
HAL Id: hal-01930918
https://centralesupelec.hal.science/hal-01930918

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Risk-Sensitive Reinforcement Learning for URLLC
Traffic in Wireless Networks

Nesrine Ben Khalifa, Mohamad Assaad, Merouane Debbah

To cite this version:
Nesrine Ben Khalifa, Mohamad Assaad, Merouane Debbah. Risk-Sensitive Reinforcement Learning
for URLLC Traffic in Wireless Networks. 2019 IEEE Wireless Communications and Networking
Conference (WCNC), Apr 2019, Marrakech, Morocco. �10.1109/wcnc.2019.8885631�. �hal-01930918�

https://centralesupelec.hal.science/hal-01930918
https://hal.archives-ouvertes.fr


Risk-Sensitive Reinforcement Learning for URLLC

Traffic in Wireless Networks

Nesrine Ben Khalifa⋄, Mohamad Assaad⋄, Mérouane Debbah∗

⋄TCL chair on 5G, Laboratoire des Signaux et Systèmes (L2S), Centrale Supélec, France
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Abstract—In this paper, we study the problem of dynamic
channel allocation for URLLC traffic in a multi-user multi-
channel wireless network where urgent packets have to be
successfully received in a timely manner. We formulate the
problem as a finite-horizon Markov Decision Process with a
stochastic constraint related to the QoS requirement, defined as
the packet loss rate for each user. We propose a novel weighted
formulation that takes into account both the total expected
reward (number of successfully decoded packets) and the risk
which we define as the QoS requirement violation. First, we
use the value iteration algorithm to find the optimal policy,
which assumes a perfect knowledge of the controller of all the
parameters, namely the channel statistics. We then propose a Q-
learning algorithm where the controller learns the optimal policy
without having knowledge of neither the CSI nor the channel
statistics. We illustrate the performance of our algorithms with
numerical studies.

Index Terms—URLLC, risk-sensitivity, resource allocation,
constrained MDP, reinforcement learning

I. INTRODUCTION

In the fifth generation (5G) wireless networks, there are

new service categories with heterogeneous and challenging

requirements, among them the Ultra Reliable Low Latency

(URLLC) traffic [1], designed for delay and reliability sen-

sitive applications like real-time remote control, autonomous

driving, and mission-critical traffic. In URLLC traffic, the End-

to-End (E2E) latency defined by 3GPP is lower than 1 ms

along with a reliability requirement of 1− 10−5 to 1− 10−9

[1], [2].

A plausible solution to address the latency requirement issue

is to make transmissions without Channel State Information

(CSI) knowledge at the transmitter side. To increase reliability,

exploiting frequency diversity is beneficial, and occurs by

making parallel transmissions of the same packet over different

subcarriers in an Orthogonal Frequency Division Multiplexing

(OFDM) system where each subcarrier experiences different

channel characteristics.

However, this solution is costly in terms of system capacity.

Therefore, the number of parallel transmissions should not be

fixed in advance but should rather be variable and depending

on many parameters such as the position of a user in the cell,

or the statistics about his packet losses over the previous time

slots. For example, if a user experienced a high number of

packet losses in the previous time slots, it should be allocated a

high number of subchannels to increase his success probability,

whereas a user with a low number of dropped packets may be

assigned a low number of subcarriers. Hence, it is crucial to

design efficient dynamic schemes able to adapt the number of

parallel transmissions for each user to his experienced QoS.

In this work, we study the problem of dynamic channel

allocation for URLLC traffic in a multi-user multi-channel

wireless network under QoS constraints. A channel here refers

to a frequency band or a subcarrier in an OFDM system,

and the QoS is related to the packet loss rate for each user,

defined as the average number of dropped packets. Besides, we

introduce the notion of risk related to the violation of the QoS

requirements; more precisely, a risk occurs or equivalently, a

risk state is reached when the QoS requirement is violated

for a user. Furthermore, we consider that the transmitter does

not have neither the CSI nor the channel statistics at the

transmission moment. In fact, due to the urgency of URLLC

packets mentioned previously, there is not enough time for the

BS to make channel estimation and probing techniques like in

conventional wireless communications.

A. Related Work

The issue of deadline-constrained traffic scheduling has

been investigated by several works including [3]–[6]. For

example, in [6], the authors study the problem of dynamic

channel allocation in a single user multi-channel system with

service costs and deadline-constrained traffic. They propose

online algorithms to enable the controller to learn the optimal

policy based on Thompson sampling for multi-armed bandit

problems. The MDP framework and reinforcement learning

approaches for downlink packet scheduling are considered

in [3], [5], [7]–[10]. In [3], the authors propose an MDP

for deadline-constrained packet scheduling problem and use

dynamic programming to find the optimal scheduling policies.

The authors do not consider QoS constraints in the scheduling

problem.

Most risk-sensitive approaches consist in analyzing higher

order statistics than the average metric such as the variance

of the reward [1], [11]–[13]. For instance, a risk-sensitive

reinforcement learning is studied in [14] in millimeter-wave

communications to optimize both the bandwidth and transmit

power. The authors consider a utility (data rate) that incor-

porates both the average and the variance to capture the tail

distribution of the rate, useful for the reliability requirement of

URLLC traffic. The authors do not exploit frequency diversity.

In this work, we consider an alternative approach to the risk

which consists in minimizing the risk state visitation probabil-



ity. In fact, due to the stochastic nature of the problem (time-

varying channel and random arrival traffic in our context),

giving a low reward to an undesirable or a risk-state may be

insufficient to minimize the probability of visiting such state

[15]. Therefore, in addition to the maximization of the total

expected reward, we propose to consider a second criterion

which consists in minimizing the probability of visiting risk

states where a risk state here is related to the violation of QoS

requirements.

B. Addressed Issues and Contribution

In this work, we address the following issues:

• We formulate the dynamic channel allocation problem

for URLLC traffic as a finite-horizon MDP wherein the

state represents the QoS of the users, that is, the average

number of dropped packets or packet loss rate of the

users. The decision variable is the number of channels to

assign to each user. We define a risk state as any state

where the QoS requirement is violated for at least one

user. Besides, we define a stochastic constraint related to

the risk state visitation probability.

• Assuming the channel statistics are known to the con-

troller, we use the finite-horizon value iteration algorithm

to find the optimal policy to the weighted formulation

of the problem, which takes into account both the total

expected reward over the planning horizon and the risk

criterion (QoS requirement violation probability).

• When the channel statistics are unknown to the con-

troller, we propose a reinforcement learning algorithm

(Q-learning) for the weighted formulation of the problem,

which enables the controller to learn the optimal policy.

We illustrate the performance of our algorithms with

numerical studies.

C. Paper Structure

In Section II, we present the system model for the multi-

user multi-channel wireless network with URLLC packets

and time-varying channels along with the QoS definition. In

Section III, we introduce the constrained MDP formulation

with all its components. In Section IV, we present both the

finite-horizon value iteration algorithm and the reinforcement

learning algorithm. Section V is devoted to numerical results.

Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a multi-user multi-channel wireless network

where URLLC packets have to be transmitted over time-

varying and fading channels. Due to the strict latency re-

quirement of URLLC packets in 5G networks mentioned

previously, there is not enough time for the BS to estimate

the channel, and the packets are then immediately transmitted

in the absence of CSI at the transmitter side. When a packet is

successfully decoded, the receiver sends an acknowledgment

feedback, which is assumed to be instantaneous and error-

free. We consider a centralized controller which dynamically
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Fig. 1: Dynamic allocation of channels (ℓ1, .., ℓK) to the

users based on their QoS (ρ1, .., ρK).

distributes the channels to the users based on their QoS (see

Fig. 1).

Furthermore, we make the following assumptions:

Packet arrival process: the packet arrival process is con-

sidered as an independent and identically distributed (i.i.d.)

random process over a finite set I = {0, 1, .., Amax}, where

Amax is a positive constant, and is identical for all the users.

Let αa denote the probability that a ∈ I packets arrive for a

given user at the beginning of a time slot.

Deadline-constrained traffic: regarding the strict URLLC

latency requirement specified by 3GPP (lower than 1 ms), each

packet has a lifetime of one time slot and can either be served

or dropped; if there are available channels, the packet will be

transmitted, otherwise, it will be dropped because after one

time slot it becomes outdated and useless. Furthermore, one

packet is transmitted per channel.

Channel model: we consider i.i.d. Bernoulli channels with a

mean µ ∈ [0, 1]. In millimeter-wave communications, the links

are characterized by their intermittence and high sensitivity,

and this channel model reflects the existence of a light-of-sight

(LOS) channel state [6], [16]. To increase reliability, a user can

be assigned more channels than the number of waiting packets

(depending on his experienced QoS). Some packets are then

simultaneously sent over multiple parallel channels.

Channel split: for each user, all the packets are equally

important: when the number of available channels is larger

than that of waiting packets, we assume that some packets

are picked uniformly at random to be replicated. A packet is

obviously more likely to be successfully received when sent

over many channels simultaneously. However, assigning more

channels to a user will affect the QoS experienced by the

other users. Note that channel split across the packets (which

occurs in the same manner for all the users) should not be

confused with the channel split across the users (which takes

into account the QoS perceived by the users).

For user k, the distribution of available channels ℓk over

the waiting packets ak occurs as follows: each packet is

transmitted over (ℓk ∧ ak) channels and may be furthermore

replicated once with a probability ( ℓk∨ak

ak
), where the symbol

ℓk ∧ ak denotes the larger integer m such that mak 6 ℓk, and



ℓk ∨ ak denotes the remaining integer of the division of ℓk by

ak.

The probability that a packet is successfully received given

that there are ak waiting packets at the transmitter and ℓk
assigned channels can then be expressed by

νk(ak, ℓk) =

(

1−
ℓk ∨ ak

ak

)

(

1− (1− µ)(ℓk∧ak)
)

+

(

ℓk ∨ ak
ak

)

(

1− (1− µ)1+(ℓk∧ak)
)

.(1)

The expected number of successfully received packets for user

k is then given by

E [Nk(ℓk)] =
∑

ak∈I

akαak
νk(ak, ℓk). (2)

QoS criterion: for each user k, we define the packet loss rate

at time slot t, ρk(t), as follows

ρk(t) =
1

t

t−1
∑

i=0

nk(i)

ak(i)
, t > 1, (3)

where nk(t) denotes the number of lost packets for user k at

time slot t. Note that ρk ∈ [0, 1] (nk(t) 6 ak(t)). A packet is

lost when either of the two following events occurs:

(i) it is not transmitted because of insufficient available

channels,

(ii) is transmitted but ACK feedback is not received.

The parameter ρk reflects the QoS perceived by user k: higher

values of ρk mean a higher number of lost packets and poor

QoS whereas lower values of ρk mean good QoS. To ensure

good QoS for the users, the resource allocation scheme should

take account of their experienced QoS and keep this parameter

values for all users within an acceptable range.

Finally, the decision variable is the number of channels

associated to each user k at each time slot, denoted by ℓk,

which satisfies

K
∑

k=1

ℓk(t) = L, (4)

where L denotes the number of available channels.

III. CONSTRAINED MDP FRAMEWORK

The stochastic nature of the wireless channel incites us to

consider an MDP framework to solve the decision problem. In

this section, we first introduce the constrained MDP formula-

tion along with its components. We then derive the optimality

equations.

A. Model Formulation

We define the following finite-horizon MDP

• State Space: is the finite set T ×S where T = {0, .., T},
S = {ρ1 × ..× ρK}, ρk for k = 1, ..,K is defined in (3),

and the symbol × stands for the Cartesian product.

• Action Space: is the finite set L =
{(ℓ1, .., ℓK) satisfying (4)}, where ℓk denotes the

number of channels assigned to user k.

• Reward: we define the reward r at time slot t, when the

controller chooses action ℓ ∈ L in state st, as the expected

total number of successfully received packets over all the

users, that is,

r(st, ℓ) = E

[

K
∑

k=1

Nk(ℓk)

]

. (5)

Note that the reward depends only on the number of

channels allocated for each user (the action), and not on

the current state st. Besides, the reward is a non-linear

function of the action.

• Transition Probabilities:

First, we define the probability that n packets are lost for

user k as a function of the number of waiting packets ak
and the number of assigned channels ℓk at a given time

slot as follows

σk(n, ak, ℓk) =

(

ak
n

)

(

1− νk(ak, ℓk)
)n

νk(ak, ℓk)
ak−n,

where n 6 ak and
(

ak

n

)

denotes the binomial coefficient.

The state transition probability for user k is given by

p(ρ′k | ρk(t), ℓk) = αak
σk(n, ak, ℓk), (6)

where

ρ′k =
t

t+ 1
ρk +

1

t+ 1

n

ak
. (7)

Finally, let st+1 = ρ′1 × .. × ρ′K and st = ρ1 × .. × ρK ,

the transition probability from state st to state st+1 given

when action l is taken, is then given by

p(st+1 | st, ℓ) =

K
∏

k=1

p(ρ′k | ρk(t), ℓk). (8)

Regarding the strict requirements of URLLC packets described

earlier, we introduce in the following the notion of a risk-state.

Definition 1. We define a risk state any state where ρk > ρmax

for any k ∈ {1, ..,K} with ρmax > 0 is constant fixed by the

controller. The set of risk states Φ is then,

Φ = {ρ1 × ..× ρK where there ∃ k such that ρk > ρmax}.

Besides, a risk-state is an absorbing state, that is, the process

ends when it reaches a risk state [15].

A deterministic policy π assigns at each time step and

for each state an action. Our goal is to find an optimal

deterministic policy π∗ which maximizes the total expected

reward Vπ
T (s) given by

Vπ
T (s) = E

π

[

T
∑

t=0

r(st, π(st))| s0 = s

]

, (9)

with the reward r is defined in (5), while satisfying the QoS

constraint given by

ηπ(s) < w, (10)

where ηπ(s) denotes the probability of visiting a risk state over

the planning horizon, given that the initial state (at time slot



0) is s and policy π is followed, and w is a positive constant.

Formally,

ηπ(s) = P
π (∃ t such that st ∈ Φ|s0 = s). (11)

In order to explicitly characterize ηπ(s), we introduce in the

following the risk signal r.

Definition 2. We define a risk signal r as follows

r(st, ℓt, st+1) =

{

1 if st+1 ∈ Φ
0 otherwise,

(12)

where st and ℓt denote the state and action at time slot t,
respectively, and st+1 denotes the subsequent state.

Proposition 1. The probability of visiting a risk-state, ηπ(s),
is given by

ηπ(s) = V
π

T (s), (13)

where we set

V
π

T (s) = E
π

[

T
∑

t=0

r (st, π(st), st+1) | s0 = s

]

. (14)

Proof. The random sequence r(t = 0), r(t = 1),.., r(t =
T ) may contain 1 if a risk state is visited, otherwise all its

components are equal to zero (recall that a risk state is an

absorbing state). Therefore,
∑T

t=0 r(t) is a Bernoulli random

variable with a mean equal to the probability of reaching a

risk state, that is, relation (13) holds.

B. Optimality Equations

By virtue of Proposition 1, we associate a state value

function V
π

T to the probability of visiting a risk state. Now, we

define a new weighted value function Vπ
ξ,T , which incorporates

both the reward and the risk, as follows

Vπ
ξ,T (s) = ξVπ

T (s)− V
π

T (s), (15)

where ξ > 0 is the weighting parameter, determined by the risk

level the controller is willing to tolerate. The function Vπ
ξ,T can

be seen as a standard value function associated to the reward

ξr− r. The case ξ = 0 corresponds to a minimum-risk policy

whereas the case ξ → ∞ corresponds to a maximum-value

policy.

Let Π denote the set of deterministic policies, and define

V∗
T (s) = max

π∈Π
Vπ
T (s), V

∗

T (s) = min
π∈Π
V
π

T (s),

V∗
ξ,T (s) = max

π∈Π
Vπ
ξ,T (s).

Besides, we define uπ
t , uπ

t , and uπ
ξ,t for 0 6 t 6 T respectively

by

uπ
t (s) = E

π

[

T
∑

i=t

r(si, π(si))| st = s

]

, (16)

uπ
t (s) = E

π

[

T
∑

i=t

r(si, π(si), si+1)| st = s

]

, (17)

uπ
ξ,t(s) = ξuπ

t (s)− uπ
t (s). (18)

Note that Vπ
T incorporates the total expected reward over the

entire planning horizon whereas ut incorporates the rewards

from decision epoch t to the end of the planning horizon only.

Besides, ut(s) is the probability of visiting a risk state given

that at time t the system is in state s ∈ {S/Φ}, and is thus a

measure of the risk.

The optimality equations are given by (the proof is similar

to that in [17], chap. 4 and skipped here for brevity)

u∗
t (s) = max

ℓ∈L

{

r(st, ℓ) +
∑

j∈S

p(j|st, ℓ)u
∗
t+1(j)

}

(19)

u∗
t (s) = min

ℓ∈L

{

∑

j∈S

p(j|st, ℓ)
(

r(st, ℓ, j) + u∗
t+1(j)

)}

(20)

u∗
ξ,t(s) = max

ℓ∈L

{

∑

j∈S

p(j|st, ℓ)
(

ξr(st, ℓ)− r(st, ℓ, j)

+u∗
ξ,t+1(j)

)}

, (21)

for t = 0, .., T − 1. For the boundary conditions, that is at

time slot T , u∗
T (s), u∗

T (s), and u∗
ξ,T (s) are set to zero for

each s ∈ S .

In a non-risk state, the reward r is given in (5) and the risk

signal is equal to zero whereas in a risk state the reward r is

set to zero and the risk signal r is set to one.

IV. ALGORITHM DESIGN

In this section, we present two algorithms: (i) finite-horizon

value iteration algorithm which assumes that all the model

parameters are known to the controller, namely the chan-

nel statistics (model-based algorithm), and (ii) reinforcement

learning algorithm which does not require the controller’s

knowledge of channel statistics (model-free algorithm).

A. Value Iteration Algorithm

In order to find a policy that maximizes the weighted value

function defined in (15), we use the value iteration algorithm

[17]. In this algorithm, we proceed backwards: we start by

determining the optimal action at time slot T for each state,

and successively consider the previous stages, until reaching

time slot 0 (see Algorithm 1).

Algorithm 1 Finite-Horizon Value Iteration Algorithm

1: Initialization: for each s

2: u∗
T (s)← 0, u∗

T (s)← 0, u∗
ξ,T (s)← 0

3: Endfor

4: t← T − 1
5: while t > 0
6: For each s

7: update u∗
t (s), u

∗
t (s), and u∗

ξ,t(s) according to (19), (20),

and (21), respectively

8: EndFor

9: t← t− 1
10: EndWhile
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Fig. 2: Reinforcement Learning Model.

B. Risk-Sensitive Reinforcement Learning Algorithm

During the learning phase, the controller gets estimates of

the value of each state-action pair. It updates its estimates

through the interaction with the environment where at each

iteration it performs an action and then observes the reward

r, the risk signal r, and the next state (see Fig. 2).

The learning controller chooses an action at each learning

step following the ε-greedy policy, that is, it selects an action

that maximizes its current estimate with probability 1− ε, or

a random action with probability ε. The parameter ε captures

the exploration-and-exploitation trade-off: when ε → 0, the

controller tends to choose an action that maximizes its current

state’s estimated value; whereas when ε → 1, the controller

tends to choose randomly an action and to favor the explo-

ration for optimality.

The state-action value function is given by [18], [19]

Qπ(st, ℓ) = r(st, ℓ) +
∑

j∈S

p(j|st, ℓ)u
π
t+1(j),

where the first term denotes the immediate reward, that is the

number of successfully received packets over all the users,

when the action l is performed in state st; and the second term

denotes the expected reward when the policy π is followed in

the subsequent decision stages. Similarly to the state-action

value function associated to the reward, we define the state-

action value function associated to the risk Q
π

as

Q
π
(st, ℓ) =

∑

j∈S

p(j|st, ℓ)
(

r(st, ℓ, j) + uπ
t+1(j)

)

.

Note that the introduction of the signal risk r enabled us to

define a state-action value function, Q to the risk.

Besides, the state-action value function associated to the

weighted formulation, Qπ
ξ , is given by

Qπ
ξ (st, ℓ) = ξQπ(st, ℓ)−Q

π
(st, ℓ).

Finally, the Q-function updates at the learning step n (which

should not be confused with the decision epoch t) are given

by [18]

Q(n+1)(st, ℓ) ←
[

1− αn(st, ℓ)
]

Q(n)(st, ℓ) +

αn(st, ℓ)
[

r + max
ℓ∈L
{Q(n)(st+1, ℓ)}

]

,(22)

Q
(n+1)

(st, ℓ) ←
[

1− αn(st, ℓ)
]

Q
(n)

(st, ℓ) +

αn(st, ℓ)
[

r + min
ℓ∈L
{Q

(n)
(st+1, ℓ)}

]

,(23)

and,

Q
(n+1)
ξ (st, ℓ) ←

[

1− αn(st, ℓ)
]

Q
(n)
ξ (st, ℓ) +

αn(st, ℓ)
[

ξr − r + max
ℓ∈L
{Q

(n)
ξ (st+1, ℓ)}

]

,

(24)

where αn(st, ℓ) denotes the learning rate parameter at step n
when the state st and action ℓ are visited.

The learning algorithm converges to the optimal state-

action value function when each state-action pair is performed

infinitely often and when the learning rate parameter satisfies

for each (st, ℓ) pair (the proof is given in [18], [20] and

skipped here for brevity),

∞
∑

n=1

αn(st, ℓ) =∞, (a) and

∞
∑

n=1

α2
n(st, ℓ) <∞ (b) . (25)

In this case, the Q-functions are related to the value functions

as follows

max
ℓ∈L
{Q(st, ℓ)} = u∗

t (st), min
ℓ∈L

{

Q(st, ℓ)
}

= u∗
t (st),

max
ℓ∈L
{Qξ(st, ℓ)} = u∗

ξ,t(st).

When a risk state is reached during the learning phase, the

system is restarted according to the uniform distribution to a

non-risk state. In addition, when t > T , we consider that an

artificial absorbing state is reached and we reinitialize t (see

Algorithm 2).

Algorithm 2 Q-learning Algorithm

1: Initialization t← 0, s0 ← s, n← 1,

2: for each ℓ ∈ L
3: Q(s0, ℓ)← 0, Q(s0, ℓ)← 0, Qξ(s0, ℓ)← 0
4: End for

5: Repeat

6: observe current state st
7: select and perform action ℓ in state st
8: observe the new state st+1, reward r and the risk r
9: update the Q-functions Q(st, l), Q(st, l), Qξ(st, ℓ)

according to (22), (23), (24) respectively

10: t← t+ 1
11: n← n+ 1
12: update αn

13: if t = T , then t← 0 artificial absorbing state reached

14: if st ∈ Φ, then st ∼ Unif{S/Φ} absorbing state reached

15: until convergence



V. PERFORMANCE EVALUATION

In this section, we present the numerical results obtained

with the value iteration and the learning algorithms in a variety

of scenarios. We consider the setting of two users along with a

number of channels L = 5. For the arrival traffic, we consider

the following truncated Poisson distribution

Prob(a = m) =

{

λm/m!
∑

Amax

i=0
λi/i!

if m 6 Amax

zero otherwise,
(26)

where λ = 3 and Amax = 6. The mean of the Bernoulli

channel µ and the value of the parameter ρmax throughout

this section are fixed to 0.6 and 0.55 respectively.

A. Minimum-risk vs maximum-value policy

First, we compare the performance of the minimum-risk

policy (obtained when ξ = 0), maximum-value policy (ob-

tained when ξ →∞), weighted policy (when ξ > 0), and the

fixed policy which consists is assigning the same number of

channels for each user at each time slot (ℓ1 = 2 and ℓ2 = 3).

We depict in Fig. 3-top the reward ut(s) given in (19) as

a function of time when s = 0.3 × 0 and different policies

are followed. We observe that the maximum-value policy

clearly outperforms the fixed and the minimum-risk policy.

In Fig. 3-bottom showing ut(s) given in (20), we observe

that the probability of visiting a risk-state when the fixed

policy is followed is much higher than that obtained when

the minimum-risk policy π∗ is performed. For example, at

the time step t = 5, ut(s) is equal to 0.42 when the policy

πf is performed whereas this value reduces to 0.02 when the

policy π∗ is followed. In fact, the fixed policy does not take

account of the experienced QoS of the users, and therefore, it

is the policy which results in the highest risk-state visitation

probability. Besides, this probability decreases over time for

all the policies. In fact, as time goes on, the probability of

entering a risk-state over the remaining time steps decreases.

The reward ut(s) increases for the lower values of t until

reaching a maximum value and then it decreases, for all the

policies. In fact, for the lower values of t, the probability of

visiting a risk-state is high, and this affects the expected value

of the reward (recall that in the risk state, the reward is equal to

zero). As time goes on, this probability decreases, and thus the

expected reward increases. However, at the further time steps,

the number of remaining decision stages is low and hence the

expected reward (total number of successfully received packets

over the remaining time slots) decreases.

B. Learning

In the learning algorithm, we simulate the wireless channel

with a Bernoulli random variable with a number of trials equal

to the number of channels associated to each packet for each

user. For the learning rate parameter αn, we considered the

following expression [21]:

αn =
1

(1 + n(st, ℓ))γ
, (27)

10

12

14

u
t
(s
)

time

π∗

π∗

πf

π∗
ξ

0
1

2

2 3

4

4 5

6

6 7

8

8 9

u
t
(s
)

time

π∗

π∗

πf

π∗
ξ

0

1

1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3: Performance of the minimum-risk policy π∗, the

maximum-value policy π∗, the weighted-policy π∗
ξ with

ξ = 0.1, and the fixed policy πf . On the top, ut(s), on

the bottom, ut(s) where s = 0.3× 0 and T = 9.

where n(st, ℓ) denotes the number of times the state-action

pair (st, ℓ) was visited until iteration n, and γ is a positive

parameter ∈ [0.5, 1] [21].

We depict in Fig. 4 the optimal (minimum-risk) policy

(number of channels to assign to user 1 , ℓ1 ∈ [0, .., 5])
computed by the learning algorithm, as a function of time

steps (decision epochs) and ρ1, when ρ2 is fixed to 0. The

figure shows a monotony property: the number of channels to

assign to user 1 increases with time and with ρ1. In fact, as

the QoS of user 1 degrades (ρ1 increases), more channels are

assigned to it to compensate for this degradation; and as time

goes on, this policy is more sensitive to this degradation as

more channels are assigned for the same values of ρ1, but at

further time steps.
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Fig. 4: Optimal policy ℓ∗1 as a function of time steps and

ρ1 with ρ2 = 0 and T = 5.

VI. CONCLUSION

In this work, we studied the problem of dynamic channel al-

location for URLLC traffic in a multi-user multi-channel wire-

less network within a novel framework. Due to the stochastic

nature of the problem related to time-varying, fading channels

and random arrival traffic, we considered a finite-horizon

MDP framework. We determined explicitly the probability of

visiting a risk state and we wrote it as a cumulative return

(risk signal). We then introduced a weighted global value

function which incorporates two criteria: reward and risk. By

virtue of the value iteration algorithm, we determined the

optimal policy. Furthermore, we used a Q-learning algorithm

to enable the controller to learn the optimal policy in the

absence of channel statistics. Besides, we examined the impact

of the learning rate parameter on the accuracy of the learning

algorithm.

In the future work, we would like to take account of spatial

diversity in the dynamic allocation scheme where both the BS

and the user terminals can be equipped with multiple antennas

to enhance the system performance.
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