
Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Android Malware Analysis:
from technical difficulties
to scientific challenges

Jean-François Lalande

Keynote – SecITC 2018

Bucharest, Romania
November 8th 2018

2 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Context

Google Play Store: 3.5 million applications (2017)

Malware are uploaded to the Play Store
+ Third party markets

Research efforts:
Detection, classification
Payload extraction, unpacking, reverse
Execution, triggering

Difficulties for experimenting with Android malware samples?
What are the upcoming scientific challenges?

3 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Researchers

Usually they do:

You have an idea
You develop
You take a dataset
You evaluate

We also do this :)

We = Valérie Viet Triem Tong, Guillaume Hiet, Mourad Leslous
(PhD), Pierre Graux (PhD) and many other master students. . .

4 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Challenges

About datasets of malware
Is there any datasets?
Can we build one?

About analysis of malware
What are the difficulties?
Is it reliable and reproducible?
Are samples really malware?
How much does it cost?
Is it scalable?

Upcoming challenges

What next?

5 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

1 Introduction

2 Datasets

3 Designing an experiment

4 Malware analysis

5 Next upcoming challenges

6 Conclusion

6 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Example from the state of the art

About papers that work on Android malware. . .

CopperDroid [Tam et al. 2015]:
1365 samples
3% of payloads executed

IntelliDroid [Wong et al. 2016]:
10 samples
90% of payloads executed

GroddDroid [us ! 2015]:
100 samples
24% of payloads executed

. . .

Is it easy to get these figures (and to reproduce them)?
Are these results relevant?

7 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Why building a dataset ?

Papers with Android malware experiments:
use extracts of reference datasets:

The Genome project (stopped !) [Zhou et al. 12]
Contagio mobile dataset [Mila Parkour]
Hand crafted malicious apps (DroidBench [Artz et al. 14])
Some Security Challenges’ apps

need to be significant:
Tons of apps (e.g. 1.3 million for PhaLibs [Chen et al. 16])
Some apps (e.g. 11 for TriggerScope [Fratantonio et al. 16])

A well documented dataset does not exist !
Online services give poor information !

8 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Building a dataset

Collect malware
from online sources, or researchers
study the samples manually

Methodology:

manual reverse of 7 samples
manual triggering (not obvious)
execution and information flow capture

By Con-struct + replicant

community [CC BY-SA 3.0]

9 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

A collection of malware totally reversed

Kharon dataset: 7 malware1:

http://kharon.gforge.inria.fr/dataset

DroidKungFu, BadNews (2011, 2013)
WipeLocker (2014)
MobiDash (2015)
SaveMe, Cajino (2015)
SimpleLocker (2014)

1Approved by Inria’s Operational Legal and Ethical Risk Assessment
Committee: We warn the readers that these samples have to be used for
research purpose only. We also advise to carefully check the SHA256 hash
of the studied malware samples and to manipulate them in a sandboxed
environment. In particular, the manipulation of these malware impose to
follow safety rules of your Institutional Review Boards.

10 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Remote admin Tools

Install malicious apps:

Badnews: Obeys to a remote server + delays attack
Triggering: Patch the bytecode + Build a fake server

DroidKungFu1 (well known): Delays attack
Triggering: Modify ’start’ to 1 in sstimestamp.xml and
reboot the device

11 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Blocker / Eraser

Wipes of the SD card and block social apps:

WipeLocker: Delayed Attack
Triggering: Launch the app and reboot the device

12 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Adware

Displays adds after some days:
MobiDash: Delayed Attack
Triggering: Launch the application, reboot the device and
modify com.cardgame.durak_preferences.xml

13 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Spyware

Steals contacts, sms, IMEI, . . .
SaveMe: Verifies the Internet access
Triggering: Enable Internet access and lauch the app

Cajino: Obeys a Baidu remote server
Triggering: Simulate a server command with an Intent

14 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Ransomware

Encrypts user’s files and asks for paying:

SimpleLocker
Waits the reboot of the device
Triggering: send a BOOT_COMPLETED intent

More details about SimpleLocker...

15 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Example: SimpleLocker

The main malicious functions:

org.simplelocker.MainService.onCreate()
org.simplelocker.MainService$4.run()
org.simplelocker.TorSender.sendCheck(final Context context)
org.simplelocker.FilesEncryptor.encrypt()
org.simplelocker.AesCrypt.AesCrypt(final String s)

The encryption loop:

final AesCrypt aesCrypt = new AesCrypt("jndlasf074hr");

for (final String s : this.filesToEncrypt) {
aesCrypt.encrypt(s, String.valueOf(s) + ".enc");
new File(s).delete();

}

16 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Dataset overview

Type Name Protection against dynamic Analysis
→ Remediation

RAT Badnews
Obeys to a remote server and delays the attack

→ Modify the apk
→ Build a fake server

Ransomware SimpleLocker Waits the reboot of the device
→ send a BOOT_COMPLETED intent

RAT DroidKungFu Delayed Attack
→ Modify the value start to 1 in sstimestamp.xml

Adware MobiDash
Delayed Attack

→ Launch the infected application, reboot the device
and modify com.cardgame.durak_preferences.xml

Spyware SaveMe Verifies the Internet access
→ Enable Internet access and launch the application

Eraser+LK WipeLocker Delayed Attack
→ Press the icon launcher and reboot the device

Spyware Cajino Obeys to a remote server
→ Simulate the remote server by sending an intent

17 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

New recent datasets

AndroZoo [Allix et al. 2016]
3 million apps
With pairs of applications (repackaged ?)

The AMD dataset [Wei et al. 2017]
24,650 samples
With contextual informations (classes, actions, . . .)

We need more contextual information !
Where is the payload ?
How to trigger the payload ?
Which device do I need ?

18 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

1 Introduction

2 Datasets

3 Designing an experiment

4 Malware analysis

5 Next upcoming challenges

6 Conclusion

19 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Designing an experiment from scratch

Manual
decompilation

APK

Monitoring
actions

Execution

Results

Collect samples

Check that
they are malware

Find the
payload

Static
analysis

help
help

We have not time for these folks!
We want an automatic process. . .

20 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Difficulties

1 Is this apk a malware?

2 Where is the payload?
locating the payload 6= classifying a malware/goodware
what does the payload?

3 Is the static analysis possible?
What is the nature of the code?
Is there any countermeasure?

4 How to execute automatically the malware?
How to handle the GUI?
How to find entry points?
How to monitor the execution?

20 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Difficulties

1 Is this apk a malware?Is this apk a malware?

2 Where is the payload?
locating the payload 6= classifying a malware/goodware
what does the payload?

3 Is the static analysis possible?
What is the nature of the code?
Is there any countermeasure?

4 How to execute automatically the malware?
How to handle the GUI?
How to find entry points?
How to monitor the execution?

Is this apk a malware?

21 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Check that a sample is a malware?

Manually. . . for 10 samples ok, but for more ?

Ask VirusTotal!

∼45 antiviruses software
Use a threshold to decide (e.g. 20 antiviruses)
Free upload API (few samples / day)
Used by others in papers

Is it a good idea?

22 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

An experiment with 683 fresh samples

Threshold of x antiviruses recognizing a sample?

23 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Check that a sample is a malware?

Not solved:
using VirusTotal
for fresh new samples

Solved:
for old well-known samples
by many learning papers (detection rate ≥ 90%)
e.g. Milosevic et al.: precision of 87% with Random Forests
e.g. Zhu et al.: precision of 88% with Rotation Forests

24 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Difficulties

1 Is this apk a malware?

2 Where is the payload?Where is the payload?
locating the payload 6= classifying a malware/goodware
what does the payload?

3 Is the static analysis possible?
What is the nature of the code?
Is there any countermeasure?

4 How to execute automatically the malware?
How to handle the GUI?
How to find entry points?
How to monitor the execution?

Where is the payload?

25 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Where is the payload?

Seminal paper: “DroidAPIMiner: Mining API-Level Features for
Robust Malware Detection in Android”’ Aafer et al. (2013)
⇒ Extract relevant features from API analysis.
Enables to:

gives more meaning to the payload
classifies apps with more accuracy

Results from Aafer et al. (2013):
detection accuracy permission based / api based

Extracted from DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android, Aafer et al.

26 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Giving meaning to the payload

Graphical representation of malware features. . .

malware

0 10 20 30 40 50 60 70 80 90 100

sms

telephony

binary

dynamic

crypto

network

. . . with the limit that malware can be piggybacked apps!
(Li li et al. 2017)

27 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Difficulties

1 Is this apk a malware?

2 Where is the payload?
locating the payload 6= classifying a malware/goodware
what does the payload?

3 Is the static analysis possible?Is the static analysis possible?
What is the nature of the code?
Is there any countermeasure?

4 How to execute automatically the malware?How to execute automatically the malware?
How to handle the GUI?
How to find entry points?
How to monitor the execution?

Is the static analysis possible?

How to execute automatically the malware?

28 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Analyzing malware

Main analysis methods are:

static analysis:
⇒ try to recognize known
characteristics of malware in the
code/resources of studied applications

dynamic analysis:
⇒ try to execute the malware

29 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

29 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

29 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

29 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

29 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

30 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Demo

31 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

GroddDroid output

From logs:

CFG: static Control Flow Graph
payload location
payload coverage (executed)
screens

and with Blare (www.blare-ids.org):

IFG: Information Flow Graph (at OS level)
Spawned process
Corruption attempts of the system
Modifications of user files
Internet connections

www.blare-ids.org

32 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

GroddDroid output example: simplelocker

33 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Analyzing malware

Main analysis methods are:

static analysis:
⇒ try to recognize known
characteristics of malware in the
code/resources of studied applications

dynamic analysis:
⇒ try to execute the malware

33 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Analyzing malware

Main analysis methods are:

static analysis:
⇒ try to recognize known
characteristics of malware in the
code/resources of studied applications

dynamic analysis:
⇒ try to execute the malware

Countermeasures: reflec-
tion, obfuscation, dynamic
loading, encryption, native

Countermeasures:
logic bomb, time

bomb, remote server

34 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

34 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Our analysis framework: GroddDroid2

APK

Static
Analysis

CFG

Payload Location

API usage, etc.

Control Flow Tracer

Targeting
One Payload

Real smartphone

GroddDroid
Runner

Reference
Execution

Log
Collector

controls

New
APK

Malicious Code
Trigering Coverage

Code
Coverage

Execution with
Branch Forcing

controls

GroddDroid Forces
Control Flow

New APK

2Abraham et al. 2015, Leslous et al. 2017

35 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Solving attacker’s countermeasures

Implemented / Possible solutions against attacker’s
countermeasures:

Problem Solution
malformed files ignore it if possible

reflection execute it
dynamic loading execute it
logic/time bomb force conditions

native code watch it from the kernel
packing ???

(dead) remote server ???

36 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Malware analysis

We have developed software for:

Static, dynamic analysis
Smartphone flashing with custom kernel
More info: http://kharon.gforge.inria.fr

Dynamic analysis requires a lot of efforts to be automatized.

Is it working all the time for all malware?
Is it efficient?

http://kharon.gforge.inria.fr

37 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Reliability

Some malware crash (and people don’t care. . .)

Crash ratio (at launch time):
AMD dataset [Yang et al. 2017]: 5%
Our native dataset: 20%

We need to know the reasons behind the crash

38 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Performances

Time evaluation (average):

For one app and one payload:

Flashing device: 60 s
Static analysis: 7 s
Dynamic analysis (execution): 4 m
Total: 5 m

From the AMD dataset: 135 samples
100 payloads per app
All Android OS: 8 versions
Total: 1 year of experiments (with 1 device)

38 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Performances

Time evaluation (average):

For one app and one payload:

Flashing device: 60 s
Static analysis: 7 s
Dynamic analysis (execution): 4 m
Total: 5 m

From the AMD dataset: 135 samples
100 payloads per app
All Android OS: 8 versions
Total: 1 year of experiments (with 1 device)

39 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Scalability

We need a real smartphone.

At this time we use:

A server running our software
A pool of 1 to 5 smartphones (USB limitations ?)

40 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

1 Introduction

2 Datasets

3 Designing an experiment

4 Malware analysis

5 Next upcoming challenges

6 Conclusion

41 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Datasets

We need better datasets

Up-to-date with fresh and old malware
Labelled samples

Payload location
Formal description of the payload
already some initiatives: AndroZoo [Allix et al.]

42 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Scalability

We need a more scalable running platform

Real devices have limited ressources
Emulators are easy to detect

It remains an open problem. . .

43 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Countermeasures

Attackers now include countermeasures

Logic bombs => done :)
Native code => working on it!
Packers => working on it!
Analysis detection code
Variations of malware

e.g. Yang et al. 2017 proposed a semantic analysis for building
variations of malware

44 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Android’s Future

Evolution of the platform:

Apps can be developed in Kotlin
Fuschia can become the new underlying OS

Android is everywhere:

Wear 2+
Android Automotive
Android Things

Will malware exist?

45 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

Conclusion

Designing experiments on Android malware
is a difficult challenge!

Upcoming challenges are great!

http://kharon.gforge.inria.fr
http://kharon.gforge.inria.fr/dataset

http://kharon.gforge.inria.fr
http://kharon.gforge.inria.fr/dataset

c©Inria / C. Morel

Questions ?

47 / 47

Introduction Datasets Designing an experiment Malware analysis Next upcoming challenges Conclusion

References

H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng, “DroidDet: Effective and robust detection
of android malware using static analysis along with rotation forest model,” Neurocomputing, vol. 272, pp.
638–646, 2018.

N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning aided Android malware
classification,” Comput. Electr. Eng., vol. 61, pp. 266–274, Jul. 2017.

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in
Android,” Secur. Priv. Commun. Networks, vol. 127, pp. 86–103, 2013.

L. Li et al., “Understanding Android App Piggybacking: A Systematic Study of Malicious Code Grafting,”
IEEE Trans. Inf. Forensics Secur., vol. 12, no. 6, pp. 1269–1284, Jun. 2017.

W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware Detection in Adversarial Settings: Exploiting Feature
Evolutions and Confusions in Android Apps,” 2017, pp. 288–302.

A. Abraham, R. Andriatsimandefitra, A. Brunelat, J. F. Lalande, and V. Viet Triem Tong, “GroddDroid: A
gorilla for triggering malicious behaviors,” in 2015 10th International Conference on Malicious and Unwanted
Software, MALWARE 2015, 2016, pp. 119–127.

M. Leslous, V. Viet Triem Tong, J.-F. Lalande, and T. Genet, “GPFinder: Tracking the Invisible in Android
Malware,” in 12th International Conference on Malicious and Unwanted Software, 2017, pp. 39–46.

K. Allix, T. F. Bissyandeé, J. Klein, and Y. Le Traon. AndroZoo: Collecting Millions of Android Apps for the
Research Community. Mining Software Repositories (MSR) 2016.

	Introduction
	Datasets
	Designing an experiment
	Malware analysis
	Next upcoming challenges
	Conclusion

