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Adaptive scheme for pathological oscillations disruption in a delayed
neuronal population model

Jakub Orłowski, Antoine Chaillet, Mario Sigalotti, and Alain Destexhe

Abstract— Motivated by improved ways to disrupt brain os-
cillations linked to Parkinson’s disease, we propose an adaptive
output feedback strategy for the stabilization of nonlinear time-
delay systems evolving on a bounded set. To that aim, using the
formalism of input-to-output stability (IOS), we first show that,
for such systems, internal stability guarantees robustness to
exogenous disturbances. We then use this feature to establish a
general result on scalar adaptive output feedback of time-delay
systems inspired by the “σ-modification” strategy. We finally
apply this result to a delayed neuronal population model and
assess numerically the performance of the adaptive stimulation.

I. INTRODUCTION

Parkinsonian symptoms correlate with sustained oscilla-
tory activity in deep brain regions known as basal ganglia
[9]. Deep brain stimulation (DBS) is an efficient symp-
tomatic treatment of parkinsonian symptoms that consists
in delivering high-frequency electrical impulses to those
regions through permanently implanted electrodes [1]. So
far, this electrical stimulation is delivered in open loop, with
no consideration of the real-time activity of the patient’s
brain. Several theoretical and experimental approaches have
aimed at developing closed-loop DBS strategies [3]. In
particular, it has been shown that a simple proportional
control successfully disrupts these pathological oscillations
in a population model of the brain structures involved [7],
[4]. These strategies require large feedback gains, whose
precise values depend on the system’s parameters. These
parameters are not easily accessible to measurements and
may vary in time. These issues plead for the development
of adaptive control strategies, in which the stimulation gain
would automatically adapt to a convenient value. This would,
in turn, lead to lower energy consumption and a more
parsimonious stimulation than constant high-gain policies.

The main goal of this paper is to develop an adaptive
stimulation strategy to disrupt pathological brain oscillations.
Adaptive control for high-gain stabilizable systems can be
derived through classical techniques such as [2], [18] (see
[20] for a survey). Many approaches have been proposed to
increase robustness of such approaches, including the “σ-
modification” proposed in [12], which adds a dissipative
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term in the gain adaptation law, as well as the “λ-tracking”,
proposed in [11] and applied to linear infinite-dimensional
systems in [10], which increases robustness with respect
to external noise by guaranteeing that the tracking error
converges to a set of a specified radius. In the context of
parkinsonian brain oscillations, the strong uncertainty and
possible evolution in time of the model parameters naturally
lead to the application of the aforementioned σ-modification.

A key feature to be taken into account in the control design
is the presence of delays in the dynamics, representing the
non-instantaneous communication between neurons due to
axonal propagation. Delays are believed to play a crucial role
in the onset of pathological oscillations [19]. This peculiarity
requires to adapt existing adaptive control strategies to time-
delay systems. To that aim, we take advantage of another
specificity of neuronal dynamics, namely their evolution over
a bounded set, as neuronal activity cannot overpass certain
limits due to neurophysiological considerations.

In order to prove the efficiency of the σ-modification
adaptative strategy for nonlinear time-delay systems, we
rely on the framework of input-to-output stability (IOS),
originally introduced in [22] in a finite-dimensional context
and extended to delay systems in [16]. We show that, for
systems evolving on a bounded set, this property boils down
to asymptotic stability in the absence of disturbances. This
observation allows us to reduce the problem to controlling a
disturbance-free system with an adaptive control whose gain
never decreases in time (unlike the σ-modification). After
presenting a general adaptive control strategy for nonlinear
time-delay systems with bounded dynamics, we apply this
methodology to the neuronal population model of [19],
which already served as a basis for the developments in [7],
and assess its performance through numerical simulations.
Notation. Given x ∈ Rn, |x| denotes its Euclidean norm.
Given a compact set I ⊂ R and a measurable signal u :
I → Rm, ∥u∥ := ess supt∈I |u(t)|. Given b > a, u[a;b] :
[a; b] → Rm denotes the function defined as u[a;b](t) = u(t)
for all t ∈ [a; b]. Given X ⊂ Rn, C(I,X) denotes the set
of all continuous functions ϕ : I → X and, given δ̄ > 0,
C := C([−δ̄; 0],R). Given a signal x : [−δ̄,+∞) → Rn and
a time t ≥ 0, xt ∈ Cn denotes the history function: xt(s) :=
x(t + s) for all s ∈ [−δ̄; 0]. A function α : R≥0 → R≥0 is
said to be of class PD if it is continuous and positive definite.
α ∈ K if α ∈ PD and it is increasing. α ∈ K∞ if α ∈ K
and it is unbounded. A function β : R≥0 × R≥0 → R≥0 is
of class KL if β(·, t) ∈ K for each t ∈ R≥0 and, for each
s ∈ R≥0, β(s, ·) is continuous, non-increasing and tends to
zero as its argument tends to infinity.



II. y-GAS AND IOS

We start by recalling and adapting results on the stability
of input-free systems and their robustness with respect to
disturbances, in a time-delay context. Let X be an open
subset of Cn for the topology of the uniform convergence.
Let U be an open subset of R containing the origin, and U
be the set of all measurable and locally essentially bounded
u : R≥0 → U . Consider the perturbed time-delay system:

ẋ(t) = f(xt, u(t)), y(t) = h(xt), (1)

where xt ∈ X is the state, u ∈ Um is the applied input, and
y ∈ C(R≥0,Rl) is an output of interest. We start by recalling
Driver’s formulation of the upper-right Dini derivative [6].
Given any continuous function V : X → R, its Driver’s
derivative D+V along the solutions of (1) is defined, for all
ϕ ∈ X and all v ∈ Um, as

D+
(1)V (ϕ, v) := lim sup

h→0+

V (ϕ⋆h,v)− V (ϕ)

h
, (2)

where, for all h ∈ (0; δ̄), ϕ⋆h,v ∈ X is defined as

ϕ⋆h,v(s) :=

{
ϕ(s+ h) if s ∈ [−δ̄;−h)
ϕ(0) + f(ϕ, v)(s+ h) if s ∈ [−h; 0]. (3)

It was shown in [21] that, if V is Lipschitz on any
bounded set of Cn, then Driver’s derivative of V computed
at (xt, u(t)) coincides, at almost every t where xt is defined,
with the upper-right Dini derivative of t 7→ V (xt), that is,

D+
(1)V (xt, u(t)) = lim sup

τ→0+

V (xt+τ )− V (xt)

τ
, a.e.

A. Characterizations of y-GAS

Let us first consider an input-free version of (1):

ẋ(t) = f(xt), y(t) = h(xt), (4)

where y(t) ∈ Rl denotes an output for which we want to
ensure a desirable behavior. We assume the following.

Assumption 1 There exists a bounded open forward-
invariant set X ⊂ Cn for (4), the functionals f : Cn → Rn
and h : Cn → Rl are Lipschitz on X , and f(0) = 0.

The above regularity assumptions are standard and ensure
existence and uniqueness of solutions [8, Section 2.6, p.
55]. We also impose that solutions evolve on a bounded
invariant set as this assumption greatly simplifies the analysis
and it is naturally satisfied in the neuroscience applications
considered here (see Section IV). Note that this boundedness
assumption in turn ensures forward completeness of (4).

For the needs of this paper, we will study global asymp-
totic output-stability as defined in the following sense.

Definition 1 (y-GAS) We say that system (4) is globally
asymptotically y-stable (y-GAS) on X if there exists β ∈ KL
such that, for all x0 ∈ X , its solution satisfies

|h(xt)| ≤ β(∥x0∥, t), ∀t ≥ 0.

This stability notion is strongly related to “stability with
respect to two measures” employed in [17], [23], to “partial
stability” studied in [24], as well as to output stability
concepts [22] that were more recently extended to time-
delay systems [15], [16], [13]. It imposes that the output y
eventually converges to the origin, with a transient overshoot
that may depend on the magnitude of whole initial state x0.

This output-stability can be established through the fol-
lowing Lyapunov-Krasovskii characterizations.

Theorem 1 (y-GAS characterizations) Under Assumption
1, the following statements are equivalent:

1) System (4) is y-GAS on X .
2) There exist a Lipschitz functional V : X → R≥0 and

α, α ∈ K∞ such that, for all ϕ ∈ X ,

α(|h(ϕ)|) ≤V (ϕ) ≤ α(∥ϕ∥) (5)

D+
(4)V (ϕ) ≤ −V (ϕ). (6)

3) There exist a Lipschitz functional V : X → R≥0 and
α, α, α ∈ K∞ such that, for all ϕ ∈ X ,

α(|h(ϕ)|) ≤V (ϕ) ≤ α(∥ϕ∥) (7)

D+
(4)V (ϕ) ≤ −α(|h(ϕ)|). (8)

Proof: The equivalence between Items 1) and 2) is a
direct consequence of [16, Theorem 3.3]. More precisely, all
the requirements (S1)-(S8) in that paper are satisfied under
Assumption 1, and the property referred to as “almost Lip-
schitz” in that paper turns out to be “Lipschitz on bounded
sets” in the present time-invariant context. Moreover, Item
2) readily implies Item 3) as (5)-(6) imply that D+

(4)V (ϕ) ≤
−α(|h(ϕ)|). Finally, the fact that Item 3) implies Item 1)
was proven in [24, Theorem 6.2.1]. Although that reference
makes only use of “ε − δ” stability definitions, the KL
formulation employed in Definition 1 can be recovered using
similar reasonings as in the proof of [14, Lemma 3.4].

B. IOS for 0-y-GAS systems evolving on bounded sets

We now go back to the perturbed system (1) to study the
impact of disturbances on output-stability. To that aim, recall
the notion of input-to-output stability (IOS), originally intro-
duced in [22] in a finite-dimensional context and extended
in [16], [13] to time-delay systems.

Definition 2 (IOS) System (1) is said to be input-to-output
stable (IOS) on X and Um if there exist β ∈ KL and γ ∈ K∞
such that, for all x0 ∈ X and all u ∈ Um, its solution
satisfies

|h(xt)| ≤ β(∥x0∥, t) + γ(∥u[0;t]∥), ∀t ≥ 0. (9)

IOS not only imposes y-GAS in the absence of distur-
bances, but also that, in their presence, the output eventually
converges to a neighborhood of the origin whose size is
“proportional” to their magnitude.

Here also, we assume that the system evolves on a
bounded set for all considered initial states and disturbances.



Assumption 2 There exists a bounded open set X ⊂ Cn
which is forward-invariant for (1) for any u ∈ Um. Moreover,
the functionals f : Cn × Um → Rn and h : Cn → Rl are
Lipschitz on X × Um and X respectively, and f(0, 0) = 0.

The above assumption requires that solutions of the per-
turbed system (1) evolve on the bounded set X no matter
what the applied input u ∈ Um. Here again this assumption is
naturally satisfied for the relevant neuroscience applications.

Definition 3 (0-y-GAS) System (1) is said to be 0-y-GAS
if the following input-free system is y-GAS:

ẋ(t) = f(xt, 0), y(t) = h(xt). (10)

Clearly, IOS implies 0-y-GAS. Based on Theorem 1, we
can show that these two properties are actually equivalent
for systems evolving in a bounded set, as stated next.

Theorem 2 (0-y-GAS ⇔ IOS, on bounded sets) Under
Assumption 2, system (1) is IOS on X and Um if and only
if the input-free system (10) is y-GAS on X .

In the above statement, the fact that solutions evolve in
a bounded set is crucial. Without this assumption, IOS is
strictly more conservative that 0-y-GAS. A similar result was
obtained in [25] for systems that are globally exponentially
stable in the absence of disturbances. That result does not
require that solutions evolve on a bounded set, but rather
imposes that f is globally Lipschitz and that there exist
c ≥ 0 and p ∈ [0; 1) such that |f(ϕ, v) − f(ϕ, 0)| ≤
cmax{∥ϕ∥p, 1}|v| for all ϕ ∈ Cn and all v ∈ Rm.

Due to space limitation, the proof of this theorem is not
included but proceeds as follows. We only prove that 0-y-
GAS implies IOS, as the converse is straightforward. From
Theorem 1 we get the existence of a Lyapunov-Krasovskii
functional V satisfying (5)–(6) along the disturbance-free
system. Using the properties of the Driver’s derivative,
Lipschitz continuity of V and f (Assumption 4), and the fact
that the system evolves on a bounded set, we compute the
derivative of V along the solutions of the perturbed system
(1) to get that D+

(1)V (ϕ, v) ≤ −V (ϕ)+ℓV ℓf |v| for all ϕ ∈ X
and all v ∈ Um, where ℓV is the Lipschitz constant of V on
X and ℓf is the Lipschitz constant of f on X × Um. This
fulfills condition d) of [16, Thm. 3.3], establishing IOS.

III. ADAPTIVE GAIN FOR TIME-DELAY SYSTEMS

We now make use of these results for adaptive control.
Consider the following class of time-delay control systems:

ẋ(t) = f(xt, µ(t), u(t)) (11a)
z(t) = g(xt), (11b)

where xt ∈ Cn is the state and u ∈ Um represents a
disturbance acting on the system. µ(t) ∈ R denotes the scalar
control input. z(t) ∈ R denotes the scalar output available
for measurements. The adaptive control we propose here is
based on the “σ-modification” originally introduced in [12]

for linear systems with no delay: µ is defined in terms of an
additional scalar variable θ as follows:

µ(t) = −θ(t)z(t) (12a)

θ̇(t) = κ(z(t))− εθ(t), (12b)

where ε ≥ 0 is a tunable parameter and κ : R≥0 → R≥0 is
a locally Lipschitz function to be chosen. As illustrated in
Section IV-B, the choice of ε and κ can be guided by the
sought closed-loop performance. We assume the following.

Assumption 3 There exists a bounded open set X ⊂ Cn
such that for every u ∈ Um, every continuous µ : R≥0 → R,
and every ε ≥ 0, the set X is forward invariant for equation
(11a). The functionals f : Cn×R×Um → Rn and g : Cn →
R are Lipschitz on bounded sets, and f(0, 0, 0) = 0.

We also assume that the origin of this plant is globally
exponentially stabilizable by high-gain proportional feedback
in the absence of disturbances u, as stated in the following.

Assumption 4 (High-gain stabilizability) There exist a
Lipschitz functional V : X → R≥0, positive constants a,
a and a, and a positive gain θ∗ such that, for all ϕ ∈ X ,

a|ϕ(0)|2 ≤ V (ϕ) ≤ a∥ϕ∥2, (13)

and, for all fixed θ ≥ θ∗, Driver’s derivative of V satisfies

D+
(15)V (ϕ, θ) ≤ −a|ϕ(0)|2 (14)

along the solutions of the closed-loop system

ẋ(t) = f(xt,−θz(t), 0), z(t) = g(xt). (15)

Our main result is as follows.

Theorem 3 (Robust stability with adaptive gain) Let κ :
R → R≥0 be any locally Lipschitz function satisfying

κ(s) ≥ κ0|s|, ∀s ∈ R, (16)

for some κ0 > 0 and κ(g(0)) = 0. Then, under Assumptions
3 and 4, there exist β ∈ KL, γ ∈ K∞, and ϑ > θ∗ such that,
for all (x0, θ0) ∈ X × [0; θ∗], all u ∈ Um, and all ε ≥ 0,
the solution of (11) in closed-loop with (12) satisfies

|x(t)| ≤ β(∥x0∥+ |θ0 − θ∗|, t) + γ(ε+ ∥u[0;t]∥) (17)
θ(t) ∈ [0;ϑ], ∀t ≥ 0. (18)

The above statement contains several ingredients. First, in
the absence of disturbances (u ≡ 0), practical stability is
achieved in the sense that the steady-state error on x can
be arbitrarily reduced by picking ε sufficiently small. The
transient overshoot is “proportional” to the magnitude of
the initial state and to the distance between θ0 and θ∗ (this
distance being small if we initialize the control algorithm
with a good guess of θ∗). For ε = 0, this steady-state error
is zero, meaning that x(t) converges to the origin as t tends
to infinity. The use of a positive ε allows to avoid parameter
drift in presence of disturbances [12], as certified by (18).
More crucially, ε > 0 allows to react to possible variations of



the model parameters, as detailed in Section IV-B. Finally,
in the presence of disturbances, the state is guaranteed to
converge to a neighborhood of the origin, whose size is
“proportional” to the magnitude of the applied disturbance
and the chosen value of the parameter ε.

Proof: We see the system as a perturbed version of

ẋ(t) = f(xt,−θ(t)g(xt), 0), θ̇(t) = κ(g(xt)). (19)

In other words, we see both u and ε as perturbations. In
view of Theorem 1, IOS of the closed-loop system can be
derived based on the output-stability of (19). Let θ∗ be as in
Assumption 4 and let θ̃ := θ − θ∗. Then (19) reads

ẋ(t) = f
(
xt,−(θ̃(t) + θ∗)g(xt), 0

)
(20a)

˙̃
θ(t) = κ(g(xt)). (20b)

The results of Section II do not readily apply to this system
since θ̃ does not necessarily evolve in a bounded set (because
κ(g(xt)) ≥ 0). However, we can show that there exists θ̄ > 0
such that θ̃(t) ∈ [−θ∗, θ̄] for all t ≥ 0 and all θ̃0 ∈ [−θ∗, 0].
Hence, we can consider the modified dynamics:

ẋ(t) = f
(
xt,−(θ̃(t) + θ∗)g(xt), 0

)
(21a)

˙̃
θ(t) = κ(g(xt))−max{θ̃(t)− θ̄; 0}(θ̃(t)− θ̄). (21b)

This modified system (21) does possess an invariant set,
even in presence of disturbances, as stated next. We express
the invariance in terms of the history function for θ (even
though no delays apply to it) in order to apply later to the
augmented state variable (x, θ) the results of Section II.

Claim 1 Let κ̄ be any positive constant such that κ◦g(ϕ) ≤
κ̄ for all ϕ ∈ X , as ensured by Assumption 3, and let

Θ := C
(
[−δ̄; 0], (−2θ∗; 2θ̄ +

√
κ̄)
)
⊂ C.

Then, for every u ∈ Um and ε ≥ 0, the bounded open set
X ×Θ is invariant for

ẋ(t) = f
(
xt,−(θ̃(t) + θ∗)g(xt), u

)
(22a)

˙̃
θ(t) =κ(g(xt))− ε(θ̃(t) + θ∗)

−max{θ̃(t)− θ̄; 0}(θ̃(t)− θ̄). (22b)

Proof: In view of Assumption 3, the claim readily
follows by observing that ˙̃

θ(t) ≤ 0 whenever θ̃(t) ≥ θ̄+
√
κ̄

(and in particular for θ̃(t) ≥ 2θ̄ +
√
κ̄) and that ˙̃

θ(t) ≥ 0
whenever θ̃(t) ≤ θ̄ (and in particular for θ̃(t) ≤ −2θ∗).

The claim in particular proves (18) with ϑ = 2θ̄+
√
κ̄+θ∗.

Based on this, we now proceed to show that (21) is IOS
on X×Θ with output y(t) = x(t). To that end, let V be as in
Assumption 4 and consider the functional W : X×C → R≥0

defined as

W (ϕ, ψ) = V (ϕ) +
p

2
min{ψ(0); 0}ψ(0), (23)

where p denotes a positive constant to be chosen later. Then
W is Lipschitz on X ×Θ and, for all (ϕ, ψ) ∈ X × C,

a|ϕ(0)|2 ≤W (ϕ, ψ) ≤
(
a+

p

2

)
∥(ϕ, ψ)∥2. (24)

Moreover, if ψ(0) ≥ 0 (corresponding to θ(t) ≥ θ∗), then
W (ϕ, ψ) = V (ϕ) and it holds from Assumption 4 that

D+
(20)W (ϕ, ψ) ≤ −a|ϕ(0)|2, ∀ψ(0) ≥ 0. (25)

Consider now the case when ψ(0) < 0. Then W (ϕ, ψ) =
V (ϕ) + p

2ψ(0)
2. It follows that

D+
(20)W (ϕ, ψ) = D+

(20)V (ϕ, ψ) + pψ(0)κ(g(ϕ)). (26)

Moreover, from (2),

D+
(20)V (ϕ, ψ) = lim sup

τ→0+

1

τ

(
V (ϕ⋆τ,ψ)− V (ϕ)

)
, (27)

where, in view of (3), ϕ⋆τ,ψ(s) = ϕ(s + τ) for all s ∈
[−δ̄;−τ) and, for all s ∈ [−τ ; 0],

ϕ⋆τ,ψ(s) = ϕ(0) + f
(
ϕ,−(ψ(0) + θ∗)g(ϕ), 0

)
(s+ τ).

Observe that, for all (ϕ, ψ) ∈ X×C and all τ > 0 sufficiently
small, it holds that ϕ⋆τ,ψ ∈ X . Let ℓV denote the Lipschitz
constant of V over the bounded set X . Then, for all (ϕ, ψ) ∈
X × C, it holds from (27) that

D+
(20)V (ϕ, ψ) ≤ D+

(20)V (ϕ, 0)+lim sup
τ→0+

1

τ

∣∣V (ϕ⋆τ,ψ)− V (ϕ⋆τ,0)
∣∣

≤ − a|ϕ(0)|2 + lim sup
τ→0+

ℓV
τ
∥ϕ⋆τ,ψ − ϕ⋆τ,0∥, (28)

where we used (14) by observing that D+
(20)V (ϕ, 0) is

D+
(19)V (ϕ, ψ) computed for θ = θ∗. Furthermore, since ϕ⋆τ,ψ

and ϕ⋆τ,0 coincide over [−δ̄;−τ ], it holds that

∥ϕ⋆τ,ψ − ϕ⋆τ,0∥ = sup
s∈[−τ ;0]

|ϕ⋆τ,ψ(s)− ϕ⋆τ,0(s)| =

sup
s∈[−τ ;0]

∣∣∣f(ϕ,−(ψ(0) + θ∗)g(ϕ), 0
)
−f

(
ϕ,−θ∗g(ϕ), 0

)∣∣∣(s+ τ).

Let G := {−(ψ(0) + θ∗)g(ϕ) : ϕ ∈ X , ψ ∈ Θ} and let
ℓf > 0 denote the Lipschitz constant of f on X ×G× {0},
as ensured by Assumption 3. Then we get that

∥ϕ⋆τ,ψ − ϕ⋆τ,0∥ = sup
s∈[−τ ;0]

ℓf |ψ(0)g(ϕ)|(s+ τ) = ℓf |ψ(0)g(ϕ)|τ.

Plugging this into (28), we obtain that D+
(20)V (ϕ, ψ) ≤

−a|ϕ(0)|2 + ℓV ℓf |ψ(0)g(ϕ)|. Thus, recalling that ψ(0) < 0
and κ(g(ϕ)) ≥ 0, we get from (26) that

D+
(20)W (ϕ, θ̃) ≤ −a|ϕ(0)|2 −

(
pκ(g(ϕ))− ℓV ℓf |g(ϕ)|

)
|ψ(0)|

≤ −a|ϕ(0)|2 −
(
pκ0 − ℓV ℓf

)
|g(ϕ)||ψ(0)|,

where the last bound comes from (16). Therefore, by picking
p = ℓf ℓV /κ0, we obtain that, for all (ϕ, ψ) ∈ X ×Θ,

D+
(20)W (ϕ, ψ) ≤ −a|ϕ(0)|2, ∀ψ(0) < 0.

Using (25), we conclude that, for all (ϕ, ψ) ∈ X × Θ,
D+

(20)W (ϕ, θ̃) ≤ −a|ϕ(0)|2. Based on this, (24), and Claim 1,
Theorem 1 ensures that there exists β̃ ∈ KL such that, for all
x0 ∈ X and all θ̃0 ∈ (−2θ∗; 2θ̄ +

√
κ̄), the solution of (21)

satisfies |x(t)| ≤ β̃(∥x0∥+ |θ̃0|, t) for every t ≥ 0. Theorem
2, in turn, guarantees the existence of β ∈ KL and γ ∈ K∞



such that, for all x0 ∈ X , all θ̃0 ∈ (−2θ∗; 2θ̄ +
√
κ̄) and all

u ∈ Um, the solution of (21) satisfies

|x(t)| ≤ β(∥x0∥+ |θ̃0|, t) + γ(ε+ ∥u[0;t]∥), ∀t ≥ 0.

We conclude that the same bound holds for the solutions of
(20) starting within X and θ̃0 ∈ [−θ∗; 0]. In particular, the
solutions of (24) satisfy

|x(t)| ≤ β(∥x0∥+ |θ0 − θ∗|, t) + γ(ε+ ∥u[0;t]∥), ∀t ≥ 0,

for all x0 ∈ X , all θ0 ∈ [0; θ∗], and all u ∈ Um.

IV. APPLICATION TO ADAPTIVE STIMULATION OF
PARKINSONIAN NEURONAL POPULATIONS

All the results presented so far have been designed with
neuroscience applications in mind. More precisely, in [7],
a proportional stimulation strategy has been proposed to
disrupt brain oscillations that are linked to Parkinsonian
symptoms. This result was obtained based on a linearized
version of the following model:

τ1ẋ1(t) = −x1(t) (29a)

+ S1

(
c11x1(t− δ11)− c12x2(t− δ12) + µ(t) + u1(t)

)
τ2ẋ2(t) = −x2(t) (29b)

+ S2

(
c21x1(t− δ21)− c22x2(t− δ22) + u2(t)

)
.

This model was originally proposed in [19] (we recentered
the model at 0) to explain a possible origin of parkinsonian
brain oscillations in deep brain regions known as subthalamic
nucleus (STN) and external globus pallidus (GPe). In this
model, x1(t) and x2(t) represent the instantaneous activity of
STN and GPe respectively, in number of spikes per second.
τ1, τ2 > 0 are decay time constants. S1, S2 : R → R are
called the activation functions. For each i, j ∈ {1, 2}, the
constant cij ≥ 0 represents the synaptic strength between
xj and xi and δij ≥ 0 describes the delay due to axonal
propagation from xj to xi. u1(t) ∈ R models activity from
the motor cortex, and u2(t) ∈ R represents striatal activity.
Finally, µ(t) ∈ R represents the stimulation that can be
introduced through implanted electrodes.

In the absence of stimulation (µ ≡ 0), this model exhibits
sustained activity in the β-band (13-30Hz) that arises from
a too strong coupling between STN and GPe. These oscil-
lations correlate with parkinsonian motor symptoms [9]. A
spatio-temporal extension of this model was proposed and
analyzed in [5], [4]. In those works, it was shown that a
proportional stimulation strategy, relying on STN measure-
ments only (meaning on x1(t)) successfully disrupts these
pathological oscillations provided that c22 < 1, meaning that
the GPe internal synaptic coupling is weak (which is in line
with physiologic evidence).

A. Theoretical analysis

In practice, the parameters involved in (29) suffer high
imprecision and variability. Hence, it would be desirable to
adapt the value of the stimulation gain in real time. Since
only x1(t) is available to measurements, we see (29) as a

particular case of (11) with output z(t) := x1(t). We also let
δ̄ := maxi,j∈{1,2} δij . In line with the results of Section III,
we propose the adaptive stimulation strategy

µ(t) = −θ(t)x1(t) (30a)

θ̇(t) =
1

T

(
|x1(t)| − ε′θ(t)

)
, (30b)

where ε′ ≥ 0 and T > 0 denote tuning parameters. With this
closed-loop stimulation policy, we have the following.

Theorem 4 (Adaptive brain stimulation) Assume S1, S2 :
R → R are bounded Lipschitz nondecreasing functions
satisfying S1(0) = S2(0) = 0. Assume that the Lipschitz
constant of S2 is 1 and let T > 0 be any constant parameter.
Under the condition c22 < 1 there exists γ ∈ K∞ such that
system (29) in closed loop with (30) satisfies, for all ε ≥ 0,
all x0 ∈ C2, and all bounded u : R≥0 → R2,

lim sup
t→+∞

|x(t)| ≤ γ(ε+ ∥u∥).

The main steps of the proof are as follows. Assumption
3 is fulfilled due to the properties of the functions Si.
Assumption 4 can be checked by creating a Lyapunov-
Krasovskii functional for (29) in a closed loop with µ(t) =
−θx1(t), for some constant θ > 0, and in the absence of
disturbances (u ≡ 0). This is done along the proof steps
of the main result in [4], which establishes the high-gain
stabilizability of a spatio-temporal extension of (29). Finally,
we use Theorem 3 to obtain robust stability. All initial states
are considered because, due to the boundedness of Si, every
solution eventually enters the invariant set of Assumption 3.

Like the high-gain stimulation policies proposed in [7],
[5], [4], the proposed adaptive stimulation successfully dis-
rupts pathological oscillations in this model. As we detail
in Section IV-B, the adaptive nature of this control law
offers interesting advantages as compared to those policies,
specifically in presence of uncertain or varying parameters.

The result is based on limited information on the model,
namely the maximal slope of the activation function S2 (nor-
malized here to 1) and the GPe internal synaptic weight c22.
In particular, the proposed strategy is valid for any synaptic
weights between STN and GPe and any transmission delays
δij . Moreover, no measurement of GPe activity is needed.

B. Simulation results

We ran the simulations of system (29) in Python 2.7,
using the pydelay library. The simulation parameters were
chosen as follows: the time constants τ1 = 6 ms, τ2 = 14
ms; the delays δ11 = 0 ms, δ12 = δ21 = 6 ms, δ22 = 4
ms; the connection strength coefficients c11 = 0, c12 =
20, c21 = 10.7, c22 = 0.2. The activation functions Si
were picked as Si(s) = mibi/(bi + (mi − bi) exp(−4(s +
miln((mi− bi)/bi)/4)/mi))−mi/2, with m1 = 300 spk/s,
m2 = 400 spk/s, b1 = 17 spk/s, b2 = 75 spk/s. All
the above parameters, except c22 (chosen small, to satisfy
the stabilizability condition in Theorem 4), correspond to
the parkinsonian state in [19]. The control parameters were



picked as ε′ = 10−4 and T = 0.01 ms. The disturbance
u1 was picked as a random noise drawn from a uniform
distribution on (−2; 2). u2 was set at zero.

Figure 1 illustrates the efficacy of the proposed adaptive
stimulation. For t ∈ [0; 0.1], the feedback is off and the
systems exhibits sustained oscillations. At time t = 0.1, the
stimulation is switched on. The adaptive gain θ increases
(at a rate essentially given by T ) and reaches a value that
leads to significantly decreased oscillations (whose amplitude
depends on the disturbance magnitude and the choice of ε′).
At t = 0.5 s, the connection weights c12 and c21 were
artificially diminished by a factor 2, for which a weaker
proportional gain is needed. Accordingly, θ automatically
adjusts to a weaker value, giving rise to a stimulation signal
µ of lower amplitude.

Fig. 1: Simulation results for the closed-loop adaptive system (29) in closed loop with
(30). Top: STN activity x1(t). Middle: applied stimulation µ(t) = −θ(t)x1(t).
Bottom: adaptive control gain θ(t).

Figure 2 represents the magnitude of steady-state oscilla-
tions of x1 and x2 as a function of the chosen parameter
ε′. In line with Theorem 4, this steady-state amplitude is an
increasing function of ε′ and vanishes for ε′ = 0 with u1
and u2 set to zero.

Fig. 2: Steady state amplitude (max{xi(t)} −min{xi(t)} for t ∈ [19, 20]s) for
different values of ε′ := εT . The remaining parameters were kept identical as in the
simulation performed to obtain Figure 1 but with u = 0. The results obtained are in
accordance with Theorem 4 which states that the steady-state amplitude of the system
is upper bounded by a K∞ class function of ε+∥u∥. The x-axis is shifted by 10−4

to allow displaying values for ε′ = 0.

V. CONCLUSIONS

We conclude that the adaptive feedback explored here
constitutes a promising approach to control pathological
oscillations such as in Parkinson’s disease or epilepsy. Such
paradigms should be explored by future studies.
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