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Abstract

This paper presents an approach of demand response (DR) scheduling with thermostatically controlled loads (TCL) in a
distribution grid with high penetration of distributed generations (DG). In this approach, household TCL are employed as
flexibility resources to support the distribution network for mitigating voltage or congestion constraints. A two-stage rolling
optimization based control scheme is proposed to determine the optimal operating status of flexible loads using the forecast
of generation and demand in the distribution system. The proposed methodology is conducted in a distribution test feeder
with realistic scenarios. The simulation results have shown the usefulness and efficiency of the proposed method in
improving the network operation and increasing the hosting capacity of DG.

Keywords:Demand response; distributed generation; distribution network; thermostatically controlled loads; rolling optimization.

1. Introduction

The growth of renewable energy sources (RES) and new demand such as battery electric vehicles (BEV), will
introduce massive impacts on distribution network operation [1], such as voltage violation and congestion. In
medium voltage (MV) networks the conventional voltage control approach using on-load tap changer (OTLC),
based on the assumption of unidirectional power flow, is not designed for this change [2]. Additionally, in areas
with large amount of RES and weak demand, some transformers at the connection between de transmission and
distribution grids may be subjected to higher peak load during injection than during withdrawal from the
transmission grid. Now distribution networks have to become (more) active to comply with the connection of
large amount of DG. Demand response (DR) program is an attractive way to address this issue, as it can respond
quickly with respect to the variation of DG [3]. Typically, most applications of DR are dedicated to the
participation in the balancing markets or frequency regulation reserves because valorization markets still exist
[4]. Nevertheless, many references integrate the use of flexibility in distribution grid operation [e.g. 5,6,17,18].
Demand response taking advantage of the thermal buffering capability of thermostatically controlled load (TCL)
within residential buildings can be a flexibility methodology because buildings with high thermal inertia can
absorb a remarkable amount of thermal energy for a shifted use. By dispatching the flexibility, the distribution
system operator (DSO) can maximize the use of the current capacity of distribution system infrastructures and
postpone investment for grid reinforcement. The optimal load dispatch issue in a distribution system can be
divided into two sub-problems: how to optimize this part of load flow (e.g. flexible loads) in the distribution
system to generate DR scheduling signal, and how to dispatch flexible loads in response to the DR scheduling
signal without disturbing critically the comfort of end-users.

Many references intend to address the optimal power flow (OPF) problem which consists in managing diverse
distributed energy resources (DER) in distribution systems. In [5], the load control signal is based on a real time
OPF at a snapshot. The multi-period OPF accounting for the time series coupling of some DER is proposed in [7].
Due to the non-convex and nonlinear nature of the modeling of distribution system, the complexity of OPF
increases remarkably as a function of the system scale. The solutions include linear approximations of the
distribution system model [5] or a proposal for distributed algorithms to solve OPF separately [6]. Furthermore,
an exact convex formulation of OPF can be found in [8, 9, 10]. In this approach, a semi-definite condition is
adopted to relax the non-convex constraint in the model and formulate OPF as second order cone programming
(SOCP). However, those references only study SOCP with a static view, so it is not able to tackle with the
flexibility dispatch issue with time domain coupling. The SOCP based OPF in time-series can be found in [11]-
[12]. In [11], the authors address a DR scheme using the SOCP based OPF in the day-ahead retail market. In [12],
the SOCP based OPF is combined with a household energy management system and solved in a distributed way
in order to keep the privacy of users. The stochastic method in this context has to be developed to consider
uncertainties associated with generation and demand.
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From a bottom-up view, the flexibility dispatch isually formulated as a decision making problem by
operating the individual load status to minimize tiverall costs of loads [14]. A detailed modelofglCL in
participating in demand response scheme can belfouipl3]. The flexible load dispatch is formulated a
mixed integer linear programming (MILP) in [15]-[L4n [17], a MILP formulation with detailed modalj of
an aggregation of flexible loads is proposed fdlityitscale DR scheme, but the thermal applianaes reot
considered. In [20], the authors proposed a flexidemand model based on thermal appliances, and a
formulation as a mixed integer non-linear programgniMINLP) for smart grid applications. In [18], a
scheduling of electric vehicle charging is formathin order to limit the impact on the distributinatwork in
terms of power losses and voltage violation. In[1% DR program with thermal and shiftable lo&dased for
alleviating distribution network congestions andtcsavings for end-user. In [21], the nodal hoymiiging in
day-ahead optimization framework of DR is proposHuke issue of flexibility dispatch is usually coeglwith
the generation of intermittent generation like windbine or PV in [22]-[24]. Due to the uncertairdfyDG and
demand, the day-ahead optimal scheduling mighthbecurate from the day-ahead forecast [25]. Prdibabi
methods or stochastic optimization techniques @arbployed as in [26]. The rolling optimizations@known
as moving horizon optimization, is capable of smivireal time decision making problem and proveddo
effective [25, 27]. In [15], the load dispatch farated as a MILP problem is solved by a rollingimjigation
based approach with a real time pricing policy.[2d], the charging schedule of electric vehicled/YEs
obtained from a rolling optimization approach cdesing the uncertain behavior of users.

Although there are quite a lot of researches shgiythese two aspects separately, few of them have
considered the rolling optimization based flexiyillispatch that is integrated in a SOCP based @&del. This
paper proposes a rolling optimization based appréeadispatch the flexibility from household TCL ander to
mitigate distribution grid constraints. The flexityi dispatch is formulated as a two-stage optiriiza the first
stage is to solve an OPF in a distribution netwaitk a rolling horizon scheme; the second stage solve the
flexible load dispatch at the aggregator level gsanTCL model. The rolling optimization, which petically
updates input data information, is implementedriteo to reduce the uncertainty associated with igetioa and
consumption. The OPF problem is formulated usireyiranch load flow model considering conic reladati
The SOCP based OPF is an exact convex formuldtimincan greatly reduce the complexity of networldeio
while no approximation is introduced.

The major contributions of the proposed approaettizat 1) it provides a two-stage optimization feavork
with SOCP-based OPF and detailed flexible load rtmisolve the flexibility dispatch problem in dikution
system; and 2) it proposes a rolling robust optation tool to tackle with the uncertainty assodateith
generation of RES and consumption. With a certagiom, the rolling optimization can effectively adj
forecasting errors and maximize the benefits froadlscheduling.

This paper is structured as follows: the sectiasuflines system modeling including the flexibilégheme,
the modeling of household flexible load, and disition network model. The section 3 presents thingo
optimization based dispatch approach for flexiblad. Then, the proposed approach is carried oat r@alistic
test distribution network described in the secloand simulation results are discussed in the@eé&ti Finally,
conclusions and opened issues are drawn in thiogect

2. System M odeling
2.1. Architecture of household TCL management in thigiligion grid

Smart grids aim at making distribution networkshaliigh penetration of DG more flexible to mitigatéical
conditions including 1) large reverse power flowthe transmission system, 2) voltage constraints 3nline
congestions, for the purpose of postponing the ggidforcement. The organization of household Béity
scheduling in a distribution network is illustratedFig.1. At first a state estimator detects nekvmoonstraints
and then a control center will operate OLTC, DG andrces of flexibility in a centralized way basenl the
current network state and forecasting of generadioh consumption. A local flexible load aggregasonelpful
in the management of household flexibility as mtestible loads are small-scaled and decentraliZéde: load
aggregator can communicate with DSO the capalsilitie increase or decrease the demand during aircerta
period and the associated costs. In addition, dad hggregator can offer a better load curve byosimig the
profiles from a massive number of flexible loads the intermediary between DSO and end-users,oidn |
aggregator is might better negotiate with DSO faentives.

In fact, the DSO needs for flexibility will depea the location of the constraint. So the load egagtor has
to control the flexible demand in a nodal approackimilar structure of nodal DR management carfoo@d in
[28]. Therefore, some smart grid infrastructuressraquired to permit two-way communication betwtenload



aggregator and flexible loads and enable the meed-tontrol. The sources of household flexibilignsist of
load shedding, load shifting, and TCL. The secasfdrs to devices that have to complete a presciénedgy
requirement with a time limitation, such as electrehicle charging or washing machine. The TCL rete
appliances with a thermal inertia. This paper oobysiders the energy management of TCL in residenti
buildings.
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Fig. 1. Architecture of household TCL managemer# distribution network
2.2.Modeling of household TCL

First, we introduce a household heating device @&jgvhich is modeled as a first order system \sitbtate
variablef;, (t) denoting the indoor temperature and a binary cbrariableP,, (t) denoting the electric power.
R., andCy, are respectively the thermal resistance and tHecapacity of the room. The ambient temperature
6,(t) depends on the external environméfi(t) is switched from 0 t®.,. (and inversely) to keef,(t)
within the temperature range&,[i,,, Omqr]- The dynamics o, (t) in (1) can be found in [30], wherk.,;.is
the rated power of appliance. The detailed paraet® presented in table 1.

5 ()= L _ 1 1
6,(t)= e (6(t)-6,(t)+ & (t) 1)
Gull)
—
4,
P —=c, —_l_—

Fig. 2. Equivalent thermal circuit scheme of a tetwdd heating device

In this paper, we are interested in the nodal fi¢ixy in a MV distribution network. Hereafter theodal
flexibility of thermal appliances is presented hy aggregate model dfl heating devices with homogenous
characteristics located behind a MV/LV transformest N denote the number of appliances at the Bygt)
and@,,(t) denote the vector df,,(t) andb,,(t) of N appliances. We define the average internal teryera
0av(t) = 26, (t)/N and aggregate powe,,(t) = ZP;,(t) as two output variables of the aggregate load
model. Thus, this aggregate model can be exprésdbd state-space representation in (2), whet® C, D are
matrices that can be computed from (1).
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It can be demonstrated that this system is obsknaid controllable. Anyhow, the control of thiggeggate
model could be realized for the given outByj, (t) andf,,(t) at the momenit but the detailed control strategy
is not in the scope of this paper. Hereafter, wrioon seeking the optimal setpointRafy(t) and 8,(t) as they
determine the available flexibility of the aggregdiCLs. The evolution of aggregate load model fiertimeslot
t is obtained by summing up the dynamics in (1) adsformed to a discrete format with a time ftep

0avt+1 :[ B At ]mavt + At wm + At EPagg,t (3)
Y Rthcth Rthcth NClh

From (3), the evolution of aggregate model can &erdnined with the setpoint &4(t) and &,(t) and the
environment variabled(t). Paggt) can be varied continuously withifi, NP,,..] as long aN is large enough.
() is limited within[0,,in, Omax], DECaUSE it is a necessary condition for limititigthe variables of@,, (t)
within this range. The setpoint é(t) is preset t@,..t = (Opmin + Omax)/2- A daily power demand profile of
this aggregate load model with a typical ambientgerature pattern is shown in Fig. 3. The detgil@dmeters
of heating advice can be found in table 1 (issuechf{30]).

Table 1. Parameters of thermal appliances in thelation.

Parameter Value
Rin(Thermal resistance) 7.5°C/kwW
Cin(Thermal capacity) 2.19kWh/°C
Omin(Minimum internal temperature) 17.3°C
Oma{Maximum internal temperature) 19.3°C
6re(Reference indoor temperature) 18.3°C
Oo(Ambient temperature) 6~16°C
Prae(Rated power) 3kw

T 25°C

—— Aggregate power demand P agg
_____ Ambient temperature By 120°C
Average internal temperature 0av

Power of N thermal appliances
Temperature

min

I I . 0°C
Oh 6h 12h 18h 24h

Fig. 3. 24hrs profiles af,;,(t) andé,,(t) with a daily ambient temperature profile

It can be seen that the power demgygd (¢t) is influenced by the ambient temperat@g€t). With higher
ambient temperature, the heating advices consusseelectric energy for keeping the indoor tempeeatand
vice versa. This can be used to model the dynaofibemogeneous loads. When including heterogenieaids,
we can partition them using clustering methods rating to their parameters and model them separatdiich
would be studied in future work.



2.3.Modeling of distribution network

The OPF in distribution networks is formulated gsabranch flow model introduced in [10]. L'Btdenote
the set of busses) @nd L denote the set of branchég)( For each branch,f), letz;; . = r;;, + ix;;, denote the
complex impedance of the brandh, denote the complex current afigd, = P;;, + iQ;; denote the complex
power flow from busesto j at time slot. For each bus) V;, denote the complex voltage afid = P;; +iQ;,
denote the complex bus load.

The whole power demand at buss divided into three components: unflexible dethafkexible demand
(which is modeled in subsection 2.2), and DG coteweat this bus, as shown in (4). The unflexiblendad
doesn't participate in the demand response progaachits power profile comes from a public databake
Enedis (the main DSO in France) for the regionravBnce in France.

{ Pi,t = Pun,i t + Pagg it PDG it (4)
Qi t = Qun,i t + Qagg it QDG it

The electric circuit characteristics of the radisstribution network are presented by the followetguations:

Vie Ve =g 1y, (%)
Sij t :V\.Tli;.t (6)

7
Sij,t_ZjZ\j‘lij,t‘z Zsjk‘t =S (7)

(jsk)oL

By expressing (5)-(7) in terms of real variabléfecomes:

B N Iij t Z Pu: =Py (8)
(isk)oL

Qij,t _Xijlij,t - Zij,r :Qj,t 9
(jsk)oL

Vie = Vig ~ 2("\1 B+ %Q; ,x)+ (rijz + Xijz)Dij,‘ (10)

|.. = M (11)

it v

it

Whereli]"t = |I,:]"t|2andvi't = |Vi,t|2'
The computational burden is considerable due tonthreconvex nature of the described network model.
Thus, a semi-definite relaxation of (11) to a conwendition is implemented in order to formulat8@CP [10].
> F)ijz,t + Qij2,t (12)
" Vi,t
The HV/MV transformer with on load tap changer (@)Tcan be switched for keeping the voltage
magnitude at lower side within a preset dead banthis paper an ideal equivalent transformer misieked to
adjust the voltage at slack bus (13), and the ¢egitipn must be within limits (14).

vslack,t = r(Tapt)zvslacko (13)
Tapmin < Tapt < Tapmax (14)

Besides, the bus voltage and branch apparent paowet be kept within system secure constraints &b
(16).



\VARESVARESVAS (15)

min it max

F,ijz.t + Qijz.t = Sn21a>< (16)
The DG connected in the distribution network inésidvind turbines (WT) and roof-top PV. It is assdme
that the maximum power point tracking (MPPT) teciuei is used to determine maximum active pal&f;,
from RES at timeslatin (17), wherel; , depends on weather conditions (e.g. wind speedalad insolation).
PDrnsa;(Y‘ = AMPinslall (17)

DG,

The active and reactive power regulation of DChathius is expressed in (18)-(20).

0< Py it S PDn:sa?J (18)
be'is S Qoo xS Q&S (19)
2 2 2

Poeit + Qcir < Sar (20)

3. Rolling optimization formulation for TCL scheduling

The rolling optimization is an effective approaah make real time decision of the load dispatch. The
procedures of rolling optimization of flexible loaispatch are described as follows:

1) The total scheduling horizon from 0Tas determined as 24 hours of a day.

2) At the first time step, compute the OPF overftirecasting horizom and generate a set of scheduling of
flexible load. Only the scheduling at real timeipdtit, is ever implemented.

3) At each time step, move one step ahead thedstiag horizon and repeat the step 2) until the cdritie
day based on current operational status and upd#tathation and generate the a new set of loagatih. It is
assumed in this work that new forecasts are avaikNery 30 min.

T = total horizon
1

; )
LI L ]---- 111 1] Scheduling periods

T = forecasting horizon

—_—
zalln Rolling periods

]

y AT

! 7] Real time period
7] period

' AT %

[}

Fig. 4. Procedures of rolling optimization

At each real time period,tthe rolling optimization is formulated in (21).

i {F(X% Je A, )] : (21)

t=ty+l

s.t. G(Xt)SO, t[[to,t0+r]

where F(x;,) is the objective at the current timeslot di@,) the forecast of objective at future timeslots,
G(x,) is the set of constraints at each timeslot.
The detailed formulations at distribution netwogkel and load aggregator level are presented asvial



3.1. Stage of optimization at distribution network level

The OPF for distribution network in this paper aims minimizing power losses in the feeder while
maximizing the generation from RES subject to systecure constraints.

Firstly a load flow calculation is run within thetimization window(t,, t, + t] according to the demand and
RES generation forecastings. From these resukisséh of timeslotsl,,; are identified during which there are
critical conditions on the network that are du®S or peak loads.

Then the OPF is carried out to determine the setdiDG, OLTC, and DR at each timeslot. The otiyec
function of OPF to be minimized is composed of polesses on the lines, DG curtailment and revecsiwea
power at the slack bus for each timeslas expressed in (22).

] (22)

min(clzrij D]ij t +C22(szi,t - PDG,k,t)+ C3‘_ Pslack,t
@) Kk
D6 )DLKOGE Ot +7]

where@ is the set of busses with a dispatchable DG, thation X["=x if x>0, K["=0 if X<0; Py, ¢ iS the active
power import at slack bus and negative valu#®,gf,. means the electrical power is fed back towards the
higher voltage gride,, ¢, andc; are weighting coefficients of each objective. lhiststudy, the choice of the
weighting factors is identical, i.e; = ¢, = ¢3 = 1/3.

The OPF is subjected to the network equality aedulity constraints including (4), (8), (9), (1®@2), (13),
(14), (15), (16), (17), (18), (19), and (20). Itristiced that the control variable of [, ;. appears in the
equation (3).

Let P/ . denote the vectaR,,,(t) at busi obtained from the results of OPF,/  will be used as a
reference of the optimization at load aggregatofatt, the need of flexibility for DSO in terms DR duration
and magnitude has been modulatedZin andP;/ .. Then the DSO send%  andP[7 ; of each bus to the
load aggregators for determining the DR schedudingusi.

3.2.Stage of optimization at load aggregator level

The optimization run by a load aggregator is tarddb keep the temperature comfort of thermal appks
and respond to the DSO need for flexibility. As atdsed in the previous section, the control of thar
appliances can be realized with the setpaip} (t) andf,,(t). LetP,4,; and@,,; denote respectively the
vector ofP,,,(t) andé,,(t) over the optimization window at bus The objective function of DR aims at
minimizing the power deviation from the setpoint@®PF during timeslots on and minimizing the influence
on the temperature comfort during the other tinsslas expressed in (23):

. ref |12 2.
mlr(atl-_r qﬁpagg,i - Pa;;j H +(1_ag)¢lﬂav,i _Hset )'I DB (23)
a,(t)=1if t07T,, anda, (t) =0if t 0T, ,t Olt,t, +7]
wherea; is at-element vector and, (t) is the element od;.
The optimization of thermal appliances is subjecthte equality constraint in (3) as well as theqiraity
constraints in (24) and (25).
B <0, <6, (24)

av,i

pmin < < pmax (25)

agg i agg.,i — " agg.i

The lower and upper limitB™" . andP™%* are determined by the number of thermal appliaigeg busi,

agg,i agg,i
i.e.P@Zﬁi = 0 andP,7"; = N;Pyqe- The optimal setpoint of DR is denotB g;i andegﬁfi. It is noticed that
there might be some deviations betw@émi andPZ’;tgli due to operational constraints of DR. Therefone, t

DSO has to relaunch the OPF using a fixed valli%tgli from optimization of DR to obtain the new optimal
setpoint of DG.



3.3.Flow chart of proposed DR scheduling

The procedure of DR scheduling is organized in BigThe rolling optimization based control runs &ach
timeslot over the horizof. At each timeslot,, the optimization window coverg, t,+t]. The stages of
optimization on the level of distribution networkdaload aggregator are carried out consecutivelybtain the

vector of control variableByy. ; and@jy’. Only the optimal value of DR at the first timetstg is implemented.

The optimal value of DG regulation obtained at oét, has to be renewed with the output of load aggoegat
before being used by their local controller.

t0=1

DSO identifies the timeslots with critical
network conditions over [t, ty + 7]

v

DSO runs the multi-period OPF over
[to, to + 7] using updated forecast data
for offsetting the uncertainty of

generation and demand

vV

ref
Send Tm and Pagg'i to

load aggregator

v

Load aggregator computes the optimal
value of Pgg,; and 8,,; and send them
to DSO

\

. opt
DSO re-runs OPF with Pagg’i and

renews the setpoint of DG

!

opt
agg

to=ty+1

Implement P, ; at timeslot ¢,

Fig. 5. Flow chart of proposed DR scheduling

4. Case Study
4.1. Test distribution network setting

To demonstrate the usefulness and effectivenepsopiosed method, we perform simulation using anHEE
34-bus test feeder in Fig. 6 with several modifaad. Typical values of the French network havenbesed for
cabled lines and overhead lines parameters. Tl detmand on the feeder is up to 9.52MW. The d=talil
characteristics of this test network can be founf2B]. The RES connected in this feeder include &@ roof-
top PV. We assume two WTs, each with installed powfe4dMW, are connected within the feeder and
controllable through an agreement between the DS8® the WT operator. The reactive power of WT is



dispatched within £0.35 - Pi&tel 0.4 - PR to offer voltage support. The installed powerrobf-top PV
connected at each bus is sized as a function olLMWansformer capacity and the PV is non-dispabdaThe
overall demand at each bus is shared between ilrildedemand (70%) and flexible demand (30%).

29

12 28
1 27
” . i . 10 28 26
3 4 6 13 14 30 31 32
@@ 9 23 25
HV/MV @ Wil e o 33
1 3B um 20 2122
34
19

15 16 17: 18

Fig. 6. Test distribution network

The OLTC has 17 tap positions to vary the tramsésrvoltage from -10% to +10%, so with each chaofge
tap position the voltage variation is 1.25%=0.0i25The OLTC is set to keep the bus voltage at stibata
within [1.02pu, 1.04ou], which is commonly used by French DSO.

4.2.Simulation scenarios

The forecasting patterns of unflexible demand, wand PV generations are shown in Fig. 7. It casd®n
that during 13-17h, there is reverse power flovhi® transmission system due to the large penatrafidrRES.
The temperature pattern used in the simulationble®sn shown in Fig.3. The time step is seAte= 30min, so
the total horizorT= 48 timeslots for the whole day simulation. A foasting window of 6h which is equal to 12
timeslots is adopted in the rolling optimization.

127

Demand profile |
PV profile
‘Wind profile

=
=

=]

Active power profile (MW)

Oh 6h 12h 18h 24k
Hours

Fig. 7. 24hrs forecasting patterns of demand, RV\&f on the test feeder.

The simulations are conducted in four scenariodetmonstrate the effectiveness and efficiency oppsed

method as follows:

- Scenario 1, the base case where the flexible lasgaot controlled in the network operation;

- Scenario 2, the flexible loads are controlled usioiing optimization approach but the uncertaiofy
demand and generation are not taken into accaentyé suppose that the measured value (“real Yalue
is exactly the predict value;

- Scenario 3, the flexible loads are controlled usioijng optimization approach and the uncertaiofy
demand and generation are taken into accountwweesuppose the measured value is deviated from the
forecasted value, and the forecast errors followranal distribution;

- Scenario 4, the flexible loads are controlled ustdgp off-line information of demand and generation
without forecast errors, like a day-ahead schedulin

The prediction and optimization horizon in scensurib and 3 is 6h. We suppose the prediction errors i

scenario 3 are described by a normal distribubigh, 0.1). The settings of these contrastive sceaaim at



verifying the robustness of proposed method ag&imstast errors and the length of optimizationzwor.

5. Simulation Results and Discussions

The simulations are performed using MATLAB and tlmad flow is computed using the toolbox
MATPOWER 5.0. First we compare the results of sdesal and 2, respectively without and with DR
scheduling. The demand and generation patternsgn 8 implicate a large amount of reverse powewflo
towards the HV grid during the time intervals 5h~aitd 13h~17h. In the conventional market structtire,
reverse power flow to the HV grid is unlikely to tefunded. Thus, the DR scheduling is increasiegdéamand
to absorb a part of this production, and thus thuce the excess of local generation. It can baddhbat in the
proposed method the demand shifting can be doee aifid before the peak of generation. This is mxdue
rolling optimization is able to anticipate the nesfdflexibility using prediction data. The level @éxibility is
limited by the operational constraints of flexitdads, which will be presented lately.

Production of RES (PV+WT)

— — —Overall Demand without DR scheduling
Overall Demand with DR scheduling

Active power profile(MW)

Oh 6h 12h 18h ) 24h
Hours

Fig. 8. 24hrs of demand and RES production profiles

Then, the voltage profiles at two critical hourshldhd 19h30, respectively representing the houtis fuil
production and peak demand hours, are shown inFigt 16h, both WT and PV are around their maximum
power production and the voltage profile could exte¢he upper limit at some busses. The reactiveepow
regulation of WT is used to offer voltage supparishown in Fig.10, but it is not enough to mitigtite voltage
deviations (this is due to the loxir ratio of MV lines). The absorption of reactive pawof WT1 and WT2
during 15~17h is for mitigating the voltage riseedo DG. At other hours, the WT1 injects reactiesvpr for
supporting the voltage profile as high as posdibleeduce the power losses. As the reactive poeguilation is
not efficient enough to keep voltage inside theitémthe proposed method is able to remove theagelt
constraint by both reducing the active power of Bx@l filling the valley of demand. In this examplee DR
action helps to decrease the active power reducioh'T1 at 16h by 0.20MW. Thus, the rate of usdR&sS is
improved with the use of DR. The DR scheduling atso remove low voltage constraints at 19h30 bitispi
the demand to other hours. Although congestionsiar@bserved in this feeder, it could be obviowssiived by
shifting the flexible demand as well.

1.07

- = =voltage at 16h without DR
voltage at 16h with DR

= = =voltage at 19h30 without DR
voltage at 19h30 with DR
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Fig. 9. Voltage profiles at 16h and 19h30.



reactive power of WT1

----- without DR scheduling
—with DR scheduling

Reactive power (MVar)

. | . )

Oh 6h 12h 18h 24h
Hours

reactive power of WT2

----- without DR schedullng
—W|th DR schedullng

Reactive power (MVar)
3 o

h 12h
Hours

Fig.10. Reactive power regulation of WT generati@active power is positive if delivered into thidy
The optimal setpomP"Z; of DR scheduling is shown in Fig. 11. As the DRestling works in a nodal
approach, we only display the profiles at the bsigsand 24 that are respectively upstream and dowems the
WT1. The proposed method has shifted the dematttkafal appliance from morning peak period (10hy1@h
afternoon off-peak period (13h~17h). As it is nobegh to mitigate the voltage constraints, the dehwuring
19h~20h30 is also partially shifted before 19h it@mation of the heating with an increase of intdrn
temperature before 19h). It is noticed that theilfle demand at bus 24 shows intensive solicitationthe
4h~8h period. This is because the downstream bum®esvith greater voltage sensitivity than the rgzn
busses, so the use of their flexibility is more esgive which results in some oscillations of thérimads and
CLPU effect. For avoiding this situation, the usdlexibility should be shared among busses in agmoderate
way, for example by applying solicitation limitsrfDR at each bus. The internal temperature profifehermal
appliances at busses 8 and 24 are shown in Fig.hRinternal temperature of thermal appliancedviays kept
within the limits to ensure the comfort of usersovdilow their devices participation in the grid ogtéon. It can
be found from the action of DR that the temperatumestraint (then the users comfort) is the strehgendition
to impede the use of thermal appliance arbitrarily.

a) DR scheduling at bus 8 b) DR scheduling at bus 24
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Fig. 11. Power profilé’zztgvi of DR scheduling a) at bus 8, b) at bus 24.
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Fig. 12. Internal temperatuﬁzi. of DR scheduling a) at bus 8, b) at bus 24.
The detailed results of four scenarios are predeimdable 2. It is shown that all performance dadors

including power losses, DG curtailment and revemeer flow in the scenarios 2, 3 and 4 have begadwed

in presence of DR scheduling. For the single da thas studied, the energy injected into the H\d gsi

respectively reduced by 11.8%, 10.6% and 12.0% thadenergy savings are respectively 12.2%, 11% and

12.3%. The energy savings, i.e. the energy withdriram the HV grid, are constituted by the minintiaa of

power losses, the reduction of DG curtailment, thedshifting of demand. This performance is limitadthe

TCLs as their temperature constraints are alwagpeated. The overall demand of TCL is almost canstathe

four scenarios. The results have shown that thiaqeances of scenarios 2 and 3 are similar, anctlase to

scenario 4. Thus, it confirms the effectivenesshef proposed rolling optimization with respect e off-line

optimization. In particular, the results of scenaB compared with those of scenario 2 have proven t

robustness of proposed method against the uncgrtiproduction of DG. This is because the optistatus of

DR is adjusted when the rolling optimization isfpemed with updated forecasting of RES at each. Sthps, it

is demonstrated that the proposed method can benmepted in a realistic situation considering theastainty

of forecast. In addition, the line losses are abwaduced in scenarios 2, 3 and 4 because thetiobjéanction

of OPF takes them into account.

Table 2. Performance of network operation with DR single day. Total generation by DGs: 124.3 MWh

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Daily line losses 2.87MWh 2.60MWh 2.62MWh 2.59MWh
Energy of active power curtailment of DG 1.55MWh 8TMWh 0.90MWh 0.86MWh
Energy injected into the HV grid 38.03MWh 33.55MWh 33.98MWh 33.47MWh
Energy withdrawn from the HV grid 50.76MWh 44 .57MWh 45.19MWh 44.53MWh
Energy saving by DR - 6.19MWh 5.57MWh 6.23MWh
Total flexible demand of TCL 28.23MWh 27.49MWh 23\8Wh 27.55MWh

Furthermore, a sensitivity analysis is conductett @ifferent penetration of DG and flexibilities verify the
performance of proposed method. First the instadigolacity of WT1 and WT2 is varied from 1 to 6MW fo
each WT. We use the energy savings by DR as tlieaitod to assess the performance of DR. In Fig.th&,
energy saving on the distribution network increasdewst linearly with installed power capacity. TihBuence
of available flexible demand in the feeder is alseestigated in the sensitivity analysis. Threecpatages of
flexible demand are used, respectively 15%, 30% %0%. The percentage of energy savings as indigator
shown in Fig.14. It is indicated that the capaietitof DR is increasing when it takes greater pathe overall
demand. The rolling optimization in scenario 2 ceach the performance of an off-line optimizatiothwull
information (scenario 4), while it requires lesseftasting window for the production of DG. The rstmess of
proposed method under prediction errors is alsesassl as the indicator of scenario 3 is always aocay
close to the optimal results when WT keeps incregsi
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Then, the influences of forecast error and thetleg prediction horizon are taken into consideration. The
length of window is varied from 1h to 8h to testhtine predictive vision can influence the optimiaat Three
levels of forecast errors, respectively normalrdistion N(1, 0.05),N(1, 0.1) andN(1, 0.2), are used to compare
with the scenario 2. In order to smooth the flutires due to randomness, a mean value of indidatol0
realizations is used. The indicator of energy sg\as a function of the prediction horizomith these error
settings is presented in Fig.15. It is shown thatgerformance of DR can be improved in increasiegvindow
T and the forecast accuracy. This is because th@opeal method can better anticipate the use offléyiwith
a longer window. The curve without forecast errndicates that the capabilities of flexibility arémast
saturated when reaches 6h. It is also shown that the forecast &ads greater influence with longer window,
since the uncertainties related to the rolling mjtation is greater.



6.5

Energy saving(MWh)

—=e— Scenario 2 w/o forecast error
—©— Scenario 3 with forecast error N(1, 0.05)
—¥— Scenario 3 with forecast error N(1, 0.1)
—A— Scenario 3 with forecast error N(1, 0.2)

L L L

3.5

1 2 3 4 5 6 7 8
Length of optimization window 7 (hours)
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6. Conclusions

The DR scheduling for thermal appliances usingléngpmulti-period optimization based control haseln
proposed for the operation of a MV distributionvmetk with high penetration of DG. The approachasdd on
the forecasts of the production and demand, anadvh#ability of the flexible demand. The DR schkwaly can
be used to mitigate the voltage and congestiont@ings when a great amount of DG is connected,raddce
the power losses in the distribution network. THe Will also help the DSO to respect its forecagtesver
profile with the transmission system operator (TS#)the HV/MV substation. The overall profit in the
distribution feeder is improved as the energy imfieom HV grid is reduced. The DSO will then be elbd
optimize its contracted power with the TSO. The BRI also help the DSO in postponing expensive
reinforcements (building of a new substation, negders, and new transformer). Finally, the opematio
constraints of temperature for the TCLs are alwappected in the proposed method, so the comfoendf
users is not seriously disturbed.

The proposed method is conducted in a test digtoib feeder with high penetration of DG that hatical
reverse power flow and voltage deviations. The igtenh uncertainty of production and demand is tak&o
account. The results have shown that the proposgtat can effectively employ the flexible loadsstgpport
the distribution network operation. The robustnetshe proposed method is assessed against thetaintg
related to the forecasted data. Although the resulily depend on the specific feeder characterishics paper
proposes a methodology of DR scheduling for th&idigion network optimization. Furthermore, the drting
of household TCL is based on the homogenous assampthe future work for heterogeneous loads can be
done using some innovative energy management agipgeaand by developing a more detailed aggregated
model of the flexible loads at the MV/LV substatitevel. Finally, the scheduling of flexibility isalsed on
technical issues (smart devices to control thedhatie socio-economic assessment (consumer belzandacost
of smart solutions) and regulatory issues (markgaimization to valorize the flexibility at distribon level) that
will have to be addressed for a successful impleatiem of demand flexibility.
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