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DiffuGreedy: An Influence Maximization
Algorithm based on Diffusion Cascades

George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis

Abstract Finding a set of nodes that maximizes the spread in a network, known
as the influence maximization problem, has been addressed from multiple angles
throughout the literature. Traditional solutions focus on the algorithmic aspect of
the problem and are based solely on static networks. However, with the emergence
of several complementary data, such as the network’s temporal changes and the
diffusion cascades taking place over it, novel methods have been proposed with
promising results. Here, we introduce a simple yet effective algorithm that com-
bines the algorithmic methodology with the diffusion cascades. We compare it with
four different prevalent influence maximization approaches, on a large scale Chi-
nese microblogging dataset. More specifically, for comparison, we employ methods
that derive the seed set using the static network, the temporal network, the diffusion
cascades, and their combination. A set of diffusion cascades from the latter part
of the dataset is set aside for evaluation. Our method outperforms the rest in both
quality of the seed set and computational efficiency.

1 Introduction

Albeit the massive amount of work over this problem over the past 15 years, in-
fluence maximization (IM) remains the holy grail of social network analysis. The
problem, at its core, is to find a set of nodes that would infect the largest possible
part of the network, if a spreading process started from them. It is proven to be NP-
hard, but a greedy algorithm [1] can get at least as close as (1-1/e) to the optimum,

George Panagopoulos
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under the two most prevalent spreading models, the independent cascade (IC) and
the linear threshold (LT). The edge weights represent the probability of influence in
IC and the amount of influence in LT. Typically, IM algorithms work with uniform
or degree-based edge weights. This renders their spreading estimation wildly diver-
gent from the actual spreading [2], due to the complexity and diversity that governs
spreading processes [3]. To this end, some methods focus on learning the transmis-
sion probabilities between nodes using real diffusion cascades [14]. This research
branch is divided into models that use the cascades to define an inferred network [7]
or to adjust the edge weights of an existing underlying network [5]. An example of
the former is to infer a transmission probability between two news blogs based on
how often and fast one copies the other, while an example of the latter is defining
the strength of a follow relationship in twitter based on how many times one node
retweeted the other. IM algorithms can then run on such inferred or weighted [2]
networks to derive the seed set. Although these methods tend to approximate real
spreading better, they suffer from issues of scalability and overfitting.

In this work, we propose DIFFUGREEDY, an algorithm based on SIMUGREEDY
[1] that utilizes the real diffusion cascades instead of simulations over the network.
Particularly, it follows the same hill climbing manner to construct the seed set itera-
tively, but the computation of the marginal gain is based on a candidate seed’s most
suitable diffusion cascade. This function is submodular, which allows us to retain
the theoretical guarantees. To showcase the effectiveness of our method, we employ
the temporal Sina Weibo follower network (1.7m nodes, 400m edges), that spans 32
days and is accompanied with the retweet cascades of that time span. We keep the
diffusion cascades and the network of the first 25 days as the train set and the last
week as the test set. We use four different IM approaches in the train set for compar-
ison with DIFFUGREEDY. The first is ranking the nodes by k-core decomposition on
the follower network, which has indicated strong correlations with influence [23].
Secondly, we employ IMM [6], one of the fastest IM algorithms, to extract a seed set
efficiently from the follower network as is formed at the end of the training set. The
third approach utilizes NETRATE [7] to infer a network from the diffusion cascades
in the train set, and applies PMIA [8] to perform IM on it. In the final method, we
use the diffusion cascades to weigh the follow edges proportionally to the nodes’
activity and apply SIMPATH [9] on the resulting network.

It should be noted that a comparison between all these approaches has not been
attempted in the literature before, to the best of our knowledge. This can be due
to the lack of a common realistic evaluation methodology. Methods that work on
static networks are evaluated based on their computational time and the estimated
influence spread. On the other hand, diffusion learning methods are evaluated based
on the behavior of the chosen seed set in unseen cascades. We deem the latter more
realistic, and we choose to validate our seed set using the number of distinct nodes
influenced by it in the test set [10]. The results indicate that Diffusion Greedy and
its CELF counterpart clearly outperform the rest in terms of the seed set’s influence
spread in the test set. In addition, the CELF approach is an order of magnitude
faster to the second fastest method. Finally, we notice that the methods based on
k-core and NETRATE perform adequately, unlike the IMM. The paper is organized
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as follows. Section 2 is a brief literature review on influence maximization. Section
3 delineates some state of the art influence maximization methods we employed
for our comparative analysis. Section 4 describes the new algorithm we propose.
Section 5 presents the dataset and the results of our experiments, along with insights
and justifications. The paper concludes in Section 6 with a contribution synopsis and
suggestions for future work.

2 Related Work

The basis of most IM algorithms is SIMUGREEDY [1]. Starting with an empty seed
set, the algorithm adds in the set the node that provides the best marginal gain i.e. the
increase of the set’s influence spread, in each iteration. Due to the monotonicity and
submodularity of the influence spread function under the two diffusion models, the
algorithm is guaranteed to reach a near optimal solution. The most time-consuming
part of SIMUGREEDY is the influence spread estimation, which has proven to be
P-hard [8]. Since the diffusion models are stochastic, all possible paths of influ-
ence need to be taken into account proportionally to their probability, which is not
feasible, thus Monte Carlo simulations are employed. Most attempts to improve the
algorithm focus on that part. CELF [11] capitalizes on the submodularity of a node’s
marginal gain, which can only diminish as the seed set grows. This means that if a
candidate seed’s marginal gain is higher then what the rest candidates had in the pre-
vious iteration, it is higher at the current iteration as well, hence removing the need
to recompute the marginal gain of all candidates. PMIA [8] is a heuristic approach
developed for the IC model, and it is based on the maximum influence in and out
arborescence (MIIA and MIOA) of every node. This is the union of all maximum
influence paths that end up or start from that node. The key part of the algorithm
is that paths with probability under a certain threshold are removed, assuming that
influence is mostly local. SIMPATH [9] is also based on the path-pruning idea, but
for the LT, computing the influence spread of a node by summing the probabilities
of paths that start from it. Although providing a substantial speedup, those heuristic
methods do not retain theoretical guarantees, in contrast to sketch-based algorithms.
The idea of sketch-based approaches is to create several instances of the network
that represent varying outcomes of the edge probabilities beforehand and use them
to estimate influence spread of a seed set. SKIM is an example of sketch-based
IM[12], which alleviates the need for Monte Carlo simulations, achieving extreme
acceleration with (1− 1

e − ε) approximate guarantees, where ε is a trade-off be-
tween accuracy and efficiency. An alternative and faster sketch based methodology
with the same theoretical guarantees is based on Reverse Reachable (RR) sets [13].
An RR set of a node consists of other nodes that can influence it. After generating a
sufficient number of RR sets for random nodes, the optimum seed set can be derived
by selecting the nodes that cover their majority. The intuition is that the frequency
of a node’s appearance in the RR sets is analogous to its influence.
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While the previous algorithms work with a static network, there’s a growing lit-
erature dedicated to IM based on diffusion cascades. A diffusion cascade is a series
of events that takes place over the network and indicates how information spreads
in it, e.g. a tweet and its list of retweets. The first model that utilized real diffusion
cascades for IM, attempted to learn the transmission probabilities between nodes in
IC [14]. The model uses survival analysis to express the probability of a node get-
ting influenced in the course of a cascade, and it is solved using an EM algorithm.
The same group proposed learning an extension of IC in continuous time (CTIC)
[4]. CTIC extends traditional IC, by defining the diffusion probability between two
nodes analogous to the number of times one node was influenced by the other, as
well as the time it took for the latter to get influenced by the former. The intuition
behind this is that the longer it takes for a node to copy an action the less likely it is
to copy it. NETRATE [7] is a seminal algorithm that steps on both aforementioned
works. It is based on similar modeling as [14], but it learns the transmission de-
lays between nodes. NETRATE can be used to infer how the nodes of the cascades
are connected when the underlying network is not available. Subsequently, time-
constrained IM can run on that inferred network, to give an estimate of the most
influential users [15, 10], solely based on the cascades. A similar line of work, but
with a different purpose, is diffusion cascade learning [16]. These machine learning
models use cascades to predict whether a node will get infected or not [21], or the
size of the cascade [22] when a cascade has already started. In the intersection of
the two aforementioned approaches, lie methods that use both, the follower network
and the diffusion cascades. A characteristic example is the credit distribution model
[2]. Whenever a node u copies a node v in the diffusion cascades, credits are given
to v and to the nodes that v copied. The influence spread of a seed set is the to-
tal influence credit of its seeds and is estimated efficiently, by alternating between
credit estimations from the action logs and CELF. A simpler approach is to weigh
the edges of the graph analogously to the activity of the nodes, e.g. how many times
v has copied u in the cascades [5]. Subsequently, an IM algorithm can run on this
weighted network.

All aforementioned approaches, though differing methodologically, address the
same problem. However, their evaluation methods are quite deviant. IM algorithms
on static networks are evaluated based on their estimated spreading and time effi-
ciency. These methods totally overlook the real spreading dynamics of the network,
as they focus on the problem from a more algorithmic than data-driven perspective.
In some cases, epidemic simulations like SIR and SIS are utilized to give an estimate
of a seed set’s spreading in the network [23]. However, these models suffer from
oversimplifying assumptions [18] and overlook several important characteristics of
real diffusion cascades [19]. Moreover, their spreading estimate has proved inac-
curate compared to actual diffusions that take place over the network [17]. Hence,
although epidemic models might be a valid choice in the absence of diffusion data,
in our case, we can form a more realistic ground truth based on the diffusions. Even
in this case, however, evaluation is not straightforward. An erroneous example is
representing the spread of a seed set in the test set by the sum of the average size of
each seed’s test cascades [25]. This is inherently problematic because large cascades
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from individual seeds do not guarantee a large combined spread. A similar fault oc-
curs when evaluating a seed set based on each individual seed’s follows, mentions,
retweets, and tweets [26]. Instead, our evaluation tactic is based on the number of
distinct nodes influenced in the test set, by the seed set [10]. Although not devoid
of assumptions, it is the closest and most objective measure of a seed set’s influence
over a network at a given time span.

3 Influence Maximization Analysis

In this section, we describe the analytical framework we followed to apply different
approaches of IM on the same dataset, which is comprised of a temporal network
and diffusion cascades. As mentioned above, we split the dataset in the train and test
set. The train set corresponds to the diffusion cascades and the follow relationships
that took place during the first 25 days, as well as the initial follower graph which
is formed before the first day of crawling. The test set consists of the last week’s
diffusion cascades. In the train set, we utilize four different IM techniques to derive
seed sets for comparison with the seed set derived by the proposed DIFFUGREEDY
(described in Sec. 4). A general overview of the methodology can be seen in Figure
1. Below we analyze each technique and how we applied it.

3.1 Ranking by K-core decomposition

K-core decomposition has proven a strong reliable predictor of influence in previous
studies [20, 23]. The K-core of a network is the maximal subgraph such that each
vertex has at least K degree. As a proxy for IM, we can rank the nodes based on the
maximum K-core they belong to, i.e. their coreness, and take the top as a seed set.

3.2 Influence Maximization via Martingales

As a representative to classic IM approaches, we use IMM, an algorithm based on
the aforementioned RR sets, to derive the seed set from the follower network. This
is a network of more than 95 million edges, so efficiency is of utmost importance.
The most important advantage of IMM is that, in contrast with the rest of RR -based
algorithms, it derives RR sets that depend on one another. As a result, the number of
RR sets is diminished dramatically. In addition, it achieves a theoretical guarantee
of ((1− 1/e)/(1+ ε)2) using martingale analysis. The network is weighted using
weighted cascade [1] and the parameter ε , which governs the trade-off between
speed and accuracy, is set to 0.1.
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Fig. 1 An overview of the models we employed and which data they utilize. The upper quadrants
correspond to diffusion cascades and the lower to the follow relationships established in time. The
left quadrants belong to the train set and the right to the test set. Each network represents a different
type of data. The static follower network is formed at the last day of the training set, so it is under
the vertical axis. Each rectangle represents a different method, and its position indicates which type
of data it is based on.

3.3 PMIA on the Diffusion-based network

To perform IM based exclusively on the diffusion cascades, we employ NETRATE
[7] to infer the transmission rates between users in the train set. This can, in turn, de-
fine a new network with edge weights proportional to the inferred rates. The size of
the inferred network needs to be very limited to satisfy the computational demands
of NETRATE. Hence we follow the literature [25] and filter the cascades to keep
only the most important nodes. In our experiments, degree proved to produce the
most effective diffusion network. We filter all the cascades to remove nodes, either
starting or participating in the cascade, that do not belong to the top 3000 nodes.
Having computed the network and its transmission rates, we tried to use InfluMax,
which is the archetype algorithm for continuous-time IM. However, NETRATE’s
inferred transmission rates that exceeded 10−6 were a mere 50 out of the 37937
inferred edges. Instead, we used PMIA [8] on the diffusion network with weights
defined by weighted cascade and pruning parameter θ = 1/320. Although inferior
to InfluMax, it has served as a method of comparison [15] and provides a more then
descent approximation to SIMUGREEDY. Moreover, PMIA is based on IC, which
is closer to NETRATE’s continuous-time IC then LT. Finally, since the diffusion
network is small the computational requirements were minuscule.
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3.4 SIMPATH on the Data-based weighted network

To combine the information of the temporal network with the diffusion cascades,
we employed an edge weighting technique [5], which belongs to the data-based
approaches [2]. We assume that a node u copies a node v, whenever u appears after
v in a diffusion cascade and the time that u started following v is before the cascade’s
initiation. The edge weight is defined as:

Ev,u =
Av2u

Av
× e−

D̄tv,u
δ , (1)

where Av2u is the number of times u copied v, Av is the total number of tweets and
retweets of v, and D̄tv,u is the average time that takes for u to copy v.
The first term captures the relationship’s strength while the second is analogous to
its speed and depicts the exponential decay of influence in time [4, 5]. The parameter
δ facilitates containing the second term over 0 and is set empirically to 1000. The
resulting network is in the scale of 1 million edges, because their overwhelming
majority had zero weight. We perform IM using SIMPATH with pruning parameter
η = 0.01 .

4 The DIFFUGREEDY Algorithm

In this section, we propose a new influence maximization algorithm that utilizes the
diffusion cascades in the train set to extract a seed set. The basic idea is to use the
standard SIMUGREEDY algorithm [1], but substitute the candidate seed’s influence
spread estimation, with a summary of the seed’s diffusion cascades. The algorithm
can iteratively build an influence spread network, using the most suitable seed in
each iteration and its final size represents the cumulative influence spread of the
seed set. The main difference with SIMUGREEDY lies in the calculation of a seed’s
influence spread. In the original algorithm, it is computed using Monte Carlo simu-
lations of a diffusion process that starts from that seed. In our case, we substitute this
with an estimate from the list of diffusion cascades that the node has initiated in the
train set, for brevity’s sake the node’s train cascades. We define a node’s influence
spread as the node’s train cascade that provides the highest marginal gain. Initially
we experimented by using the train cascade with the median marginal gain,as a
more objective estimate, or the number of distinct nodes in the node’s train cas-
cades. These approaches performed worse in our experiments, hence we kept the
definition based on the cascade with the highest marginal gain. If our definition of
influence spread is submodular, we can retain the (1− 1/e) theoretical guarantee
[1]. Below we provide the proof of submodularity and the algorithm.

Theorem 1. Computing the influence spread of a candidate seed using the diffusion
cascade that maximizes the set’s marginal gain, is a submodular function.
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Algorithm 1 FIND THE SEED’S CASCADE WITH THE MAXIMUM MARGINAL GAIN

procedure MARGINALGAIN( f inal spread,seed cascades)
2: set max gain←−1,casc idx←−1

for casc← 0;casc < size(seed cascades);casc++ do
4: marginal gain← size( f inal spread∪ seed cascades[casc]))

if marginal gain > max gain then
6: max gain← marginal gain

casc idx← casc
8: return max gain, casc idx

Algorithm 2 INFLUENCE MAXIMIZATION USING NODES’ DIFFUSION CASCADES

procedure DIFFUGREEDY(node cascades,seed set size)
2: seed sed← [], f inal spread← /0

while size(seed set)< seed set size do
4: set max seed =−1,max gain = 0,max cascade =−1

for seed = 0;seed < size(node cascades);seed ++ do
6: marginal gain, cascade idx = MarginalGain(final spread,node cascades[seed])

if marginal gain > max gain then
8: max gain← marginal gain

max seed← seed
10: max cascade← cascade idx

f inal spread← f inal spread∪node cascades[max seed][max cascade])
12: seed sed.insert(max seed)

delete node cascades[max seed]
14: return size(in f luence spread)

Proof. The influence spread of a node u at step t is represented by its train diffusion
cascade with the highest marginal gain at that step, ct

u. If another node v is added to
the seed set at step t, the influence spread of ct

u at t +1 can only be diminished, due
to overlaps with v’s influence spread. If ct

u has a high overlap with v, then another
one of u’s cascades will be used, let ct+1

u , in order to maximize marginal gain at
step t +1. Since we always choose the cascade with the maximal marginal gain, ct

u
had larger marginal gain than ct+1

u at step t. In addition, by definition, a cascade’s
marginal gain can only diminish or stay the same as the seed set grows. Thus, ct+1

u
at t + 1 will always have smaller marginal gain then what ct

u had at t, whether it is
the same cascade or not, which is to be shown.

The complexity of DIFFUGREEDY is O(KVC), where K is the size of the seed
set, V is the number of nodes that initiated a cascade and C is the average size of
cascades. Since the marginal gain estimation is submodular, we can utilize CELF,
which does not change the worst case complexity, but has proven to accelerate
greedy [11]. We do not add the Diffusion CELF here due to space limitations, but
its derivation is similar to the way CELF is derived from SIMUGREEDY [11]. It
should be noted here, that although SIMUGREEDY and CELF estimate the same
marginal gains, the final seed set may differ, because of multiple nodes having the
same gain and each algorithm choosing based on different seed orders. This results
in Diffusion CELF having a slightly inferior performance in our experiments.



DiffuGreedy: An Influence Maximization Algorithm based on Diffusion Cascades 9

5 Experiments

5.1 Data

We apply our methodology in the Sina Weibo dataset [27], a network consisting of
more than 1.7 million nodes and 0.4 billion edges, accompanied by a set of 300,000
retweet cascades. The actual expanding follower network is given for a time span of
32 days (2012.9.28 to 2012.10.29), throughout which, almost 10 million new follow
relationships occurred. The diffusion cascades are gathered by the most popular of
the past 1,000 tweets of each node in the network, and they date back since the year
2009. Since our methodology relies on the intersection of the follower network and
the retweet cascades, we cannot utilize the cascades before 2012.9.28, as we do not
know the structure of the follower network at that time. Concurrently, we can not
use the nodes in the network that are not present in the retweet cascades, because we
have no information about their interactions. We thus extract the diffusion cascades
of those 32 days and remove nodes from the network that are not present in these
cascades. That results in a network of 641,575 nodes, with 95,272,167 edges and
18,652 cascades. We split the cascades into training (14,555) and testing (4,097).

5.2 Results

As mentioned above, our evaluation method is based on the number of distinct nodes
influenced (DNI) by the seed set in the test set. We consider influenced, every node
that participates in a test set diffusion initiated from one of the predicted seeds. Since
we measure the size of the distinct set, potential overlaps between diffusions of dif-
ferent seeds are taken into account. The DNI of each method are shown in Figure
2 and Table 1 shows the average DNI of each method throughout all seed set sizes.
DIFFUGREEDY and DIFFUCELF clearly outperform the other approaches by a con-
siderable gap. In addition, DIFFUCELF takes only 16 seconds, which is almost 40
times faster then k-core decomposition, and 1000 times faster then DIFFUGREEDY.

One important observation is the failure of the classic IM approach. Although
IMM derived the seed set fast, its quality seems questionable. Only 15 out of the
100 seeds selected had started at least one cascade in the test set, and their spread
was scant. This can be attributed to a lot of follow relationships not translating into
retweets. This phenomenon is well-known [28] and plays a vital role in social in-
fluence analysis. Regarding the data-based weighted network, its failure might stem
from the data itself. More specifically, we observed that the follower networks of
retweet cascades are extremely sparse i.e. the ratio between the number of edges and
the number of nodes is 0.84. This happens because, during crawling, the dataset’s
authors chose 100 users at random and crawled their follower ego-network up to
three hops. Subsequently, they kept the last 1000 tweets of each user, each one con-
taining a list of retweets. This list of retweets is filtered to contain only nodes that



10 George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis

●

●

●

●

● ●

●

●

●

●

0

25000

50000

75000

10 20 30 40 50 60 70 80 90 100
Seed Set Size

N
um

be
r 

of
 D

is
tin

ct
 N

od
es

 In
flu

en
ce

d 
in

 th
e 

Te
st

 s
et

Method
● DiffuGreedy

DiffuCELF
K−core decomposition
PMIA on Diffusion
IMM on Follower
SIMPATH on Databased

Fig. 2 Number of distinct nodes influenced (DNI) in the test set by the seed set of each method.
Method labels are ordered based on their average DNI.

Table 1 Average evaluation metrics and computational time for each method.

Method DNI Computational Time (sec)

DIFFUGREEDY 52,600 16,504
DIFFUCELF 42,325 16
K-cores 31,657 632
NETRATE PMIA 21,863 27,966a

IMM 1,248 104,078b

DATABASED SIMPATH 56 96,908c

a Preprocessing took 999, NETRATE 26398 and PMIA 569
b Extraction and weighing took 103898 and IMM 180
c Extraction took 2981, weighing 93898 and SIMPATH 29

are in the crawled set. However, the follow relationships that indicates how the tweet
reached a node that retweets can be lost somewhere after the three-hops of the orig-
inal poster. As a result, the retweet cascades are comprised of mostly unconnected
users. Therefore, weighing the follow relationships based on the diffusion cascades
results in very few edges being retained, and most of the actual crucial follows being
overlooked. Finally, the lack of success of the diffusion network approach could be
attributed to the substantial mismatch with the actual follower network. Less than
1% of the inferred edges were actual follow edges. Even though as mentioned above,
there were a lot of follow relationships in the diffusion cascades missing, it is safe
to assume that a large part of the diffusion network was not based on direct follow
edges, but rather on higher order relationships. These relationships although useful,
are not as stable as direct ones i.e. an active follower is more likely to retweet than
a follower’s active follower. The retweets in the test set might consist of mostly fol-
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lowers, which caused this approach’s deficiency. The code, along with instructions
to reproduce the experiments can be found on github1.

6 Conclusion

As network science drifts towards data-driven approaches and increasingly more
networks are accompanied by diffusion cascades, we have to reconsider our view
of many important problems. In this study, we address influence maximization on
a large scale social network. We employ multiple state-of-the-art methods, each ex-
ploiting a different aspect of the dataset, and propose an algorithm that outperforms
them. In addition, we utilize an evaluation methodology based on actual diffusion
cascades, as a more realistic alternative to epidemic simulation models. For future
work, we plan to examine methods based on machine learning to derive the seed
set. More specifically, while numerous neural network algorithms have been devel-
oped recently for influence or outbreak prediction [21, 22], the problem of influence
maximization remains unaddressed. This is a promising path that we would like to
explore further in subsequent steps.
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