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Abstract: A robust alternative of the delayed resonator is proposed by spectral approach. By
double root assignment at the excitation frequency, which is projected to widening the stop-
band in the active absorber frequency response, the performance sensitivity to the mismatch
between the design and true excitation frequency is considerably decreased. Additionally, the
overall scheme is supplemented by a control loop which improves the stability margin. The
design is validated by simulations and the results are compared with classical delayed resonator.
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1. INTRODUCTION

The delayed resonator (DR) concept proposed in 1990s
by N. Olgac and his co-workers Olgac and Holm-Hansen
(1994); Olgac (1995), has become an established tool for
vibration suppression and one of the typical examples of
benefits of time delay in the feedback loop. The time-
delay feedback is applied to modify the active absorber
properties resulting in entire suppression of undesirable
oscillations. The absorber is tuned to an ideal resonator,
marginally stable, where the DR acts as a perfect resonator
and absorbs the vibrations entirely. The resonator feed-
back can be implemented using position, velocity or ac-
celeration measurements, depending on the type of sensor
selected for a particular vibration control application at
hand. In this paper, the acceleration feedback is consid-
ered as it allows closing the feedback directly from the
accelerometer sensors, which are easy to apply and of
relatively low cost.

Modifications of the resonator concept include a single-
mass dual frequency absorber Olgac (1996), relative po-
sition feedback absorber in Olgac and Hosek (1997), a
torsional vibrational absorber Hosek et al. (1997), to name
a few. An auto-tuning algorithm enhancing robustness
against uncertainties in the absorber parameters was pre-
sented in Hosek and Olgac (2002). An algorithm for multi-
degree of freedom (MDOF) mechanical structures with
multiple delayed resonators is described in Jalili and Olgac
(1999), where multiple absorbers are used to suppress

different harmonics. Stability of the vibration absorber
using acceleration and displacement feedback was derived
in Alujević et al. (2012) utilizing the Nyquist criterion. In
Rivaz and Rohling (2007) a delay free PI alternative of the
resonator has been proposed for the acceleration feedback.
However, due to risky noise integration phenomenon, the
feedback needs to be supplemented with high-pass filters,
which makes the overall feedback more complex compared
to the time delay case.

Recently, a complete dynamics analysis of a DR with
acceleration feedback was performed in Vyhĺıdal et al.
(2014) revealing unfavorable neutral character of spectral
properties of the DR, which is also transferred to the
overall set-up. In order to mitigate this undesirable effect,
an alternative distributed delay resonator (DDR) was
proposed and analyzed in Pilbauer et al. (2016) resulting
in retarded spectral properties, which are more convenient.
The second benefit of this novel resonator scheme is that
the distributed delay provides filtering of the measured
noise. By applying the method of Cluster Treatment of
Characteristic Roots Olgac and Sipahi (2005), it was shown
in Vyhĺıdal et al. (2014) and Pilbauer et al. (2016) that
for both the DR and DDR, their operable frequency
range is limited. From below, it is limited by the stability
boundary of the DR, while the delay implementation
aspects limit the range from the above - due to the
exponential decay of the delay length with respect to
growing frequency. A methodology for further extension



Fig. 1. Primary Structure (P), with an active vibration
absorber (A) to suppress displacement xp induced by
harmonic disturbance force f(t)

of the operable frequency range was recently proposed
in Kučera et al. (2017). It is based on extending the
feedback by a delay free factor virtually modifying the
mass of the absorber and thus its natural frequency.
Besides, implementation aspects of the resulting, so-called
extended delay resonators have been discussed in Kučera
et al. (2017).

As it results from the frequency domain analysis per-
formed in application sections of Pilbauer et al. (2016);
Kučera et al. (2017), the entire vibration suppression takes
place only if the resonant frequency adjusted by the res-
onator feedback is equivalent with the true excitation fre-
quency. The performance of the resonator decays consid-
erably even for very small differences in these frequencies.
The main objective of this paper is to propose a robust
alternative to the classical delayed resonator, which will
widen the frequency stop-band of the resonator. Note that
in this aspect, the paper is analogous to the recent work
Pilbauer et al. (2017), where the optimization approach is
applied directly on shaping the frequency characteristic of
the DR. In this paper, we propose a more straightforward
and easy to apply approach, which is based on double root
assignment.

A fundamental feature of the resonator concept is that
the parameters of the primary structure do not play a role
in the resonator tuning. The purpose of the design is only
to suppress the vibrations, while stability aspects of the
overall set-up are left aside. As discussed in Vyhĺıdal et al.
(2014); Pilbauer et al. (2016), in fact, the resonator may
decrease the stability margin or even destabilize the overall
set-up. Thus, the second objective of the presented work
is to handle this stability aspect by including a stabilizing
controller, similarly as it was done in Fenzi et al. (2017).

The paper is organized as follows. In Section 2, the
concept of vibration absorber and functioning of the over-
all set-up including a stabilizing controller is outlined.
Section 3 then provides the main result with introducing
the robust delayed resonator concept and providing two
analytic rules for its parametrizations. Next, design of the
additional finite order controller is adressed together with
its parametrization by minimizing the spectral abscissa.
The validation of the proposed concept is done in section
4, where it is also compared with the classical delayed
resonator concept. In section 5, brief conclusions are given.

2. PRELIMINARIES AND PROBLEM STATEMENT

The dynamic model of the absorber, depicted in Fig.
1, with the physical parameters ma, ca, ka denoting the
mass, the damping and the stiffness coefficients, can be
described by

maẍa (ϑ) + caẋa (ϑ) + kaxa (ϑ) = ūa(ϑ) (1)

with xa being the displacement of the absorber and ua a
(scaled) external input. The damping ratio and the natural
frequency of the absorber are given by ζ = ca

2
√
maka

and

Ω =
√

ka
ma

, respectively. The objective of the absorber

is to suppress vibrations of the primary structure being
excited by a harmonic force f(t) at the frequency ω̄f .

The absorber equation can be turned to

ẍa (ϑ) + 2ζΩẋa (ϑ) + Ω2xa (ϑ) = ūa(ϑ). (2)

Scaling the time ϑ with respect to the frequency Ω, i.e.
by introducing dimensionless time t = Ωϑ, we obtain an
absorber form

ẍa (t) + 2ζẋa (t) + xa (t) = ua(t). (3)

with the only parameter ζ, assuming ua = 1
maΩ2 ūa. Note

that scaled excitation frequency is given by ωf =
ω̄f
Ω .

Considering the scaled parameters with respect to ma

and Ω, the overal set-up in Fig. 1 is given by

ẍa (t) + 2ζẋa (t) + xa (t)− 2ζẋp (t)− xp (t) = ua(t), (4)

mpẍp (t) + (2ζ + cp) ẋp (t) + (1 + kp)xp (t)− 2ζẋa (t)−
− xa (t) = −ua(t) + up(t) + f (t) , (5)

where xp(t) is the position, up(t) is the control input for
positioning the primary structure and mp, cp, kp are the
scaled mass, the damping and the stiffness parameters of
the primary structure.

The absorber input ua is to be used for enhancing
the absorber parameters so that the vibrations at the
frequency ωf are entirely suppressed. Due to problem
generalization purpose, we consider the feedback in the
form

Ua (s) = P (s)Xa (s) , (6)

where P (s) is the feedback transfer function.

Compared to the classical delayed resonator concept,
where (6) is the only active feedback at the set-up, we
assume that also the primary structure is equipped with
an active feedback

Up (s) = K (s)Xp (s) , (7)

with controller K (s), which can be used for platform
positioning or just for improving the overall dynamical
properties in vibration suppression.

For the overall set-up (4)-(7), the transfer function
between the excitation force f and the position of the
platform with feedback (6) is given by

Gxp,f (s) =
Xp(s)

F (s)

=
R(s)− P (s)

(R(s)− P (s))(V (s)−K(s)) + (P (s)−Q(s))Q(s)
(8)

with
R (s) = s2 + 2ζs+ 1 (9)



being the characteristic function of the absorber (1), and

V (s) = mps
2 + (2ζ + cp) s+ (1 + kp) ,
Q (s) = 2ζs+ 1.

(10)

If the transfer function P (s) is parameterized so that
the characteristic equation of the resonator composed of
the absorber (1) and the feedback (6), given by

M (s) = R (s)− P (s) = 0, (11)

has a root couple s1,2 = ±jωf , composing a pole couple of
the resonator, then

Gxp,f (jωf ) = 0, (12)

indicating that no vibrations at the given frequency ω =
ωf are transferred in this f to xp channel and the vibra-
tions are ideally suppressed.

Note however, that including the resonator feedback
affects the dynamical properties of the entire system,
which is given by the roots of the characteristic equation

(R (s)− P (s)) (V (s)−K(s)) + (P (s)−Q (s))Q (s) = 0
(13)

Assuming presence of the delay terms in P (s), the equation
(13) has infinitely many roots. For the stability implica-
tions, all of them need to be located safely in the left half
of the complex plane.

3. ROBUST RESONATOR FEEDBACK

The resonator feedback is considered in the following
form

u(ϑ) = −hẍa(ϑ) +

∫ ϑ

0

p̄(θ)xa(ϑ− θ)dθ, (14)

where p̄(ϑ) is the weighting function (impulse response)
corresponding to the resonator transfer function P̄ (s̄) ,
which is to be transformed to P (s) in the dimensionless
form. Motivated by Kučera et al. (2017), the term with
h is included in (14) to modify virtually the mass of the
absorber so that the natural frequency of the absorber

Ω =
√

ka
ma+h is identical with the excitation frequency ω̄f ,

i.e. ωf = 1, which results to

h(ω̄f ) =
ka
ω̄2
f

−ma. (15)

Note that if h 6= 0, for the design purposes, the absorber
(1) as well as the primary structure needs to be scaled with
respect to m+h, i.e. with respect to the virtually modified
mass.

Coupling the absorber (1) with the feedback (14), and
scaling the time with respect to Ω = ωf , the delayed
resonator is given in the form

ẍa (t) + 2ζẋa (t) + xa (t) =

∫ t

0

p(θ)xa(t− θ)dθ. (16)

where p(θ) is the scaled impulse response p̄(θ).

The transfer function is considered in the form

P (s) = L{p(t)} =
Xa(s)

Ua(s)
=

∑2
i=0 aie

−sτi

s
s2, (17)

i.e. of (effectively) integral character with delays τ0 =
0, τ2 > τ1 > τ0 and parameters a0, a1, a2 to be tuned.
Note that the term s2 corresponds to the acceleration

measurements ẍa. When considering the measured output
as ya = ẍa, the transfer function turns to the mentioned

integral form Ya(s)
Ua(s) =

∑2

i=0
aie

−sτi

s .

As will be shown later, selection of this specific form
of the transfer function (17) is advantageous due to easy
parametrization of the resonator. However, on the other
hand, it should be noted that from the practical point of
view, the integral character of the transfer function can
be risky when the measurements in the feedback path are
noisy Kučera et al. (2017). As has been shown in Rivaz and
Rohling (2007), this problem can be solved by supplying
the feedback path by a high-pass filter. Another option is
to impose the finite impulse response of P (s), which can
be achieved by satisfying the condition

2∑
i=0

ai = 0. (18)

3.1 DR parametrization by assigning a double root

The objective in the robust resonator design is widen-
ing the frequency stop-band of |Gxp,f (jω)|, where Gxp,f (s)
is given by (8), in the vicinity of ωf = 1. This can be done
by assigning a double root s1,2 = j to the characteristic
equation of the delayed resonator (11), which appears in
the numerator of (8). To perform the double root assign-
ment, the root needs to be assigned not only to (11) given
by

M(s) = s2 +

(
2ζ −

2∑
i=0

aie
−sτi

)
s+ 1 = 0, (19)

but also to its first derivative

dM (s)

ds
= 2s+ 2ζ −

2∑
i=0

aie
−sτi(1− τis) = 0. (20)

This will naturally lead to widening the range where
|M(jω)| is close to zero in the vicinity of ωf = 1, due
to its locally parabolic shape. This property is transferred
to |Gxp,f (jω)| supposing that the poles of Gxp,f (s) are
not located close to the zeros at j, which will be imposed
by the stability requirement and will be targeted in the
subsequent step.

Assigning the complex root s1 = j to (20) and splitting
the equation to real and imaginary parts, we obtain

<(M(s)|s=j) = −
2∑
i=0

ai sin τi = 0, (21)

=(M(s)|s=j) = 2ζ −
2∑
i=0

ai cos τi = 0. (22)

Analogously, assigning the root to (20), we obtain the
following two equations

<
(
dM(s)

ds
|s=j

)
= 2ζ−

2∑
i=0

ai(cos τi− τi sin τi) = 0, (23)

=
(
dM(s)

ds
|s=j

)
= 2 +

2∑
i=0

ai(sin τi + τi cos τi) = 0. (24)

Taking into account the equality (22), the equation (23)
reduces to
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Fig. 2. Rightmost spectrum of the double root Delayed
Resonator characteristic equation (29), parametrized
by Lemma 1.

2∑
i=0

aiτi sin τi = 0. (25)

In the same line, taking into account (21), the eqaution
(24) reduces to

2 +

2∑
i=0

aiτi cos τi = 0. (26)

Thus, we have four nonlinear equations (21), (22), (25)
and (26), to determine the parameter set ai, i = 0, 1, 2, τ1,
τ2 (recall that the first delay was preselected as τ0 = 0).
The nonlinearity of the problem may be removed by pre-
selecting also the other delay values. Equations (21) and
(25) are satisfied independently of the gain values ai if the
delays are selected as τ1 = π and τ2 = 2π (and possibly
its 2k+1 multiples, which are not considered here). Then,
(22) and (26) form the linear set

2ζ − a0 + a1 − a2 = 0, (27)

2− πa1 + 2πa2 = 0. (28)

Still the set of two equations with three variables
have infinitely many solutions. We provide two reasonable
options to solve the parametrization task.

Lemma 1: Consider the preselected delay values τ0 =
0, τ1 = π and τ2 = 2π, then a universal parametrization of
the resonator feedback (17) is given by

a0 = 2ζ, a1 = a2 = −π
2
.

Proof: By pre-selecting a0 = 2ζ, the other two parameters
a1 and a2 result directly from (27) and (28). The universal-
ity lies in the independence of the resulting characteristic
equation

M(s) = s2 +
π

2

(
e−sπ + e−s2π

)
s+ 1 = 0. (29)

on the resonator parameters. �

Applying the QPmR algorithm Vyhĺıdal and Źıtek
(2014), the rightmost spectrum of the retarded characteris-
tic equation (29) is shown in Fig. 2. Next to the spectrum

values denoted as black dots, the iso-lines <(M(s)) = 0
and =(M(s)) = 0 are shown. The root multiplicity two at
s = j is confirmed by that two couples of <(M(s)) = 0 and
=(M(s)) = 0 isolines intersect at this point, see Vyhĺıdal
and Źıtek (2014). As can be seen from the figure, the given
root s1,2 is the rightmost root.

From the physical and univerality points of view, this
setting may be considered as a reasonable option. However,
a drawback of this setting is that as the equation (18)
is not satisfied, the impulse response of P (s) is not of
finite length, which can have undesirable consequences
for the control loop performance, taking into account
accumulation of the measurement noise due to the integral

character of P (s)
s2 . This problem can be overcome by the

setting given in the following Lemma obtained directly by
solving the set of equations (18), (25) and (26).

Lemma 2: Consider the preselected delay values τ0 =
0, τ1 = π and τ2 = 2π, then parametrization of the
resonator feedback (17) for which the impulse response
is of finite length is given

a0 =
3

2
ζ +

1

π
, a1 = −ζ, a2 = −1

2
ζ − 1

π
.

3.2 Stabilizing the overall set-up

The absorber and primary structure coupled together
as given in (4) and (5) can be described as
ẋ(t) = Ax(t) +B1ua(t) +B2up(t) +B3f(t),
ya(t) = Caẋ(t)

= CaAx(t) + CaB1ua(t) + CaB2up(t) + CaB3f(t),
yp(t) = Cpx(t)

(30)
where the output ya is the measured acceleration ya = ẍa,
and matrices A,B1, B2, B3 correspond to a linear model
of a mechanical system (4)–(5) translated into state space
representation with a state vector x = [xa ẋa xp ẋp]

T .
Matrix Ca = [0 1 0 0] defines the measured acceleration
of the absorber, and Cp = [0 0 1 0] determines the control
system output yp = xp, i.e. the position of the primary
structure.

Concerning the resonator feedback implementation,
which in Laplace form is given as

Ua(s) =

∑N
i=0 aie

−sτi

s
Ya(s), (31)

it can be turned to

u̇a(t) =

N∑
i=0

aiya(t− τi). (32)

It should be mentioned that this transformation results in
additional dynamics, characterized by the introduction of
two eigenvalues at zero Pilbauer et al. (2015).

In order to stabilize and optimize the spectrum of
the resulting infinite dimensional system, following the
methodology proposed in Michiels (2011) we consider a
fixed order dynamic feedback controller in the form

K :

{
ẋK(t) = AKxK(t) +BKyp(t),
up(t) = CKxK(t) +DKyp(t),

(33)

with k denoting order of the controller.



The system (30) and the feedback (32) create together
System of Delay Differential Algebraic Equations (DDAE)
ẋ(t) = Ax(t) +B1ua(t) +B2up(t) +B3f(t),

u̇a(t) =
∑2
i=0 aiya(t− τi),

ya(t) = CaAx(t) + CaB1ua(t) + CaB2up(t) + CB3f(t),
yp(t) = Cpx(t)

(34)
which can be rewritten in a compact form of DDAEs
Michiels and Niculescu (2014) as

Eξ̇(t) = A0ξ(t) +

2∑
i=1

Aiξ(t− τi) + B0f(t), (35)

where ξ = [x ua ya yp]
T is a new state vector.

For the resulting system, it is required that the spec-
trum of (35) lies safely in the left half of the complex plain.
Defining the spectral abscissa of the system as

α(K) := sup(<(s) : s ∈ Σ), (36)

with

Σ :=

{
s ∈ C : det

(
sE−A0 −

2∑
i=1

Aie
−sτi

)
= 0

}
,

(37)

the requirement on the stability is given as α < 0. Note
that if α is very close to the imaginary axis, next to
the undesirably small stability margin, it may result in
undesirably long transients due to the low damping or
slow modes brought by the rightmost roots. Therefore, it
will be required so that the spectral abscissa is located
sufficiently far to the left of the imaginary axis. This
motivates a controller design based on minimizing the
spectral abscissa over the free parameters, the elements
of matrices (AK , BK , CK , DK). For this task we use the
algorithm and software described in Michiels (2011).

It is important to note that the function K 7→ α(K)
is in general not everywhere differentiable, even not ev-
erywhere Lipschitz continuous, even though the depen-
dence of the system matrices of the closed-loop system
on the controller parameters is smooth. To tackle these
challenges, the core optimization tasks in the method
of Michiels (2011) are done using the software HANSO
(Hybrid Algorithm for Nonsmooth Optimization) Overton
(2009).

4. CASE STUDY EXAMPLE

Let’s consider coupled absorber with the platform as
shown in Fig. 1 with following parameters ma = 0.223 kg,
ca = 1.273 kgs−1, ka = 350 Nm−1 on the absorber’s side
and m̄p = 1.52 kg, c̄p = 10.11 kgs−1, k̄p = 1960 Nm−1

on the primary structure. These parameters were also
considered in Kučera et al. (2017).

To describe this set-up by (4)-(5) we use normalized pa-
rameters. Absorber has natural frequency Ω = 39.627 s−1

and damping ratio ζ = 0.072. For simplicity, we assume
that the excitation frequency ω̄f = Ω, which implies
h = 0 in (14). Then, the primary structure has normalized
weight mp = 6.816, damping cp = 1.144 and stiffness
kp = 5.6. System is excited by the external harmonic force
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Fig. 3. Spectra of the drDR (16)-(17) alone, drDR - system
interconnection (34) without controller (unstable),
and with controller (33) (stable).

with amplitude ∆f̄ = 10 N, which implies the normalized
amplitude ∆f = 0.029.

For parametrization of the robust resonator, we apply
Lemma 1. In Fig. 3 the spectrum of the double root delayed
resonator (drDR) (16)-(17) as well as the spectrum of its
coupling with the primary structure (34) is shown. As
can be seen, the spectrum of the interconnected system
is unstable, as two root couples are located to the right
of the stability boundary. Thus, the controller (33) of the
order k = 3 is tuned by minimizing the spectral abscissa,
as described above. After spectral abscissa optimization,
defining the controller matrices

AK =

[−1.0897 0.0147 0.4740
1.4890 0.8037 −3.0751
0.2966 0.6138 −0.8099

]
, BK =

[
1.3048
0.5531
0.9221

]
,

CK = [6.6243 −0.1113 −0.3087] , DK = [−4.2371] ,
(38)

the drDR with the primary structure is stable (as shown
in Figure 3).

In the next step, the performance validation is done via
simulations. Next to the nominal excitation frequency ω =
1 case, two cases with 3% mismatch between the design
and true excitation frequency (ω = 0.97 and ω = 1.03)
are considered to study the robustness. For comparison
results by the classical delayed resonator with lumped
delay feedback

ua(t) = gcDRẍa(t− τcDR) (39)

are shown, with gain gcDR = 0.1441 and time delay
τcDR = 1.5708, parametrized by assigning a single root
s1 = j to the delayed resonator Olgac and Holm-Hansen
(1994), Olgac (1995). From the results shown in Figure
4 it can be seen that for nominal frequency ω = 1 both
DRs performs well. However, for the cases with the 3% fre-
quency mismatch, the drDR performs considerably better
with approximately ten times smaller residual vibration
amplitudes.
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Fig. 4. Simulation results of delayed resonator performance
at three excitation frequencies i) ω = 0.97, ii) the
nominal ω = 1 and iii) ω = 1.03. Next to the results
of the scheme with robust drDR (16)-(17) and the
stabilizing controller (33) (red line), the results by the
classical scheme with cDR with feedback (39) (blue
line) are shown.

Finally, the enhancement of the robustness is stud-
ied via the frequency responses. Next to the magnitude
|Gxp,f (jω)| of the transfer function (8) between the exci-
tation force f and the position of the primary xp, also the
normalized transmissibility function

T (ω) =

∣∣∣∣R(jω)− P (jω)

Q(jω)

∣∣∣∣ (40)

in the vicinity of ω = 1 is studied. Notice that this
measure, which was introduced in Pilbauer et al. (2017), is
fully determined by the absorber parameters in R(s) and
Q(s) defined by (9) and (10) and by the parameters of
active feedback P (s). The denominator Q(s) normalizes
the function (40) in order to achieve limω→0 T (ω) = 1.
Note that by coupling equation (4) with the resonator
feedback, the transmissibility can be interpreted as T (ω) =

1
|Gxa,xp (jω)| , where Gxa,xp(s) = Xa(s)

Xp(s) .

If the cDR (39) is applied, then T (ω) goes to zero for
the nominal frequency ω = 1 as shown in Fig. 5. For
the frequencies in the vicinity of ω = 1, this function
tends to rapidly increase and therefore, if there is an
uncertainty in the excitation frequency, the quality of the
vibration suppression is likely to decay. As can be seen in
Fig. 5, drDR transmissibility has parabolic shape in the
vicinity of ω = 1 with considerably smaller increase in
its neighborhood, compared to the cDR. This broadening
of the effective frequency stop-band is transformed to∣∣Gf,xp(jω)

∣∣ shown in the Fig. 6. Another positive aspect is
considerably lower H∞ norm (maximum of the frequency
response) compared to the case with cDR, caused by
applying the platform position controller K, which is not
coupled for the cDR case.

5. CONCLUSION

A new type of delayed resonator with a double root
assigned at nominal frequency was presented as the main
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Fig. 5. Transmisibility of the drDR (16)-(17) and classical
DR with the feedback (39).
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Fig. 6. Magnitude of the transfer function Gxp,f (jω)
given by (8): i) with robust drDR (16)-(17) and the
stabilizing controller (33), ii) with a classical cDR
with feedback (39)

result. For the parametrization of the proposed resonator
feedback with time delays, two fully analytic formulas have
been proposed. The overall design procedure gains from
the fact that it was proposed for the dimensionless models,
normalized with respect to the absorber mass and natural
frequency. An important aspect is also application of delay
free feedback part in the resonator feedback (14), by which
the resonant frequency of the absorber is unified with
the excitation frequency. This step makes the successive
parametrization much easier, as already revealed in Kučera
et al. (2017). It was also demonstrated that application
of the additional controller of the platform position is
beneficial from both the stability and robustness points
of view.
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