivities have been simulated in Si3C nanowires for several crystal orientations. In Fig. 12, 



the thermal conductivity as a function of device length is plotted for [100], [110] and [111] lattice orientations by 

using the fully diffusive model. While the conductivities are similar in all directions for devices smaller than a few 

µm, at higher length different values are achieved, revealing some anisotropy in the heat transport. The long device 

limits along the [111] and [110] directions are 6% and 15% lower than the limit for the [100] direction, 

respectively. Once again, even if the semi-analytical models appear quantitatively disappointing in long devices 

when the fully diffusive approximation is used, they are able to capture the good trend of the orientation effect. 

 

FIG. 12. Thermal conductivity κ as a function of device length L in Si3C nanowires for several crystalline orientations. 

Crosses: Fully diffusive MC results. Solid line: semi-analtyical models. 

 

V. Conclusion 
 

A Full-band particle Monte Carlo algorithm dedicated to the phonon transport have been presented. As the material 

parameters are extracted from ab-initio calculation, this code can be used to study a large class of materials or 

crystalline phases. The phonon reflections at rough interfaces is modeled by using a specific scattering term 

requiring only one empirical parameter.  

This code was used to study the heat transport in nanostructures such as nanofilms and nanowires for two phases 

of silicon (cubic and hexagonal). Thermal conductivity of both material is in agreement with theory and 

measurements and it is lower for hexagonal phase as compared to the cubic one. It has been shown that even if 

spectral semi-analytical models can estimate satisfactorily the cross plane thermal conductivity in quasi-ballistic 

transport in nanofilm, they are disappointing when the rough interface are dominant as in the case of nanofilms 

with in-plane configuration or in nanowires. Besides, the contribution of each phonon branch to the heat flux is 

complex and highly anisotropic. This is also depicted by polar and azimuthal descriptions of heat fluxes within 

nanofilms and nanowires. For the latter, the introduction of rough boundaries impact mostly acoustic modes 

(transverse acoustic for Si3C) and tends to focus the heat flux in the main transport direction.  

In future works, the presented versatile numerical method allowing detailed treatment of the phonon interactions 

will be used to study devices with a more complex geometry made of semi-transparent interfaces. 
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