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Abstract— In this paper, the effective use of multiple drones as
an aerial antenna array that provides wireless service to ground
users is investigated. In particular, under the goal of minimizing
the service time needed for servicing ground users, a novel
framework for deploying a drone-based antenna array system
whose elements are single-antenna drones is proposed. To this
end, first, the antenna array gain is maximized by optimizing the
drone spacing within the array. In this case, using perturbation
techniques, the drone spacing optimization problem is addressed
by solving successive, perturbed convex optimization problems.
In the second step, the optimal locations of the drones around
the array’s center are derived such that the service time for
each ground user is minimized. Simulation results show that the
proposed approach can significantly reduce the service time to
ground users compared to a single drone that uses the same
amount of power as the array. The results also show that the
network’s spectral efficiency can be improved by 78% while
leveraging the drone antenna array system.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) such as

drones is growing rapidly across many domains including

delivery, communications, and search and rescue in emergency

operations [1]–[3]. In wireless networks, drones can be used

as flying base stations to provide reliable and cost-effective

wireless connectivity. [2]–[6]. In particular, drones can play a

key role in enabling wireless connectivity in various scenarios

such as public safety, temporary events (e.g. festivals), and

Internet of Things (IoT) scenarios [2]. To effectively use

drones for wireless networking applications, one must address

a number of challenges that include optimal placement of

drones, resource management, and flight time optimization.

Naturally, flying drones have a limited amount of on-board

energy which must be used for transmission, mobility, control,

data processing, and payloads purposes. Consequently, the

flight duration of drones is typically short and insufficient for

providing a long-term, continuous wireless coverage. Further-

more, due to the limited transmit power of drones, providing

long-range, high rate, and low latency communications can be

challenging in drone-enabled wireless systems. One promising

solution is to utilize multiple drones within an antenna array

system in which each element is a single-antenna drone [7].

Clearly, a high gain drone-based antenna array can provide

high data rate wireless services to ground users. As a result,

the service time, which is defined as the time needed for

servicing ground users, will be reduced. From the drones’

perspective, a lower service time corresponds to a shorter

flight time as well as less energy consumption. From the

users’ point of view, a lower service time is also preferred as

they can be served by the drones within a shorter time, thus

experiencing lower latency. Therefore, the service time is a key

performance metric in drone-enabled wireless networks as it

directly impacts the flight time of drones as well as quality-

of-service (i.e. delay) for ground users.

Despite the importance of service time in drone commu-

nications, current literature still lacks comprehensive studies

on the service time analysis. For instance, the work in [8]

addressed the flight time optimization problem of drone base

stations by deriving the optimal cell association schemes. In

[9], the trajectory and mission completion time of a single

UAV that serves ground users are optimized. In [7], the authors

studied the design of a UAV-based antenna array for directivity

maximization. However, the approach presented in [7] is based

on a heuristic and a computationally demanding evolutionary

algorithm. Moreover, the service time analysis is ignored

in [7]. In [10], the authors investigated the use of massive

multiple-input-multiple-output (MIMO) for capacity enhance-

ment in base station-to-drone communications. However, the

work in [10] considers the use of each drone as a flying user,

and does not study the potential deployment of multiple drones

as a single flying antenna array for servicing ground users.

In fact, the previous work on drone communications, such

as in [1]–[10], did not study the service time optimization

problem while exploiting a drone-based antenna array system

for serving ground users.

The main contribution of this paper is a novel framework

for deploying a drone-based antenna array system that delivers

wireless service to ground users within a minimum time. In

particular, we derive the optimal locations of drones within the

array that yield a minimum service time. First, we determine

the optimal drone spacing for which the array directivity is

maximized. In this case, using the perturbation technique [11],

we solve the drone spacing optimization problem by suc-

cessively solving a number of perturbed convex optimization

problems. Next, given the drone spacing, we optimally adjust

the locations of the drones according to the position of each

ground user. Our results show that the proposed drone antenna

array approach can significantly reduce the service time and

improve the spectral and energy efficiency of the network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a set L of L single-antenna wireless users located

within a given geographical area. In this area, a set M of M



quadrotor drones are used as flying access points to provide

downlink wireless service for the ground users in downlink.

The M drones will form an antenna array in which each

element is a single-antenna drone, as shown in Fig. 1. For

tractability, we consider a linear antenna array whose elements

are symmetrically excited and located about the origin of

the array as done in [12]. The results that we will derive

for the linear array case can provide a key guideline for

designing more complex 2D and 3D array configurations.

The three-dimensional locations of drone m ∈ M and

user i ∈ L are, respectively, given by (xm, ym, zm) and

(xu
i , y

u
i , z

u
i ). To avoid collisions between drones, we assume

that adjacent drones in the array are separated by at least

Dmin. Let am and βm be the amplitude and phase of the

signal (i.e. excitation) at element m in the array. Let dm =
√

(xm − xo)
2
+ (ym − yo)

2
+ (zm − zo)

2
. be the distance of

drone m from the origin of the array whose 3D coordinate is

(xo, yo, zo). The magnitude of the far-field radiation pattern

of each element is w(θ, φ), where θ and φ are the polar and

azimuthal angles in the spherical coordinate.

To serve ground users distributed over a geographical area,

the drones will dynamically change their positions based on

each user’s location. Such repositioning is needed for adjusting

the distance and beam direction of the antenna array to each

ground user. Note that, unlike a classical linear phased array

that uses electronic beam steering, the drone-based antenna

array relies on the repositioning of drones. This is due to the

fact that, in the drone antenna array, precisely adjusting the

elements’ phase is more challenging than the phased array

whose elements are directly connected. In addition, the linear

phased array cannot perform 3D beam steering. Hence, in our

model, the drones dynamically adjust their positions in order

to steer the beam towards ground users. Clearly, the service

time, which is the time needed to serve the ground users,

depends on the transmission time and the control time during

which the drones must move and stabilize their locations. The

transmission time is inversely proportional to the downlink

data rate which depends on the signal-to-noise-ratio (SNR)

which is, in turn, function of the array’s beamforming gain.

The service time is an important metric for both users

and drones. A lower service time yields a lower delay and,

hence, higher quality-of-service (QoS) for the users. Also,

the service time is directly related to spectral efficiency as it

depends on data rate and transmission bandwidth. For drones,

a lower service time corresponds to a shorter flight time and

less energy consumption. In fact, minimizing the service time

improves both energy and spectral efficiency. Therefore, our

goal is to minimize the total service time of the ground

users by optimally adjusting the drones’ locations, within a

minimum control time, that can provide a maximum data rate.

For drone-to-ground communications, we consider the clas-

sical line-of-sight (LoS) propagation model as also done in

[4], [9]. Such channel model is reasonable here as the effect

of mulitipath is significantly mitigated due to the high altitude

of drones and using the beamforming technique [9]. The
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Fig. 1: Drone-based antenna array.

transmission rate from the drone antenna array to ground user

i in a far-field region is given by [9]:

Ri(x,y, z) = Blog2

(

1 +
r−α
i PtKoGi(x,y, z)

σ2

)

, (1)

where x = [xm]M×1, y = [ym]M×1, z = [zm]M×1, m ∈ M
are vectors of x, y, and z coordinates of the drones. B is the

transmission bandwidth, ri is the distance between the origin

of the array and user i, Pt is the total transmit power of the

array, σ2 is the noise power, and Ko is the constant path loss

coefficient. Gi(xm, ym, zm) is the gain of the antenna array

towards the location of user i, given by [13]:

Gi(x,y, z) =
4π|F (θi, φi)|

2
w(θi, φi)

2

2π
∫

0

π
∫

0

|F (θ, φ)|2w(θ, φ)2 sin θdθdφ

η, (2)

where 0 ≤ η ≤ 1 is the antenna array efficiency which is

multiplied by directivity to compute the antenna gain. In fact,

the antenna gain is equal to the antenna directivity multiplied

by η. In (2), F (θ, φ) is the array factor given by [13]:

F (θ, φ) =

M
∑

m=1

amej[k(xm sin θ cosφ+ym sin θ sinφ+zm cos θ)+βm],

(3)

where k = 2π/λ is the phase constant, and λ is the wave-

length. The overall radiation pattern of the antenna array

is equal to F (θ, φ)w(θi, φi) which follows from the pattern

multiplication rule [13]. Now, the total service time Ttot is:

Ttot =

L
∑

i=1

qi
Ri(x,y, z)

+ T crl, (4)

where qi is the load of user i representing the number of bits

that must be transmitted to user i. T crl is the total control time

during which the drones adjust their locations according to the

users’ locations. Here, we assume that the total control time

is given based on the locations and number of the users.

Our goal is to minimize the total service time of drones by

minimizing the transmission time. In this case, we must find

the optimal locations of the drones, with respect to the center

of the array, that yield a minimum drone transmission time:

min
x,y,z

L
∑

i=1

qi
Ri(x,y, z)

, (5)

st. dm+1 − dm ≥ Dmin, ∀m ∈ M\{M}, (6)



where (6) is a constraint on the minimum separation distance

of two adjacent drones needed to avoid collision.

Solving (5) is challenging as it is highly nonlinear due to

(2). Moreover, as we can see from (3), the array factor is

a complex function of the array element’s positions. Clearly,

given (1), (2), and (4), to minimize the transmission time, we

need to maximize the array gain towards each ground user.

In other words, we determine the optimal positions of drones

based on the location of each user such that the transmission

time to the user is minimized. As a result, given L ground

users, we will have at most L sets of drones’ locations. In

the next section, we will optimize the position of drones to

maximize the array directivity towards any given ground user.

III. OPTIMAL DRONE POSITIONS

Here, we maximize the directivity of the drone-based an-

tenna array towards a given ground user by optimally adjusting

the drones’ locations. Without loss of generality, we consider

an even number of drones, but the analysis still holds for an

odd number. Now, the array factor for M drones located on

the x-axis of the Cartesian coordinate will be:

F (θ, φ) =
M
∑

m=1

amej[kxm sin θ cosφ+βm]

(a)
=

M/2
∑

n=1

an

(

ej[kdn sin θ cosφ+βn] + e−j[kdn sin θ cosφ+βn]
)

(b)
= 2

N
∑

n=1

an cos (kdn sin θ cosφ+ βn), (7)

where N = M/2, and dn is the distance of element n ∈
N = {1, 2, ..., N} from the center of the array (origin). Also,

(a) follows from the fact that the array is symmetric with

respect to the origin, and (b) is based on the Euler’s rule. We

can maximize the directivity of the array by optimizing dn,

∀n ∈ N :

max
dn,∀n∈N

4π|F (θmax, φmax)|
2
w(θmax, φmax)

2

2π
∫

0

π
∫

0

|F (θ, φ)|2w(θ, φ)2 sin θdθdφ

, (8)

where (θmax, φmax) are the polar and azimuthal angles at

which the total antenna pattern F (θ, φ)w(θ, φ) has a maximum

value. Solving (8) is challenging due to the non-linearity

and complex expression of the objective function. In fact,

this problem is non-convex and cannot be exactly solved

using classical convex optimization methods. Next, we provide

an analytical solution to (8) by exploiting the perturbation

technique [12]. In general, perturbation theory aims at finding

the solution of a complex problem, by starting from the exact

solution of a simplified version of the original problem [11].

This technique is thus useful when dealing with non-linear

optimization problems such as (8).

A. Perturbation Technique for Drone Spacing Optimization

To optimize the distance between drones, we first consider

an initial value for the distance of each drone from the origin.

Then, we find the optimal perturbation value that must be

added to this initial value1. Let d0n be initial distance of drone

n from the origin, then, the perturbed distance will be:

dn = d0n + en, (9)

where en << λ, with λ the wavelength, is the perturbation

value. Given (9), the array factor can be approximated by:

F (θ, φ) = 2

N
∑

n=1

an cos
(

k(d0n + en) sin θ cosφ+ βn

)

= 2
N
∑

n=1

an cos
[(

kd0n sin θ cosφ+ βn

)

+ ken sin θ cosφ
]

(a)
≈

N
∑

n=1

2an cos
(

kd0n sin θ cosφ+ βn

)

−
N
∑

n=1

2anken sin θ cosφ sin
(

kd0n sin θ cosφ+ βn

)

, (10)

where in (a) we used the trigonometric properties, and the fact

that sin(x) ≈ x for small values of x.

Clearly, given en << λ, the numerator of (8) can be

computed based on the values of d0n, ∀n ∈ N . Hence, given

d0n, our optimization problem in (8) can be written as:

min
e

2π
∫

0

π
∫

0

F (θ, φ)
2
w(θ, φ)

2
sin θdθdφ, (11)

s.t. d0n+1 + en+1 − d0n − en ≥ Dmin, ∀n ∈ N \{N}, (12)

where e is the perturbation vector having elements en, n ∈ N .

For brevity, we define the following functions:

F 0(θ, φ) =

N
∑

n=1

an cos
(

kd0n sin θ cosφ+ βn

)

, (13)

Iint(x) =

2π
∫

0

π
∫

0

x sin θdθdφ. (14)

Theorem 1. The optimization problem in (11) is convex, and

the optimal perturbation vector is the solution of the following

system of equations:










e = G−1[q + µL],

µn

(

en − en+1 +Dmin + d0n − d0n+1

)

= 0, ∀n ∈ N \{N},

µn ≥ 0, ∀n ∈ N \{N}.
(15)

where G = [gm,n]N×N is an N ×N matrix with:

gm,n = Iint

(

aman(k sin θ cosφw(θ, φ))
2

× sin
(

kd0n sin θ cosφ+ βn

)

sin
(

kd0m sin θ cosφ+ βm

)

)

,

(16)

and q = [qn]N×1 whose elements are given by:

1We assume that the distance between adjacent drones is greater than the
minimum distance required for collision avoidance.



qn = Iint

(

ank sin θ cosφw(θ, φ)F
0 (θ, φ)

× sin
(

kd0n sin θ cosφ+ βn

)

)

. (17)

µL is a vector of Lagrangian multipliers, whose element n
is: µL(n) = µn+1 − µn where µn is a Lagrangian multiplier

associated with constraint n.

Proof: First, we find F 2(θ, φ) by using (10):

F 2(θ, φ) =
[

2F 0(θ, φ)
]2
+

[

2
N
∑

n=1

anken sin θ cosφ sin
(

kd0n sin θ cosφ+ βn

)

]2

−8F 0(θ, φ)

N
∑

n=1

anken sin θ cosφ sin
(

kd0n sin θ cosφ+ βn

)

.

Subsequently, our objective function in (11) can be written as:

Iint
(

F 2(θ, φ)w2(θ, φ)
)

=

4
[

eTGe− 2eTq + Iint
(

F 2
0 (θ, φ)w

2(θ, φ)
)]

, (18)

where G and q are given in (16) and (17). Clearly, (18) is a

quadratic function of e. Therefore, (18) is convex if and only

if G is a positive semi-definite matrix. Given (16), we have:

yTGy =

N
∑

n=1

yn

N
∑

m=1

ymgm,n, (19)

Now, in (16), let us define

zn = ank sin θ cosφw(θ, φ) sin
(

kd0n sin θ cosφ+ βn

)

, (20)

then, using (19), we have:

yTGy = Iint





[

N
∑

n=1

znyn

]2


 . (21)

In (14), we can see that Iint(x) ≥ 0 for x ≥ 0. Hence,

from (21), we can conclude that yTGy ≥ 0. Therefore, G

is positive semi-definite and the objective function in (11) is

convex. Moreover, the constraints in (12) are affine functions

which are convex. Hence, this optimization problem is convex.

Now, we find the optimal perturbation vector e by using

Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian func-

tion will be:

L =eTGe− 2eTq + Iint
(

F 2
0 (θ, φ)w

2(θ, φ)
)

+
N−1
∑

n=1

µn

(

en − en+1 +Dmin + d0n − d0n+1

)

, (22)

where µn ≥ 0, n = 1, ..., N − 1 are the Lagrange multipliers.

The necessary and sufficient (due to the convexity of the

problem) KKT conditions for finding the optimal perturbation

vector e are given by:
∇e [L] = 0, (23)

which leads to e = G−1[q+µL], with µL being a (N−1)×1
vector whose element n is µL(n) = µn+1 − µn.

Based on the complementary slackness conditions, we have:

{

µn

(

en − en+1 +Dmin + d0n − d0n+1

)

= 0, ∀n ∈ N \{N},

µn ≥ 0, ∀n ∈ N \{N}.

Finally, the optimal perturbation vector, e∗, can be determined

by solving (23) and (III-A). This proves the theorem.

Using Theorem 1, we can update the distance of each drone

from the origin:
d1 = d0 + e∗, (24)

where d1 = [d1n]N×1, and d0 = [d0n]N×1, n ∈ N .

Clearly, d1 leads to a better solution than d0 = [dn]N×1. In

fact, we can proceed and further improve the solution to (11)

by updating d1. In particular, at update step r ∈ N, we find

d(r) as follows:
d(r) = d(r−1) + e∗(r), (25)

where e∗(r) is the optimal perturbation vector at step r which

is obtained based on d(r−1).

Note that, at each step, the objective function in (11)

decreases. Since the objective function is monotonically de-

creasing and bounded from below, the solution converges after

several updates. We note that due to the approximation used in

(10), the solution may not be a global optimal. Nevertheless,

as we can see from Theorem 1, it is analytically tractable and,

hence, it has a low computational complexity. Here, we use d∗

to represent the vector of nearly-optimal distances of drones

from the original of the array. Next, we use d∗ to determine the

optimal 3D locations of the drones that result in a maximum

array directivity towards a given ground user.

B. Optimal Locations of Drones

Following from Subsection III-A, we derive the optimal 3D

positions of drones that yields a maximum directivity of the

drone-based antenna array. Let (xu
i , y

u
i , z

u
i ) and (xo, yo, zo) be,

respectively, the 3D locations of user i ∈ L and the origin of

the antenna array. Without loss of generality, we translate the

origin of our coordinate system to the origin of the antenna

array. In other words, we assume that the center of the array

is the origin of our translated coordinate system. In this case,

the the 3D location of user i will be (xu
i−xo, y

u
i −yo, z

u
i −zo).

Subsequently, the polar and azimuthal angles of user i in the

spherical coordinate (whose origin is the array’s center) are:

θi = cos−1





zui − zo
√

(xu

i
− xo)

2 + (yu

i
− yo)

2 + (zu
i
− zo)

2



 , (26)

φi = sin−1





yu

i − yo
√

(xu

i
− xo)

2 + (yu

i
− yo)

2



 . (27)

Now, the optimal locations of the drones in the antenna array

is given as follows.

Theorem 2. The optimal locations of the drones for maximiz-

ing the directivity of the drone-based antenna array towards a

given ground user will be:

For m ≤ M/2:










z∗m = −d∗m sin(θi − θmax),

x∗
m = d∗m cos(θi − θmax) cos(φi − φmax),

y∗m = d∗m cos(θi − θmax) sin(φi − φmax).

(28)
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Fig. 2: Drones’ positions according to each ground user.

For m > M/2:











z∗m = d∗m sin(θi − θmax),

x∗
m = −d∗m cos(θi − θmax) cos(φi − φmax),

y∗m = −d∗m cos(θi − θmax) sin(φi − φmax),

(29)

where (xm, ym, zm) is the location of drone m with respect

to the origin of the array, and M is the even number of drones

in the antenna array. sgn(.) is the sign function, and d∗m is the

optimal distance of drone m from the origin of the array, and

(θmax, φmax) = argmax
[

F (θ, φ)w(θ, φ)
]

.

zm =

{

−dm cos(θmax − θi), m ≤ M/2,

dm cos(θmax − θi), m > M/2,

xm =

{

dm cos(θmax − θi) cos(φmax − φi), m ≤ M/2,

−dm cos(θmax − θi) cos(φmax − φi), m > M/2,

ym =

{

dm cos(θmax − θi) sin(φmax − φi), m ≤ M/2,

−dm cos(θmax − θi) sin(φmax − φi), m > M/2.

Proof: In Subsection III-A we have derived the optimal

distance of drones from the origin that leads to a maximum

array directivity. As shown in Fig. 2, let d∗m be the optimal

distance of drone m from the origin, and (θmax, φmax) =
argmax

[

F (θ, φ)w(θ, φ)
]

be a direction at which the directivity

of the array located on the x-axis is maximized. Our goal is to

acheive the maximum directivity at a given direction (θi, φi)
corresponding to user i. To this end, we need to change the

locations of the drones such that θi = θmax, and φi = φmax. In

the first step, we meet θi = θmax by rotating the array of drones

about the y-axis. In this case, the rotation angle about the y-

axis must be equal to (θi−θmax). Clearly, for (θi−θmax) > 0,

the z-coordinate of drone m will be:

z∗m =

{

−d∗m sin(θi − θmax), if xm > 0,

d∗m sin(θi − θmax), if xm < 0.
(30)

As we can see from Fig. 2, xm > 0 when m ≤ M/2. In

the second step, we acheive φi = φmax by rotating the array

about the z-axis. In this case, while zm remains the same,

xm and ym need to be updated. In particular, using geometric

Algorithm 1 Optimizing drones’ locations for maximum array

gain towards user i.

1: Inputs: Locations of user i, (xu
i , y

u
i , z

u
i ), and origin of array,

(xo, yo, zo).
2: Outputs: Optimal drones’ positions, (x∗

m, y∗

m, z∗m), ∀m ∈ M.
3: Set initial values for distance between drones, d
4: Find e

∗ by using (15)-(17).
5: Update d based on (24).
6: Repeat steps (4) and (5) to find the optimal spacing vector d∗

7: Use (26)-(29) to determine (x∗

m, y∗

m, z∗m), ∀m ∈ M.

properties, the new x− y coordinates of drone m < M/2 can

be determined as follows:
{

x∗
m = d∗m cos(θi − θmax) cos(φi − φmax),

y∗m = d∗m cos(θi − θmax) sin(φi − φmax).
(31)

Finally, due to the symmetric configuration of the antenna

array about the origin, the optimal location of drone m when

m > M/2 is given by:










z∗m = d∗m sin(θi − θmax),

x∗
m = −d∗m cos(θi − θmax) cos(φi − φmax),

y∗m = −d∗m cos(θi − θmax) sin(φi − φmax).

(32)

Clearly, given (30)-(32), Theorem 2 is proved.

Using Theorem 2, we can find the optimal locations of the

drones such that the directivity of the drone-based antenna

array is maximized towards any given ground user. This, in

turn, allows maximizing the data rate and, hence, the trans-

mission time for serving the user is minimized. In Algorithm

1, we have summarized the key steps needed for optimizing

the locations of drones with respect to the center of the array.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider 100 ground users which

are uniformly distributed within a square area of size 1 km ×
1 km. Unless stated otherwise, the number of drones2 that form

a linear array is assumed to be 10. The main simulation pa-

rameters are given in Table I. We compare the performance of

our drone-based antenna array system with a single drone that

uses the same total transmit power as the array. All statistical

results are averaged over a large number of independent runs.

Fig. 3 shows the total service time for the drone antenna

array and the single drone case. For a fair comparison, the

transmit power of the single drone case is equal to the sum of

transmit power of the array’s drones. Also, we do not consider

any control time for the single drone. Fig. 3 shows that, for

a given bandwidth, our proposed drone antenna array outper-

forms the single drone case in terms of service time. This is

because, in the proposed approach, the drones’ locations are

adjusted such that the array antenna gain towards each user

is maximized, hence reducing the transmission time. Fig. 3

also shows the tradeoff between bandwidth and service time.

Clearly, the service time decreases by using more bandwidth

which effectively provides a higher data rate. Fig. 3 shows that

the drone antenna array improves spectral efficiency compared

2In our simulations, each drone has an omni-directional antenna.
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to the single drone case. For instance, to achieve 100 minutes

of service time, the drone antenna array will require 78% less

bandwidth than the single drone.

In Fig. 4, we show the impact of the number of drones on

the service time. By increasing the number of drones, the

array gain will increase which yields a lower service time.

Fig. 4 shows that the service time decreases by 57% for 1 MHz

bandwidth when the number of drones increases from 2 to 10.

In this case, to meet a given service time requirement, one can

reduce the bandwidth by deploying more drones in the array.

Fig. 4 shows that a case with 4 drones and 1 MHz bandwidth

outperforms the one with 2 drones and 2 MHz bandwidth.

Therefore, the spectral efficiency can be improved at the cost

of using more drones.

Fig. 5 shows the impact of the control time on the total

service time while employing the drone-based antenna array.

Clearly, in the single drone case with an omni-directional

antenna, the control time is negligible. In the drone antenna

array, however, the service time increases while increasing the

control time. In fact, the drone antenna array outperforms the

single drone case if the service time reduction due to the array

gain is less than the additional control time. For instance, for

1 Gb load, as long as the total control time is less than 180

min, the drone antenna array yields a lower service time than

the single drone. This figure also shows that by increasing the

load, the total service time increases.

V. CONCLUSION

In this paper, we have proposed a novel framework for

employing a drone-enabled antenna array system that can

provide high rate (i.e. low service time) wireless services to

ground users. In particular, we have optimized the positions

of drones (as the array elements) within the antenna array

such that the service time for each user is minimized. Our
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Table I: Main simulation parameters.

Parameter Description Value

fc Carrier frequency 700 MHz

Pi Drone transmit power 0.1 W

No Total noise power spectral density -160 dBm/Hz

N Number of ground users 100

B Bandwidth 1 MHz

T crl Total control time 500 s

(xo, yo, zo) Array’s center coordinate (0,0,100) in meters

Dmin Minimum inter-distance of drones 30 cm

qi Load per user 1 Gb

α Pathloss exponent 3

βm − βm−1 Phase excitation difference of consequence antennas π
5(M−1)

results have shown that the proposed drone antenna array with

the optimal configuration yields a significant improvement in

terms of the service time, spectral and efficiency.
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