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ABSTRACT
At present, computer science studies generally offer courses ad-
dressing mobile development and they use mobile technologies for
illustrating theoretical concepts such as operating system, design
patterns, and compilation because Android and iOS use a large va-
riety of technologies for developing applications. Teaching courses
on security is also becoming an important concern for academics,
and the use of mobile platforms (such as Android) as supporting
material is becoming a reasonable option. In this paper, we intend
to bridge a gap in the literature by reversing this paradigm: Android
is not only an opportunity to learn security concepts but requires
strong pedagogical efforts for covering all the aspects of mobile se-
curity. Thus, we propose teaching Android mobile security through
a two-dimensional approach. The first dimension addresses the cog-
nitive process of the Bloom taxonomy, and the second dimension
addresses the technical layers of the architecture of the Android
operating system. We describe a set of comprehensive security
laboratory courses covering various concepts, ranging from the
application development perspective to a deep investigation of the
Android Open Source Project and its interaction with the Linux
kernel. We evaluated this approach, and our results verify that
the designed security labs impart the required knowledge to the
students.

CCS CONCEPTS
•Applied computing→ Education; • Security and privacy→
Mobile platform security; Software security engineering; Soft-
ware reverse engineering.
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1 INTRODUCTION
At present, Android programming is an integral part of most un-
dergraduate studies in computer science. It was introduced as a
complete knowledge area in 2013 (platform-based development) in
the Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science [4]. The same year, security aspects were also in-
troduced as a new knowledge area named “Information Assurance
and Security.” The Android platform can be used for a variety of
learning purposes concerning operating system, wireless communi-
cations, advanced design pattern, etc. Skills in mobile programming
are of significance as even web services generally develop a com-
panion application that the user can install on a smartphone.

When addressing the security aspects of mobile computing, it
is challenging to discuss concepts without referring to their imple-
mentation. Security concepts such as access control, authentication,
or cryptography can still be presented as an independent course.
However, the manner in which attackers attempt to bypass the
implemented security countermeasures of modern smartphones
should be presented with complete knowledge of the Android’s
internal aspects.

In this paper, we propose a set of labs intended to teach about
threats and the security internals of Android applications and op-
erating system. The approach is original in that it follows a pro-
gression based on the Bloom taxonomy [12] and works on the
security aspects of the complete software stack of Android. We
propose a variety of activities that enhance students’ skills from
those for developing simple applications to those for more complex
activities such as analyzing vulnerable applications under attack or
reversing packers. Additionally, the labs cover the different internal
components of Android, which aids students to gain knowledge
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of the internal classes of the Android runtime, the execution and
compilation of Android applications, and the link with the operat-
ing system. These two dimensions—the student cognitive process
and the coverage of the different levels of the Android software
stack—aid students to better analyze mobile security problems.

The paper is organized as follows: Section 2 summarizes the
state of the art in the learning of Android development and secu-
rity. Section 3 presents our approach, and Section 4 provides the
technical details of each lab. Section 5 summarizes the feedback we
have collected. Section 6 concludes the paper.

2 RELATEDWORK
Application Development and Operating Systems with Android.

It is apparent that a pre-requisite for teaching mobile security is
fluency in the underlying programming language and the main con-
cepts of application development. For example, Tigrek et al. [21]
propose a minimal course for first year engineering students to
discover Android programming. Among the presented principles,
"How Without Why" (program based on tutorials) combined with
"Just Enough Java" (learn the essential Java patterns) are effective
for learning to develop an application, although is not sufficient for
understanding the security impact of a selected implementation [1].
In Bloom’s revised taxonomy of educational objectives [12], these
two pieces of procedural knowledge are used to distinguish be-
tween “knowledge of subject-specific skills” and “knowledge of
criteria for determining when to use appropriate procedures”. Addi-
tionally, we consider that in the structure of the cognitive process
(remember, understand, apply, analyze, evaluate, and create) the
three last cognitive processes require a deep understanding of the
internal aspects of mobile application and the underlying operating
system.

The Android framework can also be used as supporting material
to teach more general software engineering [5, 20] or operating
system [2] concepts. Notwithstanding whether these works are
effective for a better understanding of the concepts, most of the
presented material does not describe the Android system with
adequate details to aid the investigation of the security aspects of
mobile devices.

Mobile Security. A few studies use Android as a platform for
experimenting with general security notions, e.g., filtering traffic
in firewalls [23] or countering Denial of Service attacks [22]. How-
ever, they do not address the specificities of mobile systems and
applications.

A few previous works [10, 15, 25] have described the partic-
ularities of teaching security aspects of mobile applications and
platforms. Nevertheless, in most cases, only foundational aspects
that are relevant for Android developers are covered.

The approach of Guo et al. [10] is one of the works closest to our
proposal. They have designed a labware of seven modules, which
illustrates the concepts of mobile security and privacy. The learning
approach is based on two main concepts. First, the course uses an
attack/defense lab, where the students are required to implement
attacks prior to implementing the corresponding protection mech-
anisms. Such an approach aids the students to better comprehend
the security issue and to implement more effective protections. Sec-
ondly, the provided material (slide, tutorials) and the content of the

Table 1: Attacks targeting different Android components

Components Examples of attack CVE
Applications Android ransomware, spyware, adware
AOSP classes OpenSSLX509Certificate vulnerability [17] 2015-3825
DVM & ART DoS via an unspecified Dalvik function 2009-3698
AOSP services Janus: Hiding Payload & Bypass signatures 2017-13156
Kernel Towelroot: Futex Requeue Kernel Exploit 2014-3153

labs can be used directly on real smartphones, enhancing the con-
fidence of the students in their skills. Each lab intends to develop
skills of protection against one type of threat. The fundamentals of
Android security are introduced in different labs, such as those on
the use of permissions or cryptographic API. Advanced threats and
prevention mechanisms, such as buffer overflows or obfuscation,
are discussed in a lab entitled “Secure Mobile App Development,”
which was under development at the time of the article writing.

In our opinion, these works lack progression in the Bloom taxon-
omy and do not cover the different levels of the Android software
stack. The next section develops this concept before the description
of the labs in Section 4.

3 LEARNING MOBILE SECURITY
A deeper understanding of all the security components of Android
requires comprehension of the whole stack of technologies that is
used by the Android Open Source Project (AOSP) [6, 9]. Describing
security APIs from the developer’s perspective can be a starting
point for discovering features such as account management, per-
missions, and cryptographic primitives. Nevertheless, most of the
security features are provided by the operating system, and ex-
plaining them requires sufficient knowledge of operating systems,
runtime environments, and networks. Examples of such features
are the installation process of applications, storage of credentials,
role of SELinux, and update process of the operating system.

Additionally, students should comprehend the heterogeneous
nature of the attacks likely to target Android devices. We have
presented a few examples of vulnerabilities in Table 1 that illustrate
the diversity of the likely threats. The kernel is the most challeng-
ing component to attack, and a representative vulnerability is the
Futex vulnerability1, which enables, under certain conditions, the
execution of arbitrary code in the kernel mode and to root the
phone. On top of the kernel, the Android services can be exploited,
e.g., the process that installs or updates applications. An example
of such a threat is the Janus exploit that abuses a vulnerable signa-
ture verification implementation. Similar attacks target the direct
environment of the malicious application, i.e., the Dalvik virtual
machine or the ART library that implements security verifications
for the running application. Moreover, the attacker can attempt
to abuse the SDK itself by identifying vulnerable classes [17] with
controllable side-effects. Finally, and this constitutes a significant
part of the attacks, the attacker does not exploit any vulnerability
but performs malicious activities using the requested permissions.
Examples of such applications are ransomware, cryptominers, and
remote administration tools.

Taking these remarks into consideration, we describe the struc-
ture of the proposed labs and detail their content, in the next section.
1https://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot
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Table 2: Proposed security activities in Bloom taxonomy of cognitive process structure [12]

aaaaaaa
Soft.
components

Cognitive
process Remember Understand Apply Analyze Eval. Create

Applications DEV
app development

MAL
malware reverse

PROJ

AOSP classes BANK
banking app reverse COV

covert channels
CLASS

vulnerable class loaderDVM & ART PACK
reverse packers

AOSP internals
INST

compile, flash MEM
memory forensic

KERN
ROP programmingKernel

Table 3: Knowledge chap-
ters for the DEV lab

Chapter 1
Application’s architecture [13, 26]
Designing graphical interfaces

Messaging components
Chapter 2

Concurrency and synchronization
Connectivity and sensors

Chapter 3
Security [6, 9]
Wear OS [8]

Firebase Cloud Messaging

4 ANDROID SECURITY LABS
4.1 Security Labs Design
We have developed several labs2 which cover different Android
components involved in the understanding of mobile security. We
present these labs in Table 2, following Bloom’s revised taxonomy of
educational objectives [12]. Students should follow these labs from
left to right in the table, eventually completing the sequence with a
security project (PROJ) that corresponds to the deepest cognitive
process of the taxonomy (Create).

The number of hours depends of the level of knowledge teachers
intend to obtain. We distinguish three levels: level 1 (~2h) provides
fundamental knowledge or focuses on a particular aspect; level 2
(~5h-8h) enables the student to cover more notions and practice
with real devices; level 3 (~20h) aids the student to cover a large
variety of notions or to work on a particular one with important
software development. Most of the labs use level 1 or 2 (e.g., INST
and MAL); however, a few of them (e.g., DEV and COV) can use
level 3 or can be adapted as a security project (PROJ).

The first two labs (Remember process) train the students to de-
velop Android applications (DEV) and to flash a custom Android
image on a smartphone (INST). Such labs are typically observed in
other available approaches [2, 20, 21]. Then, two labs enhance the
students in the understanding of benign (BANK) and malicious ap-
plications (MAL) by reversing their bytecode. This aids the studying
of attacks at the application level and their associated countermea-
sures (debugger detection, obfuscation, etc.) that can be used both
by malicious and legitimate applications.

The subsequent labs correspond to the “Apply” step in the tax-
onomy. Students are encouraged to implement attacks and coun-
termeasures with their previously acquired knowledge. For this
purpose, we propose two use cases. The first one (COV) is proposed
to defeat the Android access control system by implementing a
covert channel between two applications that do not have permis-
sion to interact with each other. The second one (MEM) is proposed
to exploit a dump of the volatile memory to recover certain confi-
dential information. The likely benefit of these labs is to compel the
students to obtain deeper knowledge of the low-level components
of Android, i.e., the leakage induced by the operating system and
its primitives (COV) and the Dalvik (or Art) data structures used to
represent the Java classes of the applications in volatile memory
(MEM).

2https://gitlab.inria.fr/jlalande/teaching-android-mobile-security

Contrary to the previous labs, wherein students are completely
guided while they practice, the three subsequent labs require the
performance of security analysis (Analyze process). We provide
the symptoms of certain issues to the students, and we expect an
investigation and eventually certain remediation. In the first lab
(CLASS), students are required to analyze an application that uses a
vulnerable class loader. The second lab (PACK) proposes to analyze
a malicious application obfuscated with packing techniques. The
third lab (KERN) focuses on low level vulnerabilities by performing
ROP attacks using gadgets of the kernel.

Note that no lab is classified in the “Evaluate” cognitive process
as the distinction between “Analyze” and “Evaluate” is marginal. In
particular, in [4], only three levels of mastery is proposed (familiar-
ity, usage, assessment). Thus, we use only four levels of the Bloom
taxonomy for classifying our labs; additionally, we propose various
security projects (PROJ). They are designed to explore a specific
subject with a large number of hours (level 3 or higher) for a group
of students and may be linked to research activities.

4.2 DEV Lab: Android Development
The DEV lab provides the pre-requisite for understanding the fun-
damentals of Android development. We classify this lab in Bloom’s
taxonomy in the “Remember” process as we do not intend to train
software developers and rather intend to teach the fundamentals
for discussing security aspects. The topics covered depend on the
amount of time allocated, and we distinguish three chapters of
knowledge, as presented in Table 3.

Learning outcomes. At the end of the lab, we expect the students
to comprehend the architecture and deployment of an Android
application. The students should be capable of developing an appli-
cation that communicates with a remote server, using REST API.

4.3 INST Lab - Compiling, Modifying, Flashing
Numerous other laboratories presented in this paper are required
to be able to setup a clean image of the smartphone. As indicated
by Guo et al. [10], students appreciate having a real device to ex-
periment with while performing development or hacking activities.
Moreover, it is occasionally more difficult to work with an emu-
lator, for example to play with the different sensors, or to pair an
emulated smartphone with an emulated Wear watch, which may
require the installation of the Google APIs with an active Google
account.
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The INST lab (level 1) includes the compilation of a complete
AOSP distribution for a Google Nexus 5 or 5X or Sony Xperia X
smartphone and then the flashing of the compiled images. Addition-
ally, the Nexus models offer the capability to debug the kernel out-
put using serial headphone jack. For that purpose, we constructed a
small serial debugger that aids students involved in advanced labs,
where the kernel is modified and is likely to crash during runtime.

Learning outcomes. Students are able to customize the source of
an operating system and install it on a device.

4.4 MAL Lab - Malware Reverse Engineering
The MAL lab consists in reversing several types of malware using
different open source tools. The pedagogical goal of the lab is to
demonstrate that each type of malware requires a custom reverse
process. The lab consists of multiple exercises. Thus, the required
number of hours can be adapted from level 1 to 3. In Bloom’s
taxonomy, we place this lab in the “Understand” process because we
provide the students with the entire set of instructions for reversing
the malware. We present the two most representative ones.

Programming an antidote for a ransomware. The students install
a ransomware on a provided smartphone. They observe that the
image files are encrypted by the malware. Then, the students ex-
plore the code using BytecodeViewer3 or Jadx4 in order to identify
the service that encrypts the images. The code analysis reveals
that the AES ciphering key used by the ransomware is a constant.
Thus, after locating the deciphering code, the students modify the
malicious application using to a bytecode editor so that it calls
the deciphering code. Finally, they use this modified application to
recover the images on the smartphone.

Observing spyware. The students are first required to reverse the
spyware and locate the code that extracts personal data (accounts,
phone number, IMEI) and the code that transmits the data to a
remote server, whose domain name is identified. for the sake of
simplicity. We also propose the observation of the leaked data in
network traces as part of the lab in order to confirm the static
analysis. To achieve this goal, the students setup a local web server,
use the ngrok website5 to create a public URL of the form x.ngrok.io,
and link this URL to the local web server. Then, using a provided tool
based on Soot6, the students substitute the domain name used by the
malware with this URL. Executing this new version of the malware
enables one to capture the first requests that are responsible for
leaking user’s data.

Learning outcomes. Students comprehend the different types of
threat that security analysts confront. They discover the process
of reverse engineering with three approaches. This emphasizes
the fact that security analysts have to adapt their methodology to
the nature of the threat. At this stage, the investigation process
is specified; however, students understand that a custom process
should be designed for each malware.

3https://bytecodeviewer.com
4https://github.com/skylot/jadx
5Ngrog is a tunneling service from a public URL to a local server: https://ngrok.com
6http://sable.github.io/soot/

4.5 BANK Lab - Banking Application Reverse
This lab consists in reversing the authentication activity of a real
banking application. This lab is completely guided, which places
it in the “Understand” process of the taxonomy and aids to fit its
duration to level 2.

The students are required to comprehend the protocol that is
used by the application to authenticate the user to a remote server.
The banking application receives a challenge from the server, which
is used to generate a virtual keyboard. This permits the application
to obfuscate the entered password.

First, students unpack the application and uncompile the byte-
code into Java source code using Jadx. This phase aids them to
identify the activities and classes involved in password encoding.
Second, students observe the evolution of the application state. Us-
ing AndBug7, students can put breakpoints on specific bytecode
instructions. In particular, it aids them to identify the code that
transmits the encoded password to the server. They also install a
counterfeit certificate in the smartphone to bypass the verification
of the remote server’s authenticity. This permits them to monitor
the network traffic using the Burp Suite proxy8. Finally, the stu-
dents precisely identify the Java objects that encode the password
and that are transmitted to the server when the user attempts to
authenticate. By capturing both the challenge received from the
server and the encoded password transmitted by the application,
the students can recover the password.

Learning outcomes. Students comprehend the countermeasures
used by applications for critical parts such as the authentication
phase. They train themselves to bypass these countermeasures as a
real attacker would. Working on attack design aids the understand-
ing of the limits of current security implementations.

4.6 COV Lab - Developing Covert Channels
The COV lab (level 2 or 3) consists in developing a covert chan-
nel between two Android applications [14] in order to bypass the
enforced security policy.

We provide two applications App1 and App2 to the students.
App1 collects certain sensitive data of a user but does not have the
permissions to use the network. App2 cannot access confidential
data but has the necessary permissions to use the network. Those
applications cooperate to leak the data. To achieve this, App1 es-
tablishes a local covert channel with App2 which is based on the
remaining free space in the flash memory. This can encode the
secret data bits if the sender (App1) creates and deletes large files.
Snippets of code are provided to the students to aid them to de-
velop the covert channel inside an asynchronous task. Moreover,
countermeasures against such threats are discussed and analyzed.
If time permits, certain countermeasures can be implemented using
papers of the literature [14, 24].

Learning outcomes. By completing this lab, the students become
aware of the threat posed by covert channels and the means by
which an enforced security policy can be bypassed. Students can
also discover advanced detection techniques.

7https://github.com/swdunlop/AndBug
8https://portswigger.net/burp
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4.7 MEM Lab - Memory Dump Forensic
This lab (level 2) has been inspired by studies on recovering creden-
tials from volatile memory [3, 19]. It is highly challenging for Java
applications to clean their memory after allocating certain objects
even after rebooting the device [16]. Thus, we have designed a lab
wherein students inspect a dump of the memory obtained with
Lime9. This dump is achieved after displaying a simple applica-
tion with two EditText objects, which simulates an authentication
activity. The goal of the lab is to capture the content of the two
EditText objects from the dump.

Then, students should inspect the memory dump using the
Volatility framework10. After identifying the Linux process cor-
responding to the Dalvik VM, we provide extensions for inspecting
the heap of the virtual machine based on the work of Hilgers et
al. [11]. Using Python scripts, students can manipulate classes and
objects and their implementation at the C programming language
level. Students are invited to write the script that enumerates all
the classes and to identify the ones that extends EditText. This
aids them to retrieve the credential from the memory dump.

Learning outcomes. Students comprehend the likely leaks in-
duced by the memory management of Java-like virtual machines,
Dalvik and Art. They are capable of conducting a simple forensic
of a memory dump, which is of interest to digital investigators.

4.8 CLASS Lab - Vulnerable Class Loader
The CLASS lab (level 2) places the students in a situation wherein
an attacker has compromised the remote server used by the appli-
cation. We ask students to analyze and solve the situation following
Bloom’s taxonomy. This learning approach has already been in-
vestigated for learning web development in a secure manner [18].
In our lab, the vulnerable application loads a few classes from the
remote server that is supposed to have been compromised by the
attacker. The students have access to the source code of the first
activity although not to the sources of the remote classes. They are
required to investigate different attacks and if feasible, implement
countermeasures.

The vulnerable application is composed of a regular activity
that dynamically loads other activities from the remote server. The
vulnerabilities are twofold. First, the application uses a custom class
loader that is ineffectively implemented because it systematically
loads classes from the remote resources rather than first asking
the hierarchy of class loaders. Thus, the classes from the Android
runtime such as Checkbox or LinearLayout can be overwritten
by the downloaded activities. This can be used by the attacker to
take control of the main activity. Secondly, the first activity stores
certain confidential data in a static field. The attacker can access
it later from the loaded activity, which is an unintentional leak of
information. To disable those attacks, the students are required
to patch the class loader and use an instance field rather than the
static field.

Learning outcomes. Students should be capable of conducting a
complete investigation of an application connected to a compro-
mised server. Tthey should understand that an implementation can

9https://github.com/504ensicsLabs/LiME
10https://www.volatilityfoundation.org/

contain vulnerabilities if the developer does not comprehend the
mechanisms induced by the used language or the operating system.

4.9 PACK Lab - Packers
The PACK lab (level 2) consists in reversing the MAL lab ran-
somware that are now obfuscated with different packing techniques.
The packer uses native code to unpack the payload at runtime. The
obfuscated methods are decoded immediately before being called
and are re-encoded when they return. This lab requires a deep
analysis to determine how the obfuscated code can be retrieved.

First, the students execute the applications in order to observe
that they behave as those of the MAL lab. Then, they use Bytecode-
Viewer or Jadx to inspect a specified malware sample and determine
that the code of certain methods is empty. Using IDA Pro11, the
students are required to discover how the native code obfuscates
the Java methods. At this stage of the lab, it is feasible to retrieve
the original code of the malware sample.

However, additional ransomware samples using different pack-
ing algorithms are provided to the students. Consequently, new
static analysis of each packing algorithm would be required, and
therefore, we propose to switch to a dynamic approach. The stu-
dents are guided to modify the code of AOSP: The Android VM is
modified to dump the code of each method before executing them.
We provide the most challenging parts of the modifications to the
students to aid them to complete the lab. Based on the INST lab, the
students flash the Sony Xperia X smartphone with the modified
Android system. This permits them to automatically reverse all the
samples.

Learning outcomes. Students comprehend and analyze the work
achieved by a packer using ciphering algorithms. They also com-
prehend the benefit of a solution based on a combination of a static
analysis and a dump that is performed during execution.

4.10 KERN Lab - Kernel ROP Attacks
The KERN lab (level 2 or 3) goes deeper into the security aspects
related to Android’s kernel. In this lab, we provide an emulator with
a kernel containing a vulnerable driver. This driver can be exploited
with a buffer overflow vulnerability that enables the execution of
an arbitrary short payload. Because the kernel implements a W xor X
policy, students are required to perform a ROP attack with gad-
gets available in the kernel. For achieving this step, students use
ROPgadget12 to search for gadgets in the vmlinuz file. The “Hello
World” example consists in printing a message in the kernel logs.
Students should learn to call the printk kernel function using sev-
eral gadgets. If time permits, more complex attacks can be achieved
to spy the memory of a targeted process.

Learning outcomes. This lab illustrates the importance of the
security of all Android components. It trains students to perform
attacks using multiple vectors including attacking the system itself.

The material associated to these labs can be found online at
https://gitlab.inria.fr/jlalande/teaching-android-mobile-security

11https://www.hex-rays.com/products/ida/
12https://github.com/JonathanSalwan/ROPgadget
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Table 4: Evaluation of progress (δ ) and average mark after labs (m) for each type of lab

Attended lab: DEV INST MAL MEM COV CLASS
Nb of students: n = 27 n = 7 n = 28 n = 3 n = 11 n = 11

Questions Scoring δ m δ m δ m δ mark δ m δ m
Are you able to develop an Android application that
interacts with an HTTP server?

DEV +1.74 3.67 +0.14 2.14 +0.75 2.64 +0.00 1.67 +0.18 2.36 +1.36 2.73

Are you able to compile and/or flash an Android
distribution (e.g. AOSP)?

INST +0.93 2.59 +2.57 4.14 +0.82 2.71 +0.00 1.00 +0.18 2.09 +0.55 1.91

Are you able to reverse Android malware? MAL +0.56 1.74 +1.29 2.29 +1.46 2.96 +0.00 1.00 +0.18 1.82 +0.55 1.73
Are you able to perform a forensic analysis of a
dump of volatile Android memory?

MEM +0.56 1.78 +0.86 1.86 +0.86 2.11 +2.00 3.00 +0.00 1.55 +0.18 1.27

Are you able to develop a covert channel to hide
communication between two Android applications?

COV +0.52 1.74 +0.00 1.00 +1.00 2.14 +0.00 1.00 +2.45 3.82 +0.36 1.55

Are you able to comprehend how a vulnerable class
loader can be exploited and propose some patch?

CLASS +0.44 1.59 +0.29 1.43 +0.96 2.21 +0.33 1.33 +0.09 1.64 +0.91 2.27

1 = Unknown – 2 = Discovering – 3 = Intermediate – 4 = Good knowledge – 5 = Advanced

5 EVALUATION
5.1 Audience
The presented labs have been used in several undergraduate pro-
grams in eight universities and engineering schools of three coun-
tries. We did not have the opportunity to play all the labs for the
same pool of students. Nevertheless, multiple combinations of two
or three labs have been tested. We have also used these labs for
research summer schools and tutorials at international conferences
for illustrating technical aspects of mobile security. Nevertheless,
at the time of writing, the goal of this work is also to introduce
the whole sequence of labs in the master degree curriculum, where
security aspects have an important position.

5.2 Evaluation Design
We designed a survey for asking students to evaluate their capabili-
ties with regard to the labs they attended. The concept was to ask
the students to evaluate themselves regarding only one lab in order
to measure the correlation between the lab they followed and the
skill evaluated. If they followed two labs, we asked them to evalu-
ate themselves with respect to the lab with the highest number of
hours. The survey was sent in spring 2018 to the students we had
taught between 2014 and 2018. From among the approximately 200
students, we obtained responses from 87.61% followed the lab a few
months ago, 19% a year ago, 14% two years ago, and the remaining
6% over two years ago.

Table 4 presents the obtained results. The left column recalls
the asked questions which correspond to the pedagogical goal of
a lab. On the right, student evaluations have been reported in the
column corresponding to the name of the lab they followed. With
such a presentation of the results, the correlation should occur on
the diagonal of the table. For evaluating each question, we used
the following marking system inspired by the work of Campbell
et al. [5]: 1) Unknown (No trace in my memory); 2) Discovering
(I recall some of the content); 3) Intermediate (I understood most
of the content); 4) Good knowledge (I am able to do the lab again,
without a supervisor and with the help of documents); 5) Advanced
(I can reuse my knowledge in another use case).

For each question, a student is asked to rate himself/herself
“before” and “after” the lab, which enables the computation of a
differential score corresponding to the difference in the mark before
and after the lab. This provides more information than the rawmark

does with regard to whether the students have previously followed
courses on related topics. It enables the evaluation of the progress
of the students irrespective of their starting point. In Table 4,m
corresponds to the average of the marks “after the lab” (from one
to five) and δ corresponds to the average of the differential marks.

5.3 Evaluation Results
The correlation between the labs and the evaluated skills is evident:
for each lab, the highest scores correspond to the pedagogical goal
of the lab. The improvement in student’s skills on the diagonal is
an average of +1.85, which is encouraging as it is approximately
equivalent to shifting from “Discovering” to “Good knowledge.”
Only the CLASS lab achieves an improvement of +0.91. This can be
explained by the level of difficulty of the lab, which corresponds to
the Analyze phase of the taxonomy and requires substantial effort
of investigation by the students. The CLASS lab also achieves a
progression of +1.36 for the DEV lab. This can be explained by the
fact that the CLASS lab involves HTTP requests.

The self-evaluation of skills by the students yielded an average
mark of 3.31 on the diagonal. The marks of the MAL and MEM
labs are approximately equal to 3, which is a reasonable result
considering the technical challenge associated with them. The COV
labs achieved the highest mark (3.82). We conjecture this to be
a result of the high number of allocated hours for this lab. More
simple activities achieve higher results (DEV, INST) as students feel
comfortable when performing the labs.

The results confirm that the labs are aligned with their pedagogi-
cal goal. The marks reveal that students tend to evaluate their skills
between intermediate and reasonable knowledge levels. Indeed,
only years of practice can provide further knowledge.

6 CONCLUSION
This paper explores several technical aspects with regard to the
learning of Android security. Based on Bloom’s taxonomy, we de-
signed various labs that aid students to learn more deeply about the
internal aspects of Android. By programming attacks and studying
malware or vulnerable applications, students are trained to analyze
complex security problems. This pedagogical design aids them to
improve their skills in mobile security by providing a deeper un-
derstanding of the complexity of the software components used by
Google to design its operating system.
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