%0 Journal Article %T Quantum Thermal Bath for Path Integral Molecular Dynamics Simulation %T Thermostat quantique pour la méthode de dynamique moléculaire utilisant les intégrales de chemin %+ Laboratoire Structures, Propriétés et Modélisation des solides (SPMS) %+ Laboratoire des Solides Irradiés (LSI) %A Brieuc, Fabien %A Dammak, Hichem %A Hayoun, Marc %< avec comité de lecture %@ 1549-9618 %J Journal of Chemical Theory and Computation %I American Chemical Society %V 12 %N 3 %P 1351 - 1359 %8 2016-02-26 %D 2016 %R 10.1021/acs.jctc.5b01146 %Z Physics [physics] %Z Physics [physics]/Condensed Matter [cond-mat] %Z Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] %Z Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Journal articles %X The quantum thermal bath (QTB) method has been recently developed to account for the quantum nature of the nuclei by using standard molecular dynamics (MD) simulation. QTB-MD is an efficient but approximate method for dealing with strongly anharmonic systems, while path integral molecular dynamics (PIMD) gives exact results in a huge amount of computation time. The QTB and PIMD methods have been combined in order to improve the PIMD convergence or correct the failures of the QTB-MD technique. A new power spectral density of the random force within the QTB has therefore been developed. A modified centroid-virial estimator of the kinetic energy, especially adapted to QTB-PIMD, has also been proposed. The method is applied to selected systems: a one-dimensional double well system, a ferroelectric phase transition, and the position distribution of an hydrogen atom in a fuel cell material. The advantage of the QTB-PIMD method is its ability to give exact results with a more reasonable computation time for strongly anharmonic systems. † %G English %2 https://centralesupelec.hal.science/hal-01932606/document %2 https://centralesupelec.hal.science/hal-01932606/file/QTB-PIMD_JCTC_2016_Dammak.pdf %L hal-01932606 %U https://centralesupelec.hal.science/hal-01932606 %~ CEA %~ X %~ CNRS %~ SPMS %~ X-LSI %~ X-DEP %~ X-DEP-PHYS %~ SPMS-AXE3 %~ CENTRALESUPELEC %~ INC-CNRS %~ UNIV-PARIS-SACLAY %~ CENTRALESUPELEC-SACLAY %~ X-SACLAY %~ GS-ENGINEERING %~ IRAMIS %~ GS-CHIMIE %~ GS-PHYSIQUE %~ TEST2-HALCNRS