
HAL Id: hal-01947195
https://centralesupelec.hal.science/hal-01947195v1

Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting QoE Factors with Machine Learning
Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, Merouane

Debbah

To cite this version:
Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, Merouane Debbah. Predicting QoE
Factors with Machine Learning. IEEE International Conference on Communications (ICC 2018), May
2018, Kansas, United States. �10.1109/icc.2018.8422609�. �hal-01947195�

https://centralesupelec.hal.science/hal-01947195v1
https://hal.archives-ouvertes.fr

Predicting QoE Factors with Machine Learning

Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, Mérouane Debbah

Mathematical and Algorithmic Sciences Lab, Paris Research Center - Huawei Technologies Co. Ltd.

Email: {name.surname}@huawei.com

Abstract—Classic network control techniques have as sole
objective the fulfillment of Quality-of-Service (QoS) metrics,
being quantitative and network-centric. Nowadays, the research
community envisions a paradigm shift that will put the em-
phasis on Quality of Experience (QoE) metrics, which relate
directly to the user satisfaction. Yet, assessing QoE from QoS
measurements is a challenging task that powerful Software
Defined Network controllers are now able to tackle via machine
learning techniques. In this paper we focus on a few crucial
QoE factors and we first propose a Bayesian Network model
to predict re-buffering ratio. Then, we derive our own novel
Neural Network search method to prove that the BN correctly
captures the discovered stalling data patterns. Finally, we show
that hidden variable models based and context information boost
performance for all QoE related measures.

Index Terms—Software Defined Networking, Quality of Experi-
ence, Bayesian Network, Neural Network Search Method, Graph
Clustering, Hidden Variable Model

I. INTRODUCTION

According to a recent report [1], video traffic will steadily

grow in the next years, representing 82% of the whole

Internet traffic by 2021. Therefore, handling video traffic

so as to maximize the quality perceived by final users is

becoming critical both for content and network operators.

To this end, Content Delivery Networks (CDNs) operators

have adopted coordinated control planes [2] between routing

and their streaming systems following the recent trend of

Software Defined Networks (SDN) [3], which has deeply

transformed the way network architectures are designed and

controlled. Nonetheless, Internet Service Providers (ISPs) can

also contribute to improve the perceived quality of video traffic

by optimizing network resources according to the user needs.

However, ISPs can only exploit coarse-grained information on

video flows due to the end-to-end encryption that many Over-

The-Top (OTT) operators like Facebook, Google, and Amazon

employ [4]. ISPs are therefore calling for new methods for

handling network resources in order to maximize the perceived

quality in video services, which directly reflects the opinion

customers have on the network infrastructure [5].

HTTP Adaptive Streaming (HAS), which has been stan-

dardized into MPEG-Dynamic Adaptive HTTP Streaming

(DASH) [6], represents nowadays the pillar technology for

video streaming over the Internet. Indeed, HAS connections

can easily pass through intermediate services like NATs,

gateways and proxies without the need of complex network

configurations. Videos are split into temporal segments whose

duration lasts from a couple up to hundreds of seconds. Each

segment (also knows as chunk) is encoded at different qualities

resulting in different file sizes. The availability of multiple

representations for the same video segment enables DASH

clients to scale up or down the video quality by simply

selecting the best segment to be downloaded according to

network status and video player’s buffer.

The way final users perceive the quality of a streamed video

depends on several factors that cannot be all measured. This

perceived quality is denoted as Quality of Experience (QoE).

According to [7], the user experience highly depends on three

crucial factors: (i) the visual quality and its variation, (ii) the

frequency and duration of re-buffering events (i.e., stalls or

interruptions), and (iii) the startup delay. While the visual

quality and its variation can be measured using PSNR-based

metrics when traffic is not encrypted, re-buffering events and

start-up delay cannot be directly measured, but only predicted

from classic QoS metrics [4]. This allows to infer QoE factors

by still relying on legacy, QoS monitoring systems.

Yet, the mapping between QoS and QoE metrics is highly

complex, as they often lay in high dimensional spaces and are

subject to noise. As a consequence, a closed form modeling

and its experimental validation are not practical. We therefore

resort to machine learning techniques to derive the complex

relationships between QoS and QoE metrics.

On a data set produced with a high-fidelity and fully

controllable simulation environment, we show that while lo-

cal linear relationships hold for the video quality variation

and network measurements, re-buffering events lay in high

dimension clusters of QoS metrics. For re-buffering events,

we present a Bayesian Network (BN) classifier based on two

Logistic Regressions (LR) which better balances the class

accuracy compared to the state of the art method based

on random forests [8]. Furthermore, we demonstrate that

due to the stochastic nature of re-buffering events, clusters

partially overlap, hence increasing the inaccuracy of standard

predictors. A pattern exploration model that we specifically

design using a novel Neural Network (NN) search method

confirms our intuition that other predictors incur the same or

worse inaccuracy of BN-based methods. Finally, we turn our

attention to hidden variables, namely metrics that cannot be

directly measured but can be still inferred from QoS metrics.

We show that the use of predicted hidden variables as features

can indeed improve accuracy for re-buffering events. Finally,

we show that if we have access to information about network

congestion (e.g., number of competing sessions, QoS measures

on bottlenecks) and basic characteristics on video streams

(e.g., type of device, content provider) all predictions of QoE

factors can be further improved.

The paper is structured as follow. Sec. II discusses relevant

related work. Sec. III describes the problem of predicting

QoE from QoS measurements and the data set we produced.

Sec. IV illustrates our method to classify and predict re-

buffering events, while Sec. V presents results for the video

quality and its variation. Finally, Sec. VI concludes our paper.

II. RELATED WORK

Quality of Experience (QoE) has recently gained momen-

tum as a way to assess the user opinion of the network quality

while watching videos. An additive log-logistic model that

maps video quality, freezing (i.e., stall of the video session),

and image artifacts due to compression and re-buffering events

into a QoE score has been firstly proposed in [9] and succes-

sively adopted by ITU in the Recommendation P.1202.2 as a

reference model for quantifying QoE [10]. The investigation

performed in [11] on how a user perceives the video quality

and the main factors that influence this perception resulted in

the definition of eight mathematical models of QoE. Studies

like the one presented in [12] provide quantitative methods to

measure the distortion of the received bit-stream due to video

quality and freezing. While different in the way they compute

a score for measuring QoE, all these works agree on three main

impairments that affect the QoE, namely re-buffering events,

the video quality and its variation. Furthermore, due to the

psychological effect known as memory effect, the repetition

of the same impairment during the video session such as

the experience of multiple video stalls due to re-buffering

strongly affects the quality perceived by the final user [13]. For

this reason, both client-side and network-side mechanisms [7],

[14], [15] have been recently proposed to prevent or at least

minimize re-buffering events and video quality variations.

Existing client-side DASH adaptation policies base their

decisions on several network performance and the internal

client state. Rate-Based (RB) policies base their decisions

on the measured download throughput, whereas Buffer-Based

(BB) [14] approaches use the level of the buffer containing the

downloaded segments to decide the quality of the next chunk.

A number of hybrid approaches also exist, where the explicit

formulation of the optimization problem [7] enables the use

of control theoretic methods.

Machine learning has been recently used to predict QoE

from network measurements [4], [16]. Dimopoulos et al. [4]

shows how the rebuffering ratio, and the average video quality

and its variation, can be predicted using random forests. We

consider this work as a starting point for our research and

present two further contributions: 1) a Bayesian Network

model to predict rebuffering events with a better balance in

class accuracies and 2) the evidence that additional context

information on network congestion and basic characteristics

of video streams improve predictions for all QoE factors.

III. FROM QOS TO QOE FACTORS

A. Problem Statement

We consider three main QoE factors which are commonly

used to measure user-perceived video quality [5]:

• Average video bitrate of the downloaded segments.

• Average video bitrate variation: the standard deviation

of the video bitrate. It quantifies quality changes over the

different downloaded segments.

• Re-buffering ratio: freezing (or stalling) time over the

duration of the video streaming session.

Our aim in this paper is to infer the three aforementioned QoE

factor from the observable QoS metrics described in Tab. I

using machine learning techniques.

B. Dataset Description

To build and evaluate QoS to QoE mapping functions, we

have used a high-fidelity and fully controllable simulation

environment at both network and streaming levels. The simula-

tion platform is based on the Adaptive Multimedia Streaming

Simulator Framework (AMust) [17] in ns-3 which implements

an HTTP client and server for LibDASH, one of the reference

software of ISO/IEC MPEG-DASH standard.

As streaming content, we have chosen 3 representative

open movies1 commonly used for testing video codecs and

streaming protocols: Big Buck Bunny (BBB), a cartoon with

a mix of low and high motion scenes, Swiss Account (TSA),

a sport documentary with regular motion scenes and Red Bull

Play Street (RBPS), a sport show with high motion scenes.

We have considered a star network with a bottleneck link

as shown in Fig. 1, on top of which we have simulated a

large number scenarios varying the number of nodes (from 1

to 100), the bottleneck capacity (from 500 kbps to 10Mbps

per stream), the bottleneck delay (from 10ms to 100ms), the

bottleneck packet loss (from 0% to 3%), screen resolutions

and DASH policies (RB, BB and hybrid). After a month

of simulations, we have obtained statistics for more than

69,000 video sessions with 50 associated variables from 4

categories: Context information on network congestion and

stream characteristics, QoS metrics, Target QoE factors and

Hidden QoE variables (see Tab. I for a complete list). The

dataset is meant to become public.

Fig. 1: Simulation environment with AMust in ns-3.

Arguably, out of the 3 target variables we want to predict

RebufferingRatio is the most difficult, especially in its raw

continuous form. To simplify our task we take a similar

1http://concert.itec.aau.at/SVCDataset/

Index Name Type Description

1 RequestID Context Streaming session identifier

2 NbClients Context Maximum number of streams competing on the bottleneck

3 BottleneckBW Context Capacity of the bottleneck

4 BottleneckDelay Context Network delay on the bottleneck

5 BottleneckLoss Context Packet loss on the bottleneck

6 DASHPolicy Context DASH policy (e.g, or name of content provider)

7 ClientResolution Context Client screen resolution or device type (e.g., smartphone)

8 RequestDuration QoS metric Duration of the stream

[9, 13] TCPOut/InPacket QoS metric Number of TCP packets (In and Out)

[10, 14] TCPOut/InDelay QoS metric Average delay experienced by TCP packets (In and Out)

[11, 15] TCPOut/InJitter QoS metric Average jitter experienced by TCP packets (In and Out)

[12, 16] TCPOut/InPloss QoS metric Packet loss rate experienced by TCP packets (In and Out)

17 TCPInputRetrans QoS metric Packet retransmissions experienced by TCP

18 StdNetworkRate QoS metric Standard deviation of the network rate

[19:27] [0,5,10,25,50,75,90,95,100] QoS metric xth quantile for the network rate

NetworkRate (measured in intervals of 2s)

28 StdInterATimesReq QoS metric Std. dev. of inter-arrival times of segment requests

[29:37] [0,5,10,25,50,75,90,95,100] QoS metric xth quantile for the

InterATimesReq inter-arrival times of segment requests

38 StartUpDelay Hidden Initial time at the client to start playing the video

39 AvgVideoDownloadRate Hidden Average downloading rate for video segments

40 StdVideoDownloadRate Hidden Std. dev. of downloading rate for video segments

41 AvgVideoBufferLevel Hidden Average video buffer length.

42 StdVideoBufferLevel Hidden Std. dev. of video buffer length

43 StallEvents Hidden Number of stall events

44 RebufferingRatio Target Portion of time spent in stall events

45 StallLabel Target Discretization of RebufferingRatio variable

46 TotalStallingTime Hidden Total duration of stall events

47 AvgTimeStallingEvents Hidden Average duration of stall events

48 AvgQualityIndex Hidden Avg. normalized index of downloaded representations

49 AvgVideoBitRate Target Average video bitrate consumed by the player

50 AvgVideoQualityVariation Target Average variation of the video bitrate

51 AvgDownloadBitRate Hidden Average download rate of video segments

TABLE I: Context information, QoS metrics, hidden variables. Target
QoE factors, which we want to predict from all other variables, are
highlighted in bold.

approach as in [8]. The RebufferingRatio values are aggregated

into 3 discrete values in a new variable StallLabel. Firstly,

RebufferingRatio equals to 0 means that no stalling has

occurred, hence we set StallLabel=NoStall. If it is between

(0, 0.1) then StallLabel=MildStall. Finally, if RebufferingRatio

is above 0.1 then StallLabel is given the value SevereStall.

Fig. 2 shows the histogram of the 3 target variables. Sim-

ilarly to the target variables, all other variables’ distribution

follow an exponential pattern. For this reason we initially

apply on the input data a logarithmic transformation.

In the next sections, we use machine learning techniques to

derive accurate QoS-QoE mappings given the available data.

Re-buffering Ratio
NoStall MildStall SevereStall

C
o
u
n
t

10 4

0

5

10

51155

17180
794

AvgVideoBitRate [bps] 10 6

0 2 4 6

C
o
u
n
t

10 4

0

2

4

AvgVideoQualityVariation [bps] 10 6

0 1 2 3

C
o
u
n
t

10 4

0

5

Fig. 2: Histograms for our 3 target variables.

Class Training Accuracy Validation Accuracy

NoStall 0.96178 0.95525

MildStall 0.7585 0.73587

SevereStall 0.43874 0.34211

TABLE II: RF class accuracies. Training to validation ratio is 4:1.

IV. STALLING PREDICTION

In this section we use a Bayesian Network (BN) [18] model

to accurately predict the StallLabel variable from the QoS

metrics listed in Tab. I. We then show that StallLabel is formed

by a mixture of 2 distributions and that if there is a model that

predicts accurately the true distribution of a data point we can

get around 97% performance with the proposed BN model.

Finally, we conjecture through a custom novel neural network

search method that there is no such model, hence achieving

higher performance with our dataset is unlikely.

As a benchmark model we use Random Forest (RF) as done

in [8]. A RF is a bagging of Decision Tree (DT) models, see

[19]. At each leaf node, DT greedily selects and splits an input

variable into non-overlapping regions, so that the resulting new

leafs gain predictive power. The bagging procedure essentially

tries to minimize the effect of local optimality that stems from

the greedy split procedure. Table II shows the performance of a

RF classifier on the StallLabel variable pruned with minimum

leaf size of 50 to prevent over-fitting and training to validation

size ration of 4:1 (the same ratio is used in all the paper).

The results show that the RF is making an accurate

prediction on the NoStall class of StallLabel while it has

worse predictions on the MildStall. The performance on the

SevereStall class is practically unacceptable. There are 2 most

commonly occurring problems with RF, i.e., 1) the RF greedy

split procedure result in low quality local optimum; 2) the

RF’s rectangular decision regions have boundaries parallel to

the basis of the dimensions, which could fail to capture some

dependencies among features.

For these reasons, we turn our attention to Bayesian Net-

works based on Logistic Regression (LR) predictors. LR is

a binary classification model that maximizes the likelihood

L(θ) of a target vector of binary values Y given the input

data X for a given prior distribution P (θ) (assumed to be

uniform in our experiments) of the parameter set θ, see Eq.

(1). The a-posteriory probability model is assumed to be

P (Yi|X, θ) = (σ[θ,Xi])
Yi(1 − σ[θ,Xi])

1−Yi where σ is the

sigmoid function σ[θ, x] = 1
1+e−θ·x . In Eq. (2) we report the

gradient of the log-likelihood.

max
θ

L(θ) =

{

n
∏

i=1

P (Yi|X, θ)

}

P (θ) (1)

∂ log(L(θ))

∂θ
=

{

∑

i

Xi(σ[θXi]− Yi)

}

+
∂ log(P (θ))

∂θ
(2)

Using the LR probabilistic model we next define the BN

we used in Fig. 3 to predict the StallLabel variable.

θ1 6⊥ θ2|MildStall

θ1 6⊥ θ2|SevereStall

Data X

X
LR1: P (Yi|X, θ1) θ1

Y=NoStall LR2: P {Yi|X, θ2, P (Yi|X, θ1) ≥ α} θ2

If P (Yi|X, θ1) ≥ α ∈ [0, 1]

Y=MildStall Y=SevereStall

P {Yi|X, θ2, P (Yi|X, θ1) ≥ α} ≥ β

P (Y,X, θ1, θ2) =

= [P (Yi|X, θ1)P (θ1)] . [P {Yi|X, θ2, P (Yi|X, θ1) > α}P (θ2)]P (X)

Fig. 3: Bayesian Network using LR models.

Class Training Accuracy Validation Accuracy

NoStall 0.8681 0.8684

MildStall 0.7929 0.8048

SevereStall 0.9338 0.9368

TABLE III: BN class accuracy. Training vs. validation size ratio 4:1.

In the prediction step each data point is first classified by the

1st LR. If the 1st LR predicts the data to be in the SomeStall

class then the data is further classed by the 2nd LR. Observe

that the 2nd LR is dependent on the prediction of the 1st LR.

In the training phase, we first optimize the θ1 parameters

by standard gradient descent, hence obtaining the 1st LR and

a prediction for the NoStall class. Then, we select from Y

only the data that was predicted to have SomeStall by the 1st

LR and we optimize for θ2 to train the 2nd LR and gain the

prediction for mild and severe stall classes. The pseudo-code

of the training phase of our BN is shown in Fig. 4. We report

in Table III the performance of the proposed BN model, that

outperforms the SoA Random Forest approach (cfr. Tab. II).

We point out that we optimized the decision threshold of

each LR, usually set to 0.5, so that the True Positive Rate

(TPR) and the True Negative Rate (TNR) are equal. We do

this in order to achieve similar final Class Accuracies (CA).

After deriving our BN model that makes a better trade-off

between the class accuracies than the RF we would like to

know if the data classes are linearly separable.

A. Is our data linearly separable?

In this section we seek to find if there is a more accurate,

but also more complex mapping between the input data and

the target variable StallLabel. We discovered through the

experiment shown in Fig. 5 (top) that if we select only the

misclassified data by the 1st LR in Fig. 3 to train another (2nd)

LR then we can reach a 97% CA. Thus, if we find a switching

model as in Fig. 5 (bottom) that assigns the correct LR to each

data point, then we will improve the overall CA of our BN.

In the next section we train the switching model by deriving

Input: Data X , initial parameters θ1 = 0, θ2 = 0;

Output: Prediction for Y =StallLabel

Set X := log(X); Optimize the parameter θ1 of the 1st

LR by maximizing the log-likelihood via gradient descent

method, i.e.:

θt1(i) = θt−1
1 (i)−

∂ ln(L(θt−1
1))

∂θt−1
1 (i)

Optimize the decision boundary α of the 1st LR such that:

α = argminα |TPR(LR1)− TNR(LR1)|

if (P (Yi|X, θ1) ≥ α) then

Yi = NoStall

else

Yi = SomeStall

end if

Select X := X(Yi = SomeStall) and Y := Y (Yi =
SomeStall)
Optimize θ2 via gradient descent:

θt2(i) = θt−1
2 (i)−

∂ ln(L(θt−1
2))

∂θt−1
2 (i)

Optimize the decision boundary β of the 2nd LR:

β = argminβ |TPR(LR2)− TNR(LR2)|

if (P {Yi|X, θ2, P (Yi|X, θ1) > α} ≥ β) then

Yi = SevereStall

else

Yi = MildStall

end if

Fig. 4: Training algorithm for our Bayesian Network model.

Data

1st LR

QoS,StallLabel

2nd LR for wrong 1st LR

Use the misclassified only

97% CA

Data Switching model
Only use 1st LR

Only use 2nd LR
97% CA

Experiment (top)

Switching model (bottom)

Fig. 5: Exploring how to improved the 1st LR of the BN: the
experiment and the model that should yield the improvement.

a Neural Network (NN). Being able to extract the relevant

features and make accurate predictions, NN became the state

of the art technique to map and search highly complex

relations [20].

B. Neural Network Search Using an Index Invariant Graph

Generally, when applying a NN it is best to derive its setting

based on the underlying characteristics of the problem because

this reduces the parameter set that needs to be hand-picked.

V1

V2

V1

V2

V3

V1

V2

V3

IIT/Neuron Output variables

Use 1st LR

Use 2nd LR

Feature1

Feature2

Feature3

Feature4

Feature5

Feature6

Input variables X

X1

X2

X3

X4

X5

X6

Fig. 6: The Index Invariant Tree, see [21], [22].

In order to derive the appropriate NN search method let us

consider the example in Fig. 6. There we map between the

input and output variables using a feature set and a single

neuron. Notice that we do not use the classical NN model

with sigmoid activation function. Instead, we resort to the tree

structure of a neuron in order to reformulate it using an Index

Invariant Tree (IIT). For the details of ITT, we refer to [21],

[22]. Intuitively, the IIT states that each feature should map

only to a single output and all pairs of features should not

overlap. This enables to gain good prediction power while

encoding large part of the data characteristics.

Following this analysis the training of the NN reduces to a

stable set search on an appropriate graph whose vertices are

features and each edge specifies if two features overlap. Here,

a feature is any subset of the whole domain of the data, i.e.,

Feature ⊂ R
#variables. As a result, the training of the NN

becomes a combination of simulated annealing [18] and graph

clustering algorithms as in [22]. It is worth noting at this point

that other clustering methods could be used based on available

time and complexity constraints.

C. Using Hidden and Simulation Variables

It is worth examining another possibility to improve the

prediction performance, namely the use of additional vari-

ables H . The additional variables are given in Tab. I as

context and hidden variables. It is possible to train a separate

model H = FH(X) for each of the simulation and hidden

variables and then use their prediction in the final model

Y = F (X,Hpredicted). In this way the final model still

uses only the input variables, but it makes an intermediate

prediction on the additional variables which are then used

along with the input to get the final target prediction. This

process is shown in Fig. 7.

Bagged [19] Regression Tree and Bagged Random Forest

are used for the additional variable prediction, depending on

whether they are continuous or discrete.

Input X

Y = F (X)

Output Y

Input X

Y = F (X,Hpredicted)

Output Y

Input H

H = FH(X)

Training ONLY

Predict H|X

Fig. 7: Our approach using hidden variables. (Left) the standard pre-
diction task. (Right) prediction procedure that includes intermediate
hidden variables prediction.

D. Results from the IIT and the StallLabel variable

Tab. IV presents the results obtained using the BN predic-

tor for five in different cases: when only QoS metrics are

available, when additional context information is predicted or

known to the network controller, and when hidden variables

are obtained from prediction or perfectly known to the network

controller. The table shows results only with four different

validation splits, since the analysis of the standard deviation

(STD) suggests that we cannot gain in accuracy.

We observe that the usage of the hidden variable procedure

always increases accuracy and that if good model can be

available for them the expected gain is high. Indeed, accuracies

in the case where actual hidden variables are used (perfect

prediction) plots a significant improvement compared to the

one with QoS metric only . Also, the addition of context

variables, which can be retrieved in practice from the network

controller, improves prediction accuracy.

In term of the search for improvements, the IIT method

did not find any areas where there are consistent misclassi-

fication between the two LRs in Fig. 5 for all classes (NoS-

tall,SomeStall,MildStall,SevereStall). This is true regardless of

whether the context parameters and the hidden variables are

added as predicted or actual values. This finding suggests that

the proposed BN based on LR is likely the best performing

model on the considered dataset.

Case Tr. NS Tr. MS Tr. SS Val. NS Val. MS Val. SS

QoS metric Mean 0.8685 0.7946 0.9376 0.8665 0.7982 0.9267

only STD 0.0004 0.0014 0.0031 0.0018 0.0045 0.0122

Added predicted Mean 0.8691 0.7963 0.9409 0.8691 0.7996 0.9316

context STD 0.0004 0.0008 0.0031 0.0021 0.0036 0.0017

Added actual Mean 0.8689 0.7975 0.9396 0.8676 0.8023 0.9304

context STD 0.0001 0.0010 0.0027 0.0023 0.0033 0.0018

Added predicted Mean 0.8758 0.8012 0.9434 0.8735 0.7983 0.9366

hidden STD 0.0018 0.0033 0.0019 0.0034 0.0101 0.0079

Added actual Mean 0.9000 0.8399 0.9543 0.8990 0.8466 0.9530

hidden STD 0.0012 0.0023 0.0026 0.0020 0.0091 0.0113

TABLE IV: BN StallLabel training (Tr.) and validation (Val.) class
accuracies for NoStall (NS), MildStall (MS) and SevereStall (SS)
using a 4:1 training to validation size ratio and using hidden variables
[38:42,48:51] (from Tab. I).

V. VIDEO BIT-RATE AND QUALITY VARIATION

We finally focus on the prediction of the two remaining

QoE factors, namely average video bitrate (AvgVideoBitRate)

and its variation (AvgVideoQualityVariation). We remark that

this turned out to be a much easier task, as those factors

are linearly dependent on quantitative QoS metrics which are

already observable. For this reason, a classic Regression Tree

(RT) model was found to be suitable for both QoE factors.

AvgVideoBitRate can be easily predicted with high accuracy

through the use of a bagged RT with minimum leaf size of

10. Tab. V shows the RT results. Similarly to AvgVideoBi-

tRate, AvgVideoQualityVariation is efficiently predicted with a

bagged RT with minimum leaf size of 10 as shown in Tab. VI.

We observe that the prediction of both the video bitrate and

the quality variation is very accurate. Indeed, as results show,

the mean error for both variables is only of a few kbps while

the video bitrate can be up to 8 Mbps in the scenarios we

considered. As for the case of StallLabel prediction discussed

in the previous Section, these results also demonstrate that

the accuracy can further improves when context information

is know to the network controller and good prediction models

are available for hidden variables. Our simple predictors for

hidden variables help reducing a little bit the error but higher

gains can be obtained with better models.

Case Training Validation

QoS metric only 58.13 (0.59) 68.78 (0.17)

Context Pred. 55.99 (0.52) 66.19 (0.10)

Context Actual 47.18 (0.75) 63.47 (0.23)

Hidden + Context Pred. 53.01 (0.75) 64.34 (0.16)

Hidden + Context. Actual 34.87 (0.60) 46.00 (0.12)

TABLE V: Mean and standard deviation (in parenthesis) for the
prediction error of the average video quality (in Kbps). We used a 4:1
training to validation size ratio and hidden variables [38:42,44,45,51]
(from Tab. I).

VI. CONCLUSION

In this paper we utilize machine learning techniques to

demonstrate how QoS metrics can be exploited to accurately

estimate and predict key QoE factors. We mostly focus on the

StallLabel QoE factor as it is the hardest to predict. We im-

prove on the RF performance [8] by building a more balanced

model in term of class accuracies. We discovered simple but

important patterns in the StallLabel variable and defined the

BN model to envelop them. Using a custom NN based search

method we showed that any other StallLabel model is unlikely

to outperform our proposed Bayesian approach.

For all the crucial QoE factors we considered, we show

that making intermediate predictions for hidden variables can

boost the predictive performance of our approach, compared

to the case where only observable variables are used. We also

show that context information on network congestion and basic

characteristics on video streams further improves predictions.

In the future, we plan to design new features, specific to

video profiling (such as in [23]), that can be measured by

QoS monitoring systems and improve QoE predictions.

Case Training Validation

QoS metric only 43.33 (0.23) 51.73 (0.69)

Context Pred. 37.51 (0.25) 46.41 (0.59)

Context Actual 28.88 (0.17) 41.24 (0.56)

Hidden + Context Pred. 36.78 (0.26) 46.09 (0.61)

Hidden + Context Actual 26.23 (0.13) 37.78 (0.38)

TABLE VI: Same as Tab. V but for the average video quality variation
(in Kbps). Same training to validation ratio and same variables.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
20162021,” June 2017.

[2] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” in Proc. ACM

SIGCOMM, 2012.
[3] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &

Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.
[4] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,

“Measuring Video QoE from Encrypted Traffic,” in Proc. ACM IMC,
2016.

[5] H. Nam, K.-H. Kim, and H. Schulzrinne, “Qoe matters more than qos:
Why people stop watching cat videos,” in Proc. IEEE INFOCOM, 2016.

[6] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proc. ACM MMSys, 2011.

[7] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” in ACM

SIGCOMM, 2015, pp. 325–338.
[8] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,

“Measuring video qoe from encrypted traffic,” in Proc. ACM IMC, 2016.
[9] F. Zhang, W. Lin, Z. Chen, and K. N. Ngan, “Additive log-logistic model

for networked video quality assessment,” IEEE Trans. on Image Proc.,
vol. 22, no. 4, pp. 1536–1547, April 2013.

[10] ITU-T, “Parametric non-intrusive bitstream assessment of video media
streaming quality - Higher resolution application area ,” 2013.

[11] W. Song and D. W. Tjondronegoro, “Acceptability-based qoe models
for mobile video,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp.
738–750, 2014.

[12] Z. Chen, N. Liao, X. Gu, F. Wu, and G. Shi, “Hybrid distortion ranking
tuned bitstream-layer video quality assessment,” IEEE Trans. on Circuits

and Systems for Video Technology, vol. 26, no. 6, pp. 1029–1043, 2016.
[13] T. Hoßfeld, S. Biedermann, R. Schatz, A. Platzer, S. Egger, and

M. Fiedler, “The memory effect and its implications on web qoe
modeling,” in Proc. IEEE ITC, 2011.

[14] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM CCR, vol. 44, no. 4, 2015.

[15] P. T. A. Quang, K. Piamrat, K. D. Singh, and C. Viho, “Video streaming
over ad hoc networks: A qoe-based optimal routing solution,” IEEE

Tran. on Veh. Tech., vol. 66, no. 2, pp. 1533–1546, Feb 2017.
[16] Y.-T. Lin, E. M. R. Oliveira, S. B. Jemaa, and S. E. Elayoubi, “Machine

learning for predicting qoe of video streaming in mobile networks,” in
Proc. IEEE ICC, 2017.

[17] C. Kreuzberger, D. Posch, and H. Hellwagner, “AMuSt Framework -
Adaptive Multimedia Streaming Simulation Framework for ns-3 and
ndnSIM,” 2016.

[18] D. Koller and N. Friedman, Probabilistic graphical models: principles

and techniques. MIT press, 2009.
[19] C. M. Bishop, Pattern recognition and machine learning. Springer,

2006.
[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional

deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. ACM ICML, 2009.

[21] V. Vasilev, “Chromatic polynomial heuristics for connectivity prediction
in wireless sensor networks,” in ICEST 2016, Ohrid, Macedonia, 28-30
June 2016.

[22] V. G. Vasilev, Algorithms and Heuristics for Data Mining in Sensor

Networks. LAP LAMBERT Academic Publishing, December 2016.
[23] D. Tsilimantos, T. Karagkioules, A. Nogales-Gómez, and S. Valentin,

“Traffic profiling for mobile video streaming,” in Proc. IEEE ICC, 2017.

