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Abstract: A further extension of a result on maximal multiplicity induced-dominancy for
spectral values is analytically derived for generic retarded second-order systems with a single
delay in the parameter space. Several examples illustrate the applicative perspectives of the
result, towards a rightmost spectral value assignment approach.

Keywords: Time-delay systems, stability analysis, spectral abscissa, rightmost spectral values.

1. INTRODUCTION

The present study concerns a frequency domain approach
in the stability analysis of linear time-invariant retarded
Time-delay systems. The investigation of conditions on the
equation parameters that guarantee the exponential sta-
bility of solutions is a question of ongoing interest. In the
Laplace domain, where a number of effective methods have
been proposed, the stability analysis amounts to studying
the distribution of the characteristic quasipolynomial func-
tion’s roots, see for instance (Cooke and van den Driessche,
1986; Walton and Marshall, 1987; Stépán, 1989; Michiels
and Niculescu, 2007; Olgac and Sipahi, 2002; Sipahi et al.,
2011). The delay effect in controllers design was first intro-
duced in (Suh and Bien, 1979) where is shown that delayed
proportional controller performs an averaged derivative
action and thus can replace the proportional-derivative
controller, see also (Atay, 1999). Also, under appropriate
conditions the Time-delay may have a stabilizing effect
in the control design, see for instance (Niculescu et al.,
2010). Indeed, that the closed-loop stability is guaranteed
precisely by the existence of the delay. In the context of
mechanical engineering problems, the effect of Time-delay
was emphasized in (Stépán, 1989) where concrete applica-
tions are studied, such as, the machine tool vibrations and
robotic systems.

In recent works, it is shown that the multiple spectral
values for Time-delay systems can be characterized us-
ing a Birkhoff/Vandermonde-based approach; see for in-
stance (Boussaada and Niculescu, 2016a,b, 2014; Bous-
saada et al., 2016). More precisely, in (Boussaada and
Niculescu, 2016b), it is shown that the admissible multi-
plicity of the zero spectral value is bounded by the generic
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Polya and Szegö bound denoted PSB , which is nothing
but the degree of the corresponding quasipolynomial, see
for instance (Pólya and Szegő, 1972). In (Boussaada and
Niculescu, 2016a), it is shown that a given CIR with non
vanishing frequency never reaches PSB and a sharper
bound for its admissible multiplicities is established.

Moreover, in (Boussaada et al., 2016), the variety corre-
sponding to a multiple root for scalar Time-delay equa-
tions defines a stable variety for the steady state. The
multiplicity of a root itself is not important as such but its
connection with the dominancy of this root is a meaningful
tool for control synthesis. An example of a scalar retarded
equation with two delays is studied in (Boussaada and
Niculescu, 2016a) where it is shown that the multiplicity
of real spectral values may reach the PSB . In addition,
the corresponding system has some further interesting
properties: (i) it is asymptotically stable, (ii) its spectral
abscissa (rightmost root) corresponds to this maximal al-
lowable multiple root located on the imaginary axis. Such
observations enhance the outlook of further exhibiting the
existing links between the maximal allowable multiplicity
of some negative spectral value reaching the quasipolyno-
mial degree (i.e the number of the involved polynomials
plus their degree minus one) and the stability of the
trivial solution of the corresponding dynamical system.
This property induced from multiplicity appears also in
optimization problems since such a multiple spectral value
is nothing but the rightmost root, see also (Vanbiervliet
et al., 2008; Michiels et al., 2000). Also notice that the
property was already observed in (Ramirez et al., 2015),
where a tuning strategy is proposed for the design of a
delayed Proportional-Integral controller by placing a triple
real dominant root for the closed-loop system. However,
the dominancy is only checked using a Mikhailov curve
and QPmR toolbox, see for instance (Vyhĺıdal and Zitek,
2009). To the best of our knowledge, the first time an



analytical proof of the dominancy of a spectral value for
the scalar equation with a single delay was presented in
(Hayes, 1950). The dominancy property is further explored
and analytically shown in the case of second-order systems
and a rightmost root assignment based design using de-
layed state-feedback is proposed in (Boussaada et al., 2017,
2018) where its applicability in damping active vibrations
for a piezo-actuated beam is proved.

The multiplicity of a root itself is not important as such
but its connection with the dominancy of this root is a
meaningful tool for control synthesis. This work, further
explores such a connexion and gives an analytical proof for
the dominancy of the spectral value with maximal multi-
plicity for second-order systems controlled via a delayed
proportional-derivative controller.

2. PREREQUISITES AND MOTIVATING EXAMPLES

Second-order linear systems capture the dynamic behav-
ior of many natural phenomena, and have found wide
applications in a variety of fields, such as vibration and
structural analysis. In the sequel we recall some hints,
recent results and examples motivating the use of delay in
controller design for stabilizing the steady state solution
corresponding to such a class of systems. Consider the
generic second-order system with a single time delay:

ẋ = A0x(t) +A1x(t− τ) (1)

with the state-vector x = (x1, x2) ∈ R2, under appropriate
initial conditions belonging to the Banach space of con-
tinuous functions C([−τN , 0],R2). Here τ is a positive con-
stant delay and the matrices Aj ∈M2(R) for j = 0 . . . 1. It
is well known that the asymptotic behavior of the solutions
of (1) is determined from the spectrum ℵ designating the
set of the roots of the associated characteristic function
(denoted in the sequel ∆(s, τ)). Namely, the characteristic
function corresponding to system (1) is a quasipolynomial
∆ : C× R+ → C of the form:

∆(s, τ) = det
(
s I −A0 −A1 e

−τs) . (2)

To start with, let us recall a generic result on the location
of spectral values corresponding to (2). The proof of the
proposition below can be found in (Michiels and Niculescu,
2007).

Proposition 1. If s is a characteristic root of the system
(1), then it satisfies

|s| ≤ ||A0 +A1 e
−τs||2. (3)

The above proposition provides a generic envelope curve
around the characteristic roots corresponding to (1).

In particular, the present work is focused on Time-delay
systems characterized by the quasipolynomial function of
the form

∆(s, τ) = P0(s) + P1(s) e−τs, (4)

and we are concerned by the problem of the analytical
characterization of the rightmost root. More precisely,
equation (4) is written as:

∆(s, τ) = s2 + c1s+ c0 + (β0 + sβ1) e−τ s. (5)

The case β1 = 0, yields a rightmost root with maximal
multiplicity as characterized in (Boussaada et al., 2018).

Fig. 1. Sparsity-induced loss of dominancy for the multiple
spectral value. Each intersection between the blue/red
curves corresponds to a spectral value of (8). The
roots’ distribution is illustrated using QPmR toolbox
from (Vyhĺıdal and Zitek, 2009)

2.1 Multiple spectral values for Time-delay systems are
not necessarily dominant

The problem of stabilization of a chain of integrators
is considered in (Niculescu and Michiels, 2004) where a
single integrator can be stabilized by a single delay state-
feedback. It is asserted that either 2 distinct delays or
a proportional+delay are sufficient to stabilize a chain
including integrators. In (Kharitonov et al., 2005), a like
assertion is shown to be also necessary to stabilize the
double integrator. In conclusion, there exists at least a
spectral value for (6) with positive real part. As a matter
of fact, consider the following quasipolynomial function:

∆(s, τ) = s2 + α e−τ s. (6)

It can be checked that the maximal admissible multiplicity
is 2 and it can be attained if, and only if,

α = −4
e−2

τ2
, s = −2

τ
. (7)

As a result, s0 = − 2
τ , while being a multiple root it

cannot be dominant. Figure 1 illustrates the particular
quasipolynomial (6)-(7) with τ = 1, that is

∆(s, 1) = s2 − 4e−(s+2). (8)

where the dominancy property of the multiple root is lost
since s1 ≈ 0.557 is a root of (8). This is structurally
explained by the sparsity of the corresponding quasipoly-
nomial.

2.2 Sunflower Equation

In (Boussaada et al., 2016) the well-known Sunflower
model is considered. Namely, the helical movement of a
growing plant is governed by the following delay equation:

ẍ+
a

τ
ẋ+

b

τ
sin(x(t− τ)) = 0 (9)

This model is known to reproduce the dynamics of the
upper part of the stem of the plant, which performs a
rotating movement. Here the state x(t) designates the
angle of the plant with respect to the vertical line, the
delay τ corresponds to a geotropic reaction time, and a and
b some positive parameters. The corresponding linearized
system with α = a/τ and β = b/τ is given by:

ẍ+ αẋ+ βx(t− τ) = 0 (10)



In (Boussaada et al., 2016) it is shown that equation (10)
admits a spectral value at z with multiplicity 2 if, and only
if, (α, z) = (α+, z+) or (α, z) = (α−, z−) where:

α− = −
(

2 +
√

4 + τ2β2
)

e
1/2 τ

(
−β− 2+

√
4+τ2β2

τ

)
τ−2,

z− = −β
2
− 2 +

√
4 + τ2β2

2τ

α+ =
(
−2 +

√
4 + τ2β2

)
e
1/2 τ

(
−β+−2+

√
4+τ2β2

τ

)
τ−2,

z+ = −β
2

+
−2 +

√
4 + τ2β2

2τ
(11)

It is also proved that if (z, α) = (z+, α+) (respectively

(z−, α−)) and τβ > 2
√

3 (τβ < 2
√

3) then z+ (respectively
z−) is the rightmost root and the corresponding steady
state solution is asymptotically stable. The next section
enunciates the main contribution, which extends the above
results.

3. MAIN RESULT

The following result generalizes the result from in (Bous-
saada et al., 2018) which is restricted to β1 = 0.

Theorem 2. Consider the quasipolynomial function (5):

∆(s, τ) = s2 + c1s+ c0 + (β0 + sβ1) e−τ s,

The following assertions hold:

i) The multiplicity of any given root of the quasipolyno-
mial function (5) is bounded by 4, it can be attained
only on the real axis.

ii) The quasipolynomial (5) admits a real spectral value
at s = s± with algebraic multiplicity 4 if, and only if,
either

s+ =
−2 +

√
−2 + c0τ2

τ
,

β0 = 2
e−2+

√
−2+c0τ2 (−5±

√
−2 + c0τ2

)
τ2

,

β1 = −2
e−2+

√
−2+c0τ2

τ
, c1 = −2

√
−2 + c0τ2

τ
(12)

or 

s− =
−2−

√
−2 + c0τ2

τ
,

β0 = 2
e−2−

√
−2+c0τ2 (−5−

√
−2 + c0τ2

)
τ2

,

β1 = −2
e−2−

√
−2+c0τ2

τ
, c1 = 2

√
−2 + c0τ2

τ
(13)

where τ is arbitrarily chosen satisfying c0τ
2 ≥ 2.

iii) If either (12) or (13) is satisfied then s = s± is the
rightmost root of (4).

A complete proof of the main result will be presented in
an extended version of the paper. Its sketch is summarized
below.

Sketch of the Proof: The degree of the quasipolynomial
function is equal to 4 as defined above. First, the van-

ishing of the quasipolynomial ∆ yields the elimination
of the exponential term as a rational function in s. The
substitution of the obtained equality in the first three
derivatives gives a system of algebraic equations. Solving
them, one obtains the two solutions (12) and (13). Next
using the argument principle one shows the dominancy of
s±; see Figure 4. Further explanation can be found in the
next section. For an effective implementation for complex
integral computations we refer the reader to (Xu et al.,
2016). �

4. ILLUSTRATIVE EXAMPLE

Consider the damping-free oscillator controlled by a de-
layed proportional-derivative controller{

ξ̈(t) + γξ(t) = u(t),

u(t) = −β̃ξ(t− τ)− α̃ξ̇(t− τ)
(14)

where γ a real parameter. The corresponding quasipoly-
nomial function is given by

∆(s, τ) = s2 + γ + (β + α s) e−s τ (15)

If γ = 0 then the control problem (14) reduces to the
stabilization of the double integrator using delayed PD
controller. Otherwise, using a linear transformation, it is
sufficient to study the two cases γ = 1 and γ = −1 to get
a complete picture of the effect of the parameter γ on the
dominancy of admissible multiple roots.

4.1 Double integrator stabilized by delayed PD-Controller

A result from (Niculescu and Michiels, 2004; Kharitonov
et al., 2005), mentioned in Section 2.1, asserts that a
delayed proportional controller (with a single delay) is not
able to stabilize a double integrator. Here we investigate
the effect of the additional delayed derivative term and ex-
plore its stabilizing effect through the multiplicity induced-
dominancy property. Consider the quasipolynomial func-
tion

∆(s, τ) = s2 + (β + α s) e−s τ (16)

where α 6= 0.

Proposition 3. The following assertions hold for (16):

i) The multiplicity of any given root of the quasipolyno-
mial function (16) is bounded by 3, it can be attained
only on the real axis.

ii) The quasipolynomial (16) admits a real spectral value
at s = s± with algebraic multiplicity 3 if, and only if,

α = 2

(
−1−

√
2
)

e−2−
√
2

τ
,

β = 2
e−2−

√
2
(
−7− 5

√
2
)

τ2
,

s− =
−2−

√
2

τ

(17)

or 

α = 2

(√
2− 1

)
e−2+

√
2

τ
,

β = 2
e−2+

√
2
(
−7 + 5

√
2
)

τ2
,

s+ =
−2 +

√
2

τ

(18)



Fig. 2. (Up) Spectrum distribution corresponding to (16)
for τ = 1/3 and (18) is satisfied. (Down) Spectrum
distribution corresponding to (16) for τ = 1/3 and
(17) is satisfied, the dominancy property is lost.

iii) A spectral value of (16) with maximal multiplicity
(multiplicity 3) is dominant if and only if s = s+.

Sketch of the Proof: The degree of the quasipolynomial
function is equal to 4 as defined in Section 2. First, the
vanishing of the quasipolynomial ∆ yields the elimination
of the exponential term as a rational function in s. The
substitution of the obtained equality in the first three
derivatives gives a system of algebraic equations. Solving
them, one shows that the solutions set is empty. Thus, the
maximal multiplicity is less or equal to 3. Solving the two
first derivatives yields to the solutions (17) and (18).

The dominancy of s+ proof follows the same steps as that
of Theorem 2. First, using Proposition 1, one establishes a
generic supremum bound for the real and imaginary parts
of roots of (21)-(23). Then define an integration contour
γ = ∪6k=1Ck which is taken as a counterclockwise closed
curve, then an integral over γ is defined as the sum of the
integrals over the directed smooth curves that make γ up,
as illustrated in Figures 4. Elementary calculations give
parametrization of γ on each Ck. Since ∆ is analytic then
the argument principle asserts:

1

2iπ

∮
γ

∂s∆(s, τ)

∆(s, τ)
ds = Z, (19)

where Z designates the number of the quasipolynomial
roots enclosed by γ. Furthermore, the left-hand side of
(24) gives:

∮
γ

∂s∆(s, τ)

∆(s, τ)
ds = lim

ε→0

6∑
k=1,k 6=4

∫ 1

0

ṡk(t)
∂s∆(sk(t), τ)

∆(sk(t), τ)
dt

+ lim
ε→0

∫ π
2

−π
2

ṡ4(t)
∂s∆(s4(t), τ)

∆(s4(t), τ)
dt

(20)
where sk(t) designates the parametrization of s along
Ck for k ∈ {1, . . . , 6}. Some tedious but elementary
computations lead to Z = 0 in case (18), but Z = 1 in
case (17). Finally, Figure 2 illustrate the result. �

4.2 Harmonic oscillator stabilized by delayed PD-controller

Consider the problem of stabilization of a classical har-
monic oscillator using PD controller:

∆(s, τ) = s2 + 1 + (β + α s) e−s τ (21)

Proposition 4. Consider the quasipolynomial function
(21) for which the following assertions hold:

i) The multiplicity of any given root of the quasipolyno-
mial function (5) is bounded by 4, it can be attained
only on the real axis.

ii) The quasipolynomial (5) admits a real spectral value

at s = −
√

2 with algebraic multiplicity 4 if, and only
if,

α = −
√

2e−2, β = −5 e−2, τ =
√

2. (22)

iii) If (22) is satisfied then s = −
√

2 is the rightmost root
of (4).

Sketch of the Proof: Following Theorem 2, s0 = −
√

2 is
root of (21) of multiplicity 4 with parameters values:

α0 = −
√

2e−2, β0 = −5 e−2, τ0 =
√

2 (23)

Furthermore, s0 is the rightmost root of (21)-(23). The
dominancy proof follows the same steps as that of Theorem
2. First, using Proposition 1, one establish a generic
supremum bound for the real part as well as the imaginary
part of roots of (21)-(23). Then define an integration
contour γ = ∪6k=1Ck which is taken as a counterclockwise
closed curve, then an integral over γ is defined as the
sum of the integrals over the directed smooth curves that
make γ up, as illustrated in Figures 4. Since ∆ is analytic
function then the principle of argument asserts:

1

2iπ

∮
γ

∂s∆(s, τ)

∆(s, τ)
ds = Z, (24)

where Z designates the number of the quasipolynomial
roots enclosed by γ. Furthermore, the left-hand side of
(24) gives:∮

γ

∂s∆(s, τ)

∆(s, τ)
ds = lim

ε→0

6∑
k=1,k 6=4

∫ 1

0

ṡk(t)
∂s∆(sk(t), τ)

∆(sk(t), τ)
dt

+ lim
ε→0

∫ π
2

−π
2

ṡ4(t)
∂s∆(s4(t), τ)

∆(s4(t), τ)
dt

(25)
Some tedious but elementary computations allows to Z =
0.

Figures 3 and 4 illustrate the distribution of the spectrum
of (21)-(23). �



Fig. 3. (Left) Spectrum distribution corresponding to
(21)-(23). The black points correspond to the spec-
tral values, the solid blue line is the zero-modulus-
manifold, the solid brown line is the zero-real part-
manifold, the solid red line is the zero-imaginary part-
manifold where x and y represent respectively the
real part and the imaginary part of the complex vari-
able s. (Right) Zoom on the dominant non resonant
spectral value corresponding to (21)-(23) located at

λ = −
√

2. The solid blue line is the zero-modulus-
manifold and the solid red line is the zero-imaginary
part-manifold of (21)-(23).

Fig. 4. The used contour for applying the argument princi-
ple to investigate the dominancy of the multiple root
in blue solid line. The dashed red line gives the generic
spectrum envelope established from Proposition 1 .

4.3 Controlling unstable second-order system via a delayed
Proportional-Derivative Controller

Consider the problem of stabilization of the second-order
sparse polynomial (having two real roots with different
signs):

∆(s, τ) = s2 − 1 + (β + α s) e−s τ . (26)

Proposition 5. The following assertions hold for (26):

i) The multiplicity of any given root of the quasipolyno-
mial function (26) is bounded by 3, it can be attained
only on the real axis.

ii) The quasipolynomial (26) admits a real spectral value
at s = s± with algebraic multiplicity 3 if and only if
either

s+ =
−2 +

√
τ2 + 2

τ
,

β = 2
e−2+

√
τ2+2

(
−7 + 5

√
τ2 + 2− τ2

)
τ2

,

α = 2

(
−1 +

√
τ2 + 2

)
e−2+

√
τ2+2

τ

(27)

or

Fig. 5. (Up)The spectral distribution of (26) under the
conditions (27) with τ = 1. The multiple spectral
value is dominant and stable. (Down) The spectral
distribution of (26) under the conditions (27) with
τ = 2. The multiple spectral value is dominant but
unstable.



s− =
−2−

√
τ2 + 2

τ
,

α = 2

(
−1−

√
τ2 + 2

)
e−2−

√
τ2+2

τ
,

β = 2
e−2−

√
τ2+2

(
−7− 5

√
τ2 + 2− τ2

)
τ2

,

(28)

Throughout the above result, one can illustrate various
scenarios. In the first one, the multiple root is dominant
and stable, for instance when condition (27) is satisfied and
τ = 1, see Figure 5 (Left). In the second, the multiple root
is dominant and unstable which occurs when condition
(27) is satisfied and τ = 2, see Figure 5 (Right). In the
last, the multiple spectral value is not dominant which is
illustrated in Figure 6.

5. CONCLUSION

A new extension of a dominancy result based on the max-
imal multiplicity of spectral value is analytically shown
for generic second-order systems with a single delay. The
dominancy property is parametrically analyzed in the case
of a damping-free oscillator. Also examples of multiple
roots loss of dominancy are provided. Unlike methods
based on finite spectrum assignment, the method proposed
in this work does not render the closed loop system finite
dimensional but consists in controlling its rightmost spec-
tral value, see (Boussaada and Niculescu, 2018) for further
applications of the approach.



Fig. 6. The spectral distribution of (26) under the condi-
tions (28) with τ = 1. The multiple spectral value is
not dominant
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