
HAL Id: hal-01906318
https://centralesupelec.hal.science/hal-01906318

Submitted on 8 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Android Malware Analysis: from technical difficulties to
scientific challenges

Jean-François Lalande

To cite this version:
Jean-François Lalande. Android Malware Analysis: from technical difficulties to scientific challenges.
SecITC 2018 - International Conference on Innovative Security Solutions for Information Technology
and Communications, Nov 2018, Bucharest, Romania. pp.1-54, �10.1007/978-3-030-12942-2_2�. �hal-
01906318�

https://centralesupelec.hal.science/hal-01906318
https://hal.archives-ouvertes.fr


Android Malware Analysis:
from technical difficulties to scientific challenges?

Jean-François Lalande

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA
F-35065, Rennes, France

jean-francois.lalande@inria.fr

Abstract. Ten years ago, Google released the first version of its new
operating system: Android. With an open market for third party appli-
cations, attackers started to develop malicious applications. Researchers
started new works too. Inspired by previous techniques for Windows or
GNU/Linux malware, a lot of papers introduced new ways of detect-
ing, classifying, defeating Android malware. In this paper, we propose
to explore the technical difficulties of experimenting with Android mal-
ware. These difficulties are encountered by researchers, each time they
want to publish a solid experiment validating their approach. How to
choose malware samples? How to process a large amount of malware?
What happens if the experiment needs to execute dynamically a sam-
ple? The end of the paper presents the upcoming scientific challenges of
the community interested in malware analysis.

Keywords: malware analysis · mobile phones.

1 Introduction

Research about Android malware mainly addresses three types of problem: de-
ciding if an application is a malware or not (detection), classifying a malware
sample among families (classification) and explaining precisely what a sample
is doing (characterization). These three types of contribution require a dataset
of malware for performing experiments that support the proposed contribution.
Nevertheless, performing reliable experiments is not as simple as expected. In
addition with the difficulties to reproduce previous experiments, many technical
difficulties can have an impact on the results.

This paper summarizes the encountered difficulties when experimenting with
Android malware. In particular, we focus on the choice of the malware dataset,
that can have a large influence on the outperformed results. Finally, we discuss
the upcoming challenges when contributing to the field of malware analysis.

? This work has received a French government support granted to the COMIN Labs
excellence laboratory and managed by the National Research Agency in the ”Invest-
ing for the Future” program under reference ANR-10-LABX-07-01.



2 J.-F. Lalande

2 Designing malware analysis experiments

2.1 Datasets

The choice of the dataset is of primary importance to discuss with accuracy the
obtained results. As Android is quickly evolving, malware samples are quickly
outdated and some of them cannot be installed on recent versions of the operat-
ing system. Thus, fundamental papers that have a lot of citations like Copper-
Droid [13], IntelliDroid [15], TaintDroid [7], to name a few, suffer from outdated
datasets or incompatibility problems. For example CopperDroid runs on sev-
eral Android versions, which is fine, but uses three outdated datasets: Contagio
mobile1, the Genome Project [17] and samples provided by McAfee. Conta-
gio mobile is a blog which contains few samples, posted by contributors. The
Genome Project has now closed its service and the database cannot be accessed
anymore. Finally, the samples obtained from a collaboration with McAfee is of
course interesting but cannot be reproduced in other papers.

The size of the dataset makes experiments difficult to compare. For example,
a recent paper about malicious libraries [5] provides results based on 1.3 mil-
lions of applications, whereas the experiments of TriggerScope for dealing with
logic bombs evaluate the approach on 14 malware among 9,313 applications.
Experiments are difficult to compare when there is so much difference between
the processed number of applications. Additionally, most of the time, authors
have to reimplement previous contributions, such as TriggerScope that reimple-
mented Kirin [8], DroidAPIMiner [1], and FlowDroid [4], which is obviously a
lot of efforts.

New datasets recenlty appeared that try to address these problems. Andro-
Zoo [3] is a large dataset of million of applications that is helpful for a having a
large diversity of benign and malware applications. In particular, they provide
pairs of applications that show that a lot malware applications are repackaged
version of benign applications. The AMD dataset [14] is another contributions
that provides 24,650 malware samples. Some contextual information (classes,
actions,. . . ) are provided that have been computed for a part by automatic
tools and for the other part by a manual analysis. We believe that these two
contributions for building reliable and documented datasets are an important
step towards reproducible security experiments, but some questions remain, for
example the lifespan of a dataset, used for training purpose [12].

2.2 Designing an experiment

From our point of view, designing an experiment for malware analysis always
follows the same steps. After selecting a sample to be analyzed from the dataset,
authors process this sample by applying static or dynamic analysis techniques.
Depending on there goals (detection, classification, characterization), they com-
pare the obtained performances with the results obtained by other tools. Even
if this process is simple to understand, several question arise:

1 http://contagiominidump.blogspot.com

http://contagiominidump.blogspot.com


Android Malware Analysis: from technical difficulties to scientific challenges 3

Is the sample really a malware? Picking up some sample from large unlabeled
datasets or the play store gives a large variety of applications, representative
of the reality. If this effort is continuous with time, authors are sure to capture
new malware samples that appear on the play store before being removed. Then,
samples should be analyzed to decide if they are malware or not, especially when
evaluating a detection algorithm. For solving this issue, most of authors rely on
VirusTotal to decide if a sample is malicious or not. We believe that it is not a
good idea, because the analysis tools used by VirusTotal has no reason to decide
accurately [10], especially for recent samples.

Where is the payload? The answer should be provided by the dataset. Most of
papers use heuristics for answering this question, for example the approach of
Aafer et al. [1] that study the API used by each part of the code. The idea
behind this heuristic is that the malicious parts of the code use specific APIs
and can be exposed. Identifying the payload is especially important when study-
ing multiple repackaged applications where the payload is hidden in the code
of benign applications. Nevertheless, five years after Aafer et al.’s publication,
the mentioned evasion techniques, reflection, native code, encryption, dynamic
loading are widely used by malware. Even benign applications now use packers
that use these techniques to protect their code [6].

Is the static and dynamic analysis possible? Most approaches analyze statically
the sample before eventually executing it in a sandbox or a real smartphone. Few
papers mention that a static and dynamic analysis can crash. As an example,
Yang et al. [16] report in their paper that the executed sample crashes 76% of the
time. The reasons behind these crashes remain unknown. It could be the setup
of the experiment that is not reliable with the studied sample, for example a bad
version of the operating systems, missing libraries such as the Google services,
etc. For defeating the static analysis, malware can introduce some artifact for
disturbing disassembly tools such as apktool [9].

Consequently, in the last years, we proposed several tools for automatizing
the static and dynamic analysis of Android malware [11,2]. Our intention is to
perform the classical steps of an analyzer: CFG extraction from a static analysis,
payload identification using an heuristic similar to DroidAPIMiner, computation
of execution paths, including the path that can use callbacks of the framework,
and finally dynamic execution with an automatic exploration of the graphical
interface. Additionally, we provide fallback methodologies when a difficulty is
encountered. For example, if the Manifest file cannot be decoded, we provide a
generated minimalistic one for our tools being able to run. Another example is
the ability of GroddDroid to change a branching condition to force the execution
flow towards a suspicious part of the code not analyzed yet.

Nevertheless, a lot of problems still exist when processing large amount of
malware. The next section gives an overview of the remaining challenges.



4 J.-F. Lalande

3 Next upcoming challenges

As explained before, building reliable datasets remain a difficult challenge. Ad-
ditionally, in some countries, sharing malicious codes is forbidden by the law.
Some samples can also contain piggybacked code from copyrighted benign ap-
plications. These difficulties should be addressed by international consortiums
that would provide a safe infrastructure for sharing resources. Such an effort
could also help on the dataset labeling i.e. by determining the payload location,
malware’s actions, etc.

Experiments are also limited by the devices themselves. As it is hazardous to
run a malware in an emulator, with anti analysis techniques, most of authors run
their experiment on a real smartphone with an eventually modified operating
system. In such conditions, running a clean execution of a malware, including
a smartphone flashing step, requires several minutes. If several environments or
parameters have to be tested the total running time becomes prohibitive.

Finally, these ten years of research efforts are intimately linked with Google’s
roadmap. In the near future, introducing a new operating system like Fuschia can
lead to the restart of many results, at the price of few novelty. In the meantime,
the ecosystems that Google try to promote has received few attention from the
research community. For example, Android automotive, Wear OS has not being
extensively studied and malware may exist on these platforms - if they don’t
already exist.

References

1. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-Level Features for Robust
Malware Detection in Android. Security and Privacy in Communication Networks
127, 86–103 (2013). https://doi.org/10.1007/978-3-319-04283-1 6

2. Abraham, A., Andriatsimandefitra, R., Brunelat, A., Lalande, J.F., Viet Triem
Tong, V.: GroddDroid: A gorilla for triggering malicious behaviors. In: 2015
10th International Conference on Malicious and Unwanted Software, MALWARE
2015. pp. 119–127. IEEE Computer Society, Fajardo, Puerto Rico (oct 2016).
https://doi.org/10.1109/MALWARE.2015.7413692

3. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: collecting millions
of Android apps for the research community. In: 13th International Workshop on
Mining Software Repositories. pp. 468–471. ACM Press, Austin, USA (may 2016).
https://doi.org/10.1145/2901739.2903508

4. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le
Traon, Y., Octeau, D., McDaniel, P.: FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps.
In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. vol. 49, pp. 259–269. ACM Press, Edinburgh, UK (jun 2014).
https://doi.org/10.1145/2666356.2594299

5. Chen, K., Wang, X., Chen, Y., Wang, P., Lee, Y., Wang, X., Wang, A.,
Zhang, Y., Zou, W.: Following Devil’s Footprints: Cross-Platform Analy-
sis of Potentially Harmful Libraries on Android and iOS . S&P (2016).
https://doi.org/10.1109/SP.2016.29

https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1109/MALWARE.2015.7413692
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1109/SP.2016.29


Android Malware Analysis: from technical difficulties to scientific challenges 5

6. Duan, Y., Zhang, M., Bhaskar, A.V., Yin, H., Pan, X., Li, T., Wang, X., Wang,
X.: Things You May Not Know About Android (Un)Packers: A Systematic Study
based on Whole-System Emulation. In: 24th Annual Network and Distributed Sys-
tem Security Symposium. No. February (2018)

7. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: 9th USENIX Symposium on Operating Systems Design and
Implementation. pp. 393–407. USENIX Association, Vancouver, BC, Canada (oct
2010)

8. Enck, W., Ongtang, M., Mcdaniel, P.: On Lightweight Mobile Phone Application
Certification Categories and Subject Descriptors (2009)

9. Kiss, N., Lalande, J.F., Leslous, M., Viet Triem Tong, V.: Kharon dataset: Android
malware under a microscope. In: The LASER Workshop: Learning from Author-
itative Security Experiment Results. pp. 1–12. USENIX Association, San Jose,
United States (may 2016)

10. Lalande, J.F., Viêt Triem Tong, V., Leslous, M., Graux, P.: Challenges for
Reliable and Large Scale Evaluation of Android Malware Analysis. In: In-
ternational Workshop on Security and High Performance Computing Sys-
tems. pp. 1068–1070. IEEE Computer Society, Orléans, France (jul 2018).
https://doi.org/10.1109/HPCS.2018.00173

11. Leslous, M., Viet Triem Tong, V., Lalande, J.F., Genet, T.: GPFinder: Tracking
the Invisible in Android Malware. In: 12th International Conference on Malicious
and Unwanted Software. pp. 39–46. IEEE Conputer Society, Fajardo (oct 2017).
https://doi.org/10.1109/MALWARE.2017.8323955

12. Li, L., Meng, G., Klein, J., Malek, S. (eds.): 1st International Workshop on Ad-
vances in Mobile App Analysis, A-Mobile@ASE 2018, Montpellier, France, Septem-
ber 4, 2018. ACM Press (2018). https://doi.org/10.1145/3243218

13. Tam, K., Khan, S., Fattori, A., Cavallaro, L.: CopperDroid: Automatic Reconstruc-
tion of Android Malware Behaviors. In: 22nd Annual Network and Distributed
System Security Symposium. The Internet Society, San Diego, California, USA
(feb 2015)

14. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of cur-
rent android malware. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol.
10327 LNCS, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60876-1 12

15. Wong, M.Y., Lie, D.: IntelliDroid: A Targeted Input Generator for the Dynamic
Analysis of Android Malware. In: The Network and Distributed System Security
Symposium. pp. 21–24. No. February, The Internet Society, San Diego, USA (feb
2016). https://doi.org/10.14722/ndss.2016.23118

16. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: Exploiting feature evolutions and confusions in android apps. In: 33rd An-
nual Computer Security Applications Conference, Orlando, FL, USA, December
4-8, 2017. pp. 288–302 (2017). https://doi.org/10.1145/3134600.3134642

17. Zhou, Y., Jiang, X.: Dissecting Android Malware: Characterization and Evolution.
In: IEEE Symposium on Security and Privacy. pp. 95–109. No. 4, IEEE Computer
Society, San Jose, USA (may 2012). https://doi.org/10.1109/SP.2012.16

https://doi.org/10.1109/HPCS.2018.00173
https://doi.org/10.1109/MALWARE.2017.8323955
https://doi.org/10.1145/3243218
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.14722/ndss.2016.23118
https://doi.org/10.1145/3134600.3134642
https://doi.org/10.1109/SP.2012.16

	Android Malware Analysis: from technical difficulties to scientific challenges

