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Towards a Decay Rate Assignment Based Design for Time-Delay Systems with Multiple Spectral Values

Recent results on maximal multiplicity induceddominancy for spectral values in reduced-order Time-Delay Systems naturally apply in controllers design. As a matter of fact, the approach is merely a delayed-output-feedback where the candidates' delays and gains result from the manifold defining the maximal multiplicity of a real spectral value, then, the dominancy is shown using the argument principle. Various reduced order examples illustrate the applicative perspectives of the approach.

I. INTRODUCTION

The present study centers on stabilizing-controllers design for linear time-invariant retarded time-delay systems. The investigation of conditions on the equation parameters that guarantee the exponential stability of solutions is a question of ongoing interest. In particular, an efficient way to study a solution's stability is the frequency domain approach since in the Laplace domain, where a number of effective methods have been proposed, the stability analysis amounts to studying the distribution of the characteristic quasipolynomial function's roots, see for instance [START_REF] Bellman | Differential-difference equations[END_REF], [START_REF] Cooke | On zeroes of some transcendental equations[END_REF], [START_REF] Walton | Direct method for tds stability analysis[END_REF], [START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF], [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Michiels | Stability and stabilization of timedelay systems[END_REF], [START_REF] Olgac | An exact method for the stability analysis of time delayed linear time-invariant (lti) systems[END_REF], [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF]. The idea of exploiting the delay effect in controllers design was first introduced in [START_REF] Suh | Proportional minus delay controller[END_REF] where it is shown that the conventional proportional controller equipped with an appropriate time-delay performs an averaged derivative action and thus can replace the proportional-derivative controller, see also [START_REF] Atay | Balancing the inverted pendulum using position feedback[END_REF]. Furthermore, it was stressed in [START_REF] Niculescu | Delay Effects on Output Feedback Control of Dynamical Systems[END_REF] that timedelay has a stabilizing effect in the control design. Indeed, the closed-loop stability is guaranteed precisely by the existence of the delay. In the context of mechanical engineering problems, the effect of time-delay was emphasized in [START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF] where concrete applications are studied, such as the machine tool vibrations and robotic systems.

In recent works, the characterization of multiple spectral values for time-delay systems of retarded type were established using a Birkhoff/Vandermonde-based approach; see for instance [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF], [START_REF]Characterizing the codimension of zero singularities for timedelay systems[END_REF], [START_REF]Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices[END_REF], [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF]. In particular, in [START_REF]Characterizing the codimension of zero singularities for timedelay systems[END_REF], it is shown that the admissible multiplicity of the zero spectral value is bounded by the generic Polya and Szegö bound denoted P S B , which is merely the degree of the corresponding quasipolynomial 1 , see for instance [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]. In [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF], it is shown that a given crossing imaginary root with a non vanishing frequency never reaches P S B and a sharper bound for its admissible multiplicities is established.

Moreover, in [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF], the manifold corresponding to a multiple root for scalar time-delay equations defines a stable manifold for the steady state. An example of a scalar retarded equation with two delays is studied in [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF] where it is shown that the multiplicity of real spectral values may reach the P S B . In addition, the corresponding system has some further interesting properties: (i) it is asymptotically stable, (ii) its spectral abscissa (rightmost root) corresponds to this maximal allowable multiple root located on the imaginary axis. Such observations enhance the outlook of further exhibiting the existing links between the maximal allowable multiplicity of some negative spectral value reaching the quasipolynomial degree and the stability of the trivial solution of the corresponding dynamical system. This interesting property induced by multiplicity appears also in optimization problems since such a multiple spectral value is indeed the rightmost root, see also [START_REF] Vanbiervliet | A nonsmooth optimisation approach for the stabilisation of time-delay systems[END_REF]. Also notice that the property was already observed in [START_REF] Ramirez | Design of proportional-integral-retarded (pir) controllers for second-order lti systems[END_REF], where a tuning strategy is proposed for the design of a delayed Proportional-Integral controller by placing a triple real dominant root for the closed-loop system. However, the dominancy is only checked using a Mikhailov curve and QPmR toolbox, see for instance [START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF].

It is worth noting that the rightmost root for quasipolynomial function corresponding to stable time-delay systems is actually the exponential decay rate of its time-domain solution, see for instance [START_REF] Mori | On an estimate of the decay rate for stable linear delay systems[END_REF] for an estimate of the decay rate for stable linear delay systems. To the best of our knowledge, the first time an analytical proof of the dominancy of a spectral value for the scalar equation with a single delay was presented in [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF]. The dominancy property is further explored and analytically shown in scalar delay equations in [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF], then in second-order systems controlled by a delayed proportional is proposed in [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF], [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of timedelay systems: Application to active vibration control[END_REF] where its applicability in damping active vibrations for a piezo-actuated beam is proved. An extension to the delayed proportional-derivative controller case is studied in [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF] where the dominancy property is parametrically characterized. We emphasize that the idea of using roots assignment for controller-design for time-delay system is not new. As a matter of fact, an analytical/numerical stabilization method for retarded timedelay systems related to the classical pole-placement method for ordinary differential equations is proposed in [START_REF] Michiels | Continuous pole placement for delay equations[END_REF], see also [START_REF] Zitek | Dimensional analysis approach to dominant three-pole placement in delayed pid control loops[END_REF] for further insights on pole-placement methods for retarded time-delays systems with proportional-integralderivative controller-design.

This work provides an overview of those recent results on the dominancy criterion for scalar and second-order systems and it further explores the applicability of such a criterion in a third-order model describing the Mach number regulation in a wind tunnel. Roughly speaking, the Mach number regulation in a wind tunnel is based on Navier-Stokes equations for unsteady flow and contains control laws for temperature and pressure regulation. Here, the model we consider consists of a system of three state equations with a delay in one of the state variables.

II. PREREQUISITES

Consider the generic second-order system with a single time delay:

χ = A 0 χ(t) + A 1 χ(t -τ ), (1) 
where χ = (χ 1 , . . . , χ n ) ∈ R n is the state-vector, under appropriate initial conditions belonging to the Banach space of continuous functions

C([-τ N , 0], R n ).
Here τ is a positive constant delay and A j ∈ M n (R) for j = 0 . . . 1 are real valued matrices. It is well known that the asymptotic behavior of the solutions of (1) is determined from the spectrum ℵ designating the set of the roots of the associated characteristic function (denoted ∆(s, τ ) in the sequel). Namely, the characteristic function corresponding to system (1) is a quasipolynomial ∆ : C × R + → C of the form:

∆(s, τ ) = det s I -A 0 -A 1 e -τ s . (2) 
To start with, let us recall a generic result on the location of spectral values corresponding to [START_REF] Cooke | On zeroes of some transcendental equations[END_REF]. The proof of the proposition below can be found in [START_REF] Michiels | Stability and stabilization of timedelay systems[END_REF].

Proposition 1. If s is a characteristic root of system (1), then it satisfies

|s| ≤ ||A 0 + A 1 e -τ s || 2 . (3) 
The above proposition combined with the triangular inequality provides a generic envelope curve around the characteristic roots corresponding to system [START_REF] Bellman | Differential-difference equations[END_REF].

In particular, the present work is focused on time-delay systems characterized by the quasipolynomial function of the form

∆(s, τ ) = P 0 (s) + P 1 (s) e -τ s , (4) 
where deg(P 0 ) > deg(P 1 ). We shall consider the problem of the analytical characterization of its rightmost root. The starting point of this work in progress and the first analytical proof of the multiplicity-induced dominancy was proposed in [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF]. Indeed, a simple scalar differential equation with one delay representing a biological model describing the dynamics of a vector disease model was considered. In its linearized version, the infected host population ξ(t) is governed by:

ξ(t) + a 0 ξ(t) + a 1 ξ(t -τ ) = 0, (5) 
where a 1 > 0 designates the contact rate between infected and uninfected populations assuming that the infection of the host recovery proceeds exponentially at a rate -a 0 > 0.

It was shown that for a given positive delay, equation ( 5) admits a double spectral value at s = s 0 if, and only if,

s 0 = - a 0 τ + 1 τ and a 1 = e -a0τ -1 τ . (6) 
Furthermore, it was stressed that s 0 is the corresponding rightmost root and if s 0 < 0 then the zero solution of system ( 5) is asymptotically stable. One knows that s = s 0 is a spectral value of (5) if, and only if, s 0 is a root of the characteristic equation

∆(z, τ ) = s + a 0 + a 1 e -sτ = 0. (7) 
The main ingredient of the dominancy proof of s 0 is an integral equation which cannot be satisfied for any spectral value s with (s) > s 0 . Namely, it was shown that if a 1 satisfies (6), then the characteristic function reads:

∆(s, τ ) = (s -s 0 ) 1 - 1 0 e -τ (s-s0) t dt . (8) 
As a matter of fact, if s 1 = ζ + j η = s 0 is a root of (8) then s 1 is a root of its second factor. Hence, we obtain

1 = 1 0 e -τ (ζ-s0) t dt. (9) 
But, e -τ (ζ-s0) t < 1 for ζ -s 0 > 0 and 0 < t < 1, thereby exhibiting the dominancy of s 0 . Remark 1. The rightmost root s 0 corresponding to equation [START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] where system ( 6) is satisfied varies in the interval s 0 ∈ ]-∞, -a 0 [. Figure 2 illustrates the behavior of the rightmost root with respect to the time-delay variation.

IV. SECOND-ORDER SYSTEMS Second-order linear systems capture the dynamic behavior of many natural phenomena and have found wide applications in a variety of fields, such as vibration and structural analysis. In the sequel, we recall some hints, recent results and examples motivating the use of delay in controller-design for stabilizing the steady state solution corresponding to such a class of systems. In its generic form, equation ( 4) is written as:

∆(s, τ ) = s 2 + c 1 s + c 0 + (β 0 + sβ 1 ) e -τ s . ( 10 
)
The case β 1 = 0 yields a rightmost root with maximal multiplicity as characterized in [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF]. Consider the standard linear change of variables

s = c 1 λ 2 , (11) 
leading to the normalized characteristic function

   ∆(λ, τ ) = λ 2 + 2 λ + a 0 + α e -λτ , where α = 4 c 2 1 β 0 , τ = c 1 2 τ and a 0 = 4 c 0 c 1 2 . ( 12 
)
If α = 0, the spectral abscissa is minimized at a 0 = 1 which corresponds to to the rightmost root located at λ 0 = -1, see for instance [START_REF] Kirillov | Robust stability at the swallowtail singularity[END_REF]. By exploiting the delay effect, the following proposition proved in [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF] asserts that the solution's decay rate can be further improved by decreasing the corresponding rightmost root. Assume that a 0 > 1, then the following proposition holds.

Proposition 2.

i) The multiplicity of any given root of the quasipolynomial function [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF] is bounded by 3. ii) The quasipolynomial (12) admits a real spectral value at λ 0 = -1 -1 τ with algebraic multiplicity 3 if, and only if,

τ = 1 a 0 -1 and α = - 2 e -(1+τ ) τ 2 . ( 13 
)
iii) If equations (13) are satisfied then λ = λ 0 is the rightmost root of function [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF].

Remark 2. If equations ( 13) are satisfied then the trivial solution of the second order equation ẍ(t)+2 ẋ(t)+a 0 x(t)+ α x(t -τ ) = 0 is asymptotically stable with λ 0 as the corresponding exponential decay.

A. Multiple spectral values for time-delay systems are not necessarily dominant

The problem of stabilization of a chain of integrators is considered in [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF] where a single integrator can be stabilized by a single delay state-feedback. Indeed, a positive gain guarantees the closed-loop stability of the system free of delay, and, by continuity, there exists a (sufficiently small) delay in the output preserving the stability of the closedloop system. However, the situation is completely different for a chain of integrators of order n when n > 1. For instance, consider the time-delay system characterized by the following quasipolynomial function:

∆(s, τ ) = s 2 + α e -τ s . ( 14 
)
It can be checked that the maximal admissible multiplicity is 2 and it can be attained if, and only if,

α = -4 e -2 τ 2 , s = - 2 τ . (15) 
However, the main result from [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF] asserts that either n distinct delays or a proportional+delay compensator with n-1 distinct delays are sufficient to stabilize a chain including n integrators. In [START_REF] Kharitonov | Static output feedback stabilization: necessary conditions for multiple delay controllers[END_REF], a like assertion is shown to be also necessary to stabilize the chain of n integrators. Hence, in our case, either 2 distinct delays or a proportional+delay are necessary and sufficient to stabilize the double integrator. In conclusion, there exists at least a spectral value for [START_REF]Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices[END_REF] with a positive real part. As a result, s 0 = -2 τ , while being a multiple root cannot be dominant. Indeed, consider ( 14)-( 15) with τ = 1, that is

∆(s, 1) = s 2 -4e -(s+2) . (16) 
As illustrated in Figure 3, the dominancy property is lost since s 1 ≈ 0.557 is a root of function [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]. This is justified by the sparsity of ( 16).

B. Stabilizing a delayed proportional-derivative controller for generic second order systems

Let us consider again the quasipolynomial function (10):

∆(s, τ ) = s 2 + c 1 s + c 0 + (β 0 + sβ 1 ) e -τ s .
The following result generalizes Proposition 2 which is restricted to β 1 = 0.

Proposition 3. Considering equation [START_REF] Atay | Balancing the inverted pendulum using position feedback[END_REF], the following assertions hold: i) The multiplicity of any given root of the quasipolynomial function [START_REF] Atay | Balancing the inverted pendulum using position feedback[END_REF] is bounded by 4, it can be attained only on the real axis. Each intersection between the blue/red curves corresponds to a spectral value of function [START_REF] Pólya | Problems and Theorems in Analysis[END_REF].

ii) The quasipolynomial (10) admits a real spectral value at s = s ± with algebraic multiplicity 4 if, and only if, either

               s + = -2 + √ -2 + c 0 τ 2 τ , β 0 = 2 e -2+ √ -2+c0τ 2 -5 + √ -2 + c 0 τ 2 τ 2 , β 1 = -2 e -2+ √ -2+c0τ 2 τ , c 1 = -2 √ -2 + c 0 τ 2 τ , (17) 
or                s -= -2 - √ -2 + c 0 τ 2 τ , β 0 = 2 e -2- √ -2+c0τ 2 -5 - √ -2 + c 0 τ 2 τ 2 , β 1 = -2 e -2- √ -2+c0τ 2 τ , c 1 = 2 √ -2 + c 0 τ 2 τ , ( 18 
)
where τ is arbitrarily chosen satisfying c 0 τ 2 ≥ 2. iii) If either [START_REF] Vanbiervliet | A nonsmooth optimisation approach for the stabilisation of time-delay systems[END_REF] or (18) is satisfied, then s = s ± is the rightmost root of (4).

A complete proof of the main result will be presented in an extended version of the paper; its sketch is summarized below.

Proof: The degree of the quasipolynomial function is equal to 4 as defined above. First, the vanishing of the quasipolynomial ∆ yields the elimination of the exponential term as a rational function in s. The substitution of the obtained equality in the first three derivatives gives a system of algebraic equations. Solving them, one obtains the two solutions [START_REF] Vanbiervliet | A nonsmooth optimisation approach for the stabilisation of time-delay systems[END_REF] and [START_REF] Ramirez | Design of proportional-integral-retarded (pir) controllers for second-order lti systems[END_REF]. Next using the argument principle one shows the dominancy of s ± ; see Figure 6. Further explanation can be found in the next section. For an effective implementation in complex integral computations we refer the reader to [START_REF] Xu | Delay-dependent stability analysis by using delay-independent integral evaluation[END_REF]. Remark 3. It is worth noting that including information on the acceleration in the control loop allows to a timedelay system of neutral type characterized by the following quasipolynomial function of degree 5:

∆(s, τ ) = s 2 + c 1 s + c 0 + (β 0 + sβ 1 + sβ 2 ) e -τ s . (19)
Since we are dealing with the asymptotic stability analysis, one assumes that |β 2 | = 1, see for instance [START_REF] Hale | Introduction to functional differential equations[END_REF]. More precisely, if one assumes that -1 < β 2 < 0 then function (19) admits a negative root at s 0 = ln(-β2) τ with multiplicity 5 if, and only if, the function parameters satisfy:

                         β 0 = β 2 12 -6 ln (-β 2 ) + (ln (-β 2 )) 2 τ 2 , β 1 = 2 β 2 (3 -ln (-β 2 )) τ , c 0 = 6 ln (-β 2 ) + (ln (-β 2 )) 2 + 12 τ 2 , c 1 = 2 -3 -ln (-β 2 ) τ .
Furthermore, the spectrum distribution of function ( 19) consists of a chain of roots with real parts close to s 0 . However, the dominancy of multiple spectral values for neutral type remains an open question.

V. A PARAMETERIZED DOMINANCY ANALYSIS IN DELAYED-FEEDBACK UNDAMPED OSCILLATORS

Roughly speaking, sparsity of a quasipolynomial may preclude a given spectral value to attain the maximal admissible multiplicity, which is indeed the degree of the quasipolynomial. This section is devoted to the analysis of the parameters' effect on the admissible multiplicity as well as the dominancy of spectral values.

Consider the undamped oscillator controlled by a delayed proportional-derivative controller

ξ(t) + γξ(t) = u(t), u(t) = -βξ(t -τ ) -α ξ(t -τ ), ( 20 
)
where γ is a real parameter, α and β are the gains of the delayed proportional-derivative controller. The corresponding quasipolynomial function is given by:

∆(s, τ ) = s 2 + γ + (β + α s) e -s τ . (21) 
If γ = 0, then the control problem (20) reduces to the stabilization of the double integrator using a delayed proportional-derivative controller. Otherwise, using a linear transformation, it is sufficient to study the two cases γ = 1 and γ = -1 to get a complete picture of the effect of the parameter γ on the dominancy of admissible multiple roots.

A. The double integrator stabilized by a delayed proportional-derivative controller

A result from [START_REF] Niculescu | Stabilizing a chain of integrators using multiple delays[END_REF] and [START_REF] Kharitonov | Static output feedback stabilization: necessary conditions for multiple delay controllers[END_REF], mentioned in Section IV-A, asserts that a delayed proportional controller (with a single delay) is not able to stabilize a double integrator. In [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF] investigate the effect of the additional derivative term equipped with the same delay is investigated its stabilizing effect through the multiplicity induced-dominancy property is emphasized. Consider the quasipolynomial function

∆(s, τ ) = s 2 + (β + α s) e -s τ , ( 22 
)
where α = 0. 

                 α = 2 -1 - √ 2 e -2- √ 2 τ , β = 2 e -2- √ 2 -7 -5 √ 2 τ 2 , s -= -2 - √ 2 τ , (23) 
or                  α = 2 √ 2 -1 e -2+ √ 2 τ , β = 2 e -2+ √ 2 -7 + 5 √ 2 τ 2 , s + = -2 + √ 2 τ , (24) 
iii) A spectral value of function [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF] with maximal multiplicity (equal to 3) is dominant if, and only if, s = s + .

Proof: The degree of the quasipolynomial function is equal to 4 as defined in Section 2. First, the vanishing of the quasipolynomial ∆ yields the elimination of the exponential term as a rational function in s. The substitution of the obtained equality in the first three derivatives gives a system of algebraic equations. Solving them, one shows that the solutions set is empty. Thus, the maximal multiplicity is less than or equal to 3. Solving the two first derivatives yields solutions [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of timedelay systems: Application to active vibration control[END_REF] and [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF].

The dominancy of s + proof follows the same steps as that of Proposition 3. First, using Proposition 1, one establishes a generic supremum bound for the real and imaginary parts of roots of function [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF] such that system (24) is satisfied. Then define an integration contour γ = ∪ 6 k=1 C k which is taken as a counterclockwise closed curve, hence an integral over γ is defined as the sum of the integrals over the directed smooth curves that make γ up, as illustrated in Figures 6. Elementary calculations give a parametrization of γ on each C k . Since ∆ is analytic then the argument principle asserts:

1 2iπ γ ∂ s ∆(s, τ ) ∆(s, τ ) ds = Z, (25) 
where Z designates the number of the quasipolynomial roots enclosed by γ. Furthermore, the left-hand side of (31) gives:

γ ∂ s ∆(s, τ ) ∆(s, τ ) ds = lim →0 6 k=1,k =4 1 0 ṡk (t) ∂ s ∆(s k (t), τ ) ∆(s k (t), τ ) dt + lim →0 π 2 -π 2 ṡ4 (t) ∂ s ∆(s 4 (t), τ ) ∆(s 4 (t), τ ) dt.
(26) where s k (t) designates the parametrization of s along C k for k ∈ {1, . . . , 6}. Some tedious but elementary computations lead to Z = 0 in case [START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF], but Z = 1 in case [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of timedelay systems: Application to active vibration control[END_REF]. Finally, Figure 4 illustrates the result.

B. Harmonic Oscillator stabilized by a delayed proportional-derivative controller

Consider the problem of stabilization of a classical harmonic oscillator using proportional-derivative controller:

∆(s, τ ) = s 2 + 1 + (β + α s) e -s τ . (27) 
Proposition 5. Consider the quasipolynomial function [START_REF] Kirillov | Robust stability at the swallowtail singularity[END_REF] for which the following assertions hold: i) The multiplicity of any given root of the quasipolynomial function [START_REF] Atay | Balancing the inverted pendulum using position feedback[END_REF] is bounded by 4, it can be attained only on the real axis. ii) The quasipolynomial (10) admits a real spectral value at s = -√ 2 with algebraic multiplicity 4 if, and only if,

α = - √ 2e -2 , β = -5 e -2 , τ = √ 2. (28) 
iii) If (28) is satisfied then s = -√ 2 is the rightmost root of (4).

Proof: Following Proposition 3, s 0 = -√ 2 is a root of the quasipolynomial function [START_REF] Kirillov | Robust stability at the swallowtail singularity[END_REF] of multiplicity 4 with parameters values:

α 0 = - √ 2e -2 , β 0 = -5 e -2 , τ 0 = √ 2 (29) 
Furthermore, s 0 is the rightmost root of ( 27)-( 29). The dominancy proof follows the same steps as that of Proposition 3. First, using Proposition 1, one establish a generic supremum Fig. 5. Zoom on the dominant non resonant spectral value corresponding to ( 27)-( 29) located at λ = -√ 2. The solid blue line is the zero modulus manifold and the solid red line is the zero imaginary-part manifold of ( 27)- [START_REF] Kharitonov | Static output feedback stabilization: necessary conditions for multiple delay controllers[END_REF].

bound for the real part as well as the imaginary part of roots of ( 27)-( 29). Then define an integration contour γ = ∪ 6 k=1 C k which is taken as a counterclockwise closed curve, then an integral over γ is defined as the sum of the integrals over the directed smooth curves that make γ up, as illustrated in Figure 6. Elementary calculations leads to a parametrization of γ on each C k : 

C 1 : s 1 (t) = 2 + √ 2 t - √ 2 -7 i where 0 ≤ t ≤ 1 C 2 : s 2 (t) = 2 + 7 i(2t -1) where 0 ≤ t ≤ 1 C 3 : s 3 (t) = -2 - √ 2 
1 2iπ γ ∂ s ∆(s, τ ) ∆(s, τ ) ds = Z, (31) 
where Z designates the number of the quasipolynomial roots enclosed by γ. Furthermore, the left-hand side of [START_REF] Manitius | Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation[END_REF] gives:

γ ∂ s ∆(s, τ ) ∆(s, τ ) ds = lim →0 6 k=1,k =4 1 0 ṡk (t) ∂ s ∆(s k (t), τ ) ∆(s k (t), τ ) dt + lim →0 π 2 -π 2 ṡ4 (t) ∂ s ∆(s 4 (t), τ ) ∆(s 4 (t), τ ) dt.
(32) Some tedious but elementary computations lead to Z = 0. Figures 5 and6 illustrate the distribution of the spectrum of function ( 27)- [START_REF] Kharitonov | Static output feedback stabilization: necessary conditions for multiple delay controllers[END_REF].

C. Controlling an unstable second-order system via a delayed PD Controller Consider the problem of stabilization of the second-order sparse polynomial (having two real roots with different 

                 s + = -2 + √ τ 2 + 2 τ , β = 2 e -2+ √ τ 2 +2 -7 + 5 √ τ 2 + 2 -τ 2 τ 2 , α = 2 -1 + √ τ 2 + 2 e -2+ √ τ 2 +2 τ , (34) 
or                  s -= -2 - √ τ 2 + 2 τ , α = 2 -1 - √ τ 2 + 2 e -2- √ τ 2 +2 τ , β = 2 e -2- √ τ 2 +2 -7 -5 √ τ 2 + 2 -τ 2 τ 2 , (35) 
Throughout the above result, one can illustrate various scenarios. In the first one, the multiple root is dominant and stable, for instance when condition (34) is satisfied and τ = 1, see Figure 7 (Up). In the second, the multiple root is dominant and unstable which occurs when condition (34) is satisfied and τ = 2, see Figure 7 (Down). In the last, the multiple spectral value is not dominant as exposed in Figure 8. Finally, Figure 9 illustrates the behavior of the rightmost root corresponding to function (33) with respect to the delay value in both cases (34) and (35).

VI. A THIRD-ORDER MACH NUMBER REGULATION IN A WIND TUNNEL MODEL

Transonic flows analysis is still a challenging problem in compressible fluid dynamic. In a stationary transonic flow, subsonic and supersonic regions live at the same time and are respectively governed by elliptical and hyperbolic equations. Furthermore, these two types of partial differential equations require completely different approaches, which often preclude solutions that are valid in the entire region.

In particular, the Mach number regulation in a wind tunnel is based on the Navier-Stokes equations for unsteady flow and contains control laws for temperature and pressure regulation. The following simplified model of Mach number regulation described in [START_REF] Manitius | Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation[END_REF] consists of a system of three state equations with a delay in one of the state variables. It is stressed that in steady-state operating conditions, the dynamic response of the Mach number perturbations ξ 1 to small perturbations in the guide vane angle actuator ξ 2 are governed by:

     ξ1 (t) = -aξ 1 (t) + k a ξ 2 (t -τ ) ξ2 (t) = ξ 3 (t) ξ3 (t) = -ω 2 ξ 2 (t) -2ζωξ 3 (t) + ω 2 u(t) (36)
where a, ω, ζ, k and τ are parameters depending on the operating point and presumed constant when the perturbations ξ i are small. Moreover, following the experimental parameter values of the wind tunnel developed at NASA Langley Research Center, the parameters a, ω, ζ, τ are positive.

In [START_REF] Manitius | Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation[END_REF], a feedback consisting of a linear combination of state variables and weighted integrals of some of the state variables over a period equal to the time delay, where the spectrum of the closed-loop system is finite (consists of three eigenvalues). However, our method does not render the closed-loop system finite dimensional but only involves controlling its rightmost root. Consider the control law: u(t) = -α ω 2 ξ 2 (t) -β0 ω 2 ξ 2 (t -τ ) -β1 ω 2 ξ 3 (t -τ ). In our case, the corresponding quasipolynomial function is given by: ∆(s, τ ) = (s+a) (sβ 1 +β 0 )e -sτ +s 2 +2 s ζ ω+ω 2 +α . (37) Since a is a positive parameter, our aim is to establish conditions on parameters such that the rightmost root of the second factor of (37) has a negative real part. Interestingly, the analysis of the second factor can be deduced directly from the result in Section IV-B. As a matter of fact, by denoting

ω 2 + α = c 0 and 2 ζ ω = c 1 , (38) 
one may directly exploit condition [START_REF] Ramirez | Design of proportional-integral-retarded (pir) controllers for second-order lti systems[END_REF] from Proposition 3 to guarantee the exponential stability of the trivial solution by assigning its rightmost root as a stable root. Note that condition [START_REF] Vanbiervliet | A nonsmooth optimisation approach for the stabilisation of time-delay systems[END_REF] is not convenient as it imposes that c 1 < 0 which it cannot be applied here. Since the delay is intrinsic to the model, then the first step consists in finding the gain α such that 

which satisfies the condition c 0 τ 2 ≥ 2. The gains β 0 and β 1 are easily computed from system [START_REF] Ramirez | Design of proportional-integral-retarded (pir) controllers for second-order lti systems[END_REF] and owing to the first equality from (39). Finally, s -= -2 -ζ ω τ τ is the rightmost root of the second factor of function (37), which insures the stability of the steady state solution.

VII. CONCLUDING REMARKS

Recent results by the authors on maximal multiplicity induced-dominancy for spectral value of time-delay systems of retarded type are overviewed. This note emphasizes a delayed controller-design based on the trivial solution's decay rate assignment. To illustrate the corresponding steps, a parameterized analysis of the dominancy property validity is established for generic second order oscillators. Finally, to demonstrate its concrete applicability, the regulation of the Mach number in a wind tunnel is considered. In future works, a generalization of the approach to arbitrary order dynamical systems will be studied and further applications treated.
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 1 Fig.1. The distribution of the spectrum corresponding to equation[START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF] and system (6) for a 0 = τ = 1. The roots' distribution is illustrated using QPmR toolbox from[START_REF] Vyhlidal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF] 
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 2 Fig. 2. The rightmost root corresponding to equation (7) and system (6) as a function of the delay τ (red solid line) for a fixed value of a 0 = 1.
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 3 Fig. 3. Sparsity-induced loss of dominancy for the multiple spectral value.Each intersection between the blue/red curves corresponds to a spectral value of function[START_REF] Pólya | Problems and Theorems in Analysis[END_REF].
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 44 Fig. 4. (Up) Spectrum distribution corresponding to function (22) for τ = 1/3 with system (24) is satisfied. (Down) Spectrum distribution corresponding to function (22) for τ = 1/3 with system (23) is satisfied, the dominancy property is lost.
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 6 Fig. 6. The simplified contour used for applying the argument principle to investigate the dominancy of the multiple root in blue solid line. The dashed red line gives the generic spectrum envelope established in Proposition 1.

  signs): ∆(s, τ ) = s 2 -1 + (β + α s) e -s τ . (33) Proposition 6. Consider the quasipolynomial function (33) for which the following assertions hold: i) The multiplicity of any given root of the quasipolynomial function (33) is bounded by 3, it can be attained only on the real axis. ii) The quasipolynomial (33) admits a real spectral value at s = s ± with algebraic multiplicity 3 if and only if either
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 7 Fig. 7. (Up) The spectral distribution of function (33) under the conditions (34) with τ = 1. The multiple spectral value is dominant and stable. (Down) The spectral distribution of function (33) under the conditions (34) with τ = 2. The multiple spectral value is dominant but unstable.
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 8 Fig. 8. The spectral distribution of the quasipolynomial function (33) under conditions (35) with τ = 1. The multiple spectral value is not dominant.
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 9 Fig. 9. The dominant root corresponding to equation (33) and system (35) as a function of the delay τ (red solid line). The dominant root corresponding to equation (33) and system (34) as a function of the delay τ (blue dashed line).

c 1 = 2 √ - 2 + 2 .

 222 c 0 τ 2 τ which gives:α = 2 + ζ 2 ω 2 τ 2 -ω 2 τ 2 τSubstituting this last equality in (38) one obtainsc 0 = 2 + ζ 2 ω 2 τ 2 τ 2 and c 1 = 2 ζ ω,

  t + 2 + 7 i where 0 ≤ t ≤ 1

	C 4 : s 4 (t) = -C 5 : s 5 (t) = -C 6 : s 6 (t) = -	√ √ √	2 + e it where -2 + i (( -7) t + 7) where 0 ≤ t ≤ 1 π 2 π ≤ t ≤ 2 2 + i (( -7) t -) where 0 ≤ t ≤ 1
			(30)
	Since ∆ is an analytic function then argument principle
	asserts:		

The quasipolynomial degree is exactly the number of the involved polynomials plus their degree minus one
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