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Abstract

Graph degeneracy algorithms were recently shown to be very
effective at detecting the influential spreaders in a network.
However, degeneracy-based decompositions of a graph are
unstable to small perturbations of the network structure. At
the same time, it is well-known in Machine Learning that
the performance of unstable algorithms can be greatly im-
proved by using Perturb and Combine (P&C) strategies. Mo-
tivated by these observations, we propose a P&C procedure
for networks that (1) creates many perturbed versions of a
given graph, (2) applies the same algorithm separately to each
graph, and (3) combines the results. Experiments conducted
on benchmark datasets of real-world networks reveal that our
strategy improves the performance of all algorithms tested.
Moreover, this performance boost can be obtained at almost
no extra cost through parallelization. We finally provide in-
sights as to why our strategy is effective from a theoretical
perspective. To the best of our knowledge, this work is the
first application of P&C to networks.

Introduction
Graphs (or networks) are widely used to represent real-
world data. Influential spreaders can be defined as the nodes
that are able to diffuse information to the largest part of
the network in a given number of time steps. Influential
spreader identification finds applications in a variety of
fields, from epidemiology (Hoppensteadt 1975) and market-
ing (Leskovec, Adamic, and Huberman 2007) to NLP (Tix-
ier, Malliaros, and Vazirgiannis 2016).

Graph degeneracy algorithms are useful for all tasks in-
volving the identification of the densest areas of a graph.
They also have well-understood properties, can be imple-
mented efficiently, and scale to large networks. As a result,
they have been applied to many tasks, ranging from graph
compression and clustering to finding correlated genes and
detecting fraudsters. In particular, they have recently been
shown very effective at locating the good spreaders in a net-
work (Kitsak et al. 2010; Malliaros, Rossi, and Vazirgiannis
2016).

The unweighted and generalized k-core algorithms (Sei-
dman 1983; Batagelj and Zaveršnik 2002) are the oldest and
most famous members of the graph degeneracy family. Their
high success has motivated many extensions, such as the k-

truss (Cohen 2008), nucleus (Sariyuce et al. 2015), and k-
peak (Govindan et al. 2017) decompositions.

The k-core algorithm assigns to each node of a graph
G(V,E) a non-unique score, the core number, correspond-
ing to the highest order of a core the node belongs to. A
core of order k of G is the maximal subgraph of G in which
every vertex has at least degree k. The generalized k-core al-
gorithm works for any local monotone vertex property func-
tion. It runs in O(|E| log |V |) while the basic version is lin-
ear in the number of edges. When used with the weighted
degree as the vertex property function, we simply refer to
the generalized k-core algorithm as weighted k-core. Nodes
with high core numbers have the desirable property to not
only have many connections, but also to form tightly inter-
connected subgraphs together with their connections. (Kit-
sak et al. 2010) showed that core numbers are more strongly
correlated with spreading influence than degree or PageRank
scores.
Motivation. Two key observations provided the motivation
for this study: (1) graph degeneracy algorithms are highly
unstable to small network perturbations, i.e., removing a
tiny fraction of edges or nodes from the graph can sig-
nificantly change node scores (Adiga and Vullikanti 2013;
Goltsev, Dorogovtsev, and Mendes 2006). (2) In Machine
Learning, it is well-known that unstable algorithms, i.e., al-
gorithms for which small changes in the training set result
in large changes in predictions, greatly benefit from Perturb
and Combine (P&C) strategies (Breiman 1996b).

Bootstrap aggregating or bagging (Breiman 1996a) is one
of the most popular of the P&Cs strategies. It is actually one
of the two key ingredients of the acclaimed Random Forest
model (Breiman 2001). Bagging simply consists in training
a model in parallel on bootstrap samples of the training set.
Each bootstrap sample is a perturbed version of the original
training set which is generated by drawing from it with re-
placement until a set of the same size is obtained. To issue
a forecast, the predictions of all the models are combined,
e.g., through averaging in regression and majority voting in
classification.
Goal of this paper. Motivated by the two aforelisted obser-
vations, we posit that like unstable algorithms in Machine
Learning, degeneracy-based node scoring functions, and
more generally, any unstable node scoring function, may
benefit from using a Perturb and Combine (P&C) strategy.



Main contributions. We propose what is, to the best of
our knowledge, the first P&C strategy for networks. Our
procedure features three simple steps: (1) create many per-
turbed versions of a given graph, (2) separately apply a node
scoring function to each perturbed graph, and (3) combine
the scores. By conducting experiments on several bench-
mark datasets of real-world networks, we show that the P&C
scores allow to identify much better spreaders than the orig-
inal scores, for all node scoring functions tested. Further-
more, our procedure is trivially parallelizable, so the P&C
scores can be obtained at little extra cost. Finally, we define
the bias and variance of a vertex scoring function, and ex-
plain from a theoretical perspective why P&C for networks
is effective.

Perturb and Combine for Networks
Before going into the details of our strategy, we give the
intuition for it through a simple example.

Motivational example
Look at the square and rectangle nodes in Figure 1. In the
original graph, the square node is a member of the main core
(k = 4), but a quick visual inspection reveals that this node
does not lie in the most central part of the network and is not
strongly attached to the main core. With a degree of only
4, the square node is actually one of the weakest members
of the main core, i.e., removing only one of its connections
would suffice in decreasing its score.
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Figure 1: Spreading influence.The table below shows the original
and P&C scores of the square and rectangle nodes, for k-core. The
P&C score of a node is the mean of its scores in each of the 8
perturbed graphs. ‘inf.’ denotes true influence. Scores and influence
are in different units, only ratios matter.

or. perturbed agg. inf.
square 4 3 3 3 2 1 2 3 2 2.38 4.09

rectangle 1 1 2 3 1 2 1 1 2 1.62 2.76

On the other hand, the rectangle node is part of the 1-core in
the original network. This low score does not reflect the fact
that this node has direct access to the very core of the net-
work through its single connection. Should an epidemic be
triggered from that node, it would probably be more severe

than its low score suggests. To sum up, based on the original
scores, the square node is 4 times more influential than the
rectangle node. This is far from reality, as the ratio of the
true influence scores is only 4.09/2.76 = 1.48.

Looking at the scores obtained by the square and rect-
angle nodes in 8 slightly perturbed versions of the original
network (a few edges added/deleted at random), we can ob-
serve that the rectangle node gets higher scores in most per-
turbed graphs, whereas the square node gets lower scores
most of the time. Using the average of these 8 scores in-
stead of the original scores is much closer to the true ratio:
2.38/1.62 = 1.47.

Through this simple example, we can get a sense of how
P&C can be beneficial. In short, perturbing the original net-
work allows us to generate different configurations of it,
which is akin to drawing from some true (but unavailable)
underlying graph of which the original network is a single
snapshot. Scoring each perturbed graph separately and com-
bining back the scores can therefore be seen as estimating
the true scores of the nodes based on more evidence. These
ideas will be further elaborated in the Theoretical Analysis
Section. We now provide details for each step of our P&C
process.

Perturb
High-level framework. We used a standard framework
for edge-based perturbation (Adiga and Vullikanti 2013).
Adding/removing edges only (and not nodes) is preferable
in our case as combining the results is more straightforward
if all nodes exist in each perturbed graph. LetG(V,E) be the
original graph and G be a random graph model. The corre-
sponding perturbation model Θ(G,G, εa, εd) is defined as:

PΘ

[
(u, v)

]
=

{
εaPG

[
(u, v)

]
, if (u, v) /∈E

εdPG
[
(u, v)

]
, if (u, v) ∈E (1)

where PΘ

[
(u, v)

]
is the probability of adding/deleting edge

(u, v), PG
[
(u, v)

]
is the probability of selecting edge (u, v)

according to the random graph model G, and εa, εd are the
probabilities of edge addition and deletion, respectively. By
XOR-ing the original graph G with one realization θ ∼
Θ(G,G, εa, εd) of the perturbation model, we obtain the
perturbed graph G̃ = G⊕θ. Depending on the random graph
model G used, we obtain a different perturbation scheme.
Edge weight awareness. In the perturbation framework de-
scribed above, edge weights are ignored, and edges can only
be completely removed or created from scratch. To make
our approach more flexible, and generalizable to weighted
graphs, we created a variant in which an edge (u, v) can
be considered for addition even if it already exists, and can
remain in the graph even if it was selected for deletion. In
such cases, we simply increment (respectively, decrement)
the weight of (u, v) by one standard deviation of all edge
weights. Since edges can be selected multiple times, any
edge whose weight becomes negative is removed from the
graph. In the rest of this paper, the δw Boolean parameter
will indicate which of the two variants above is being used
(δw = 1 corresponds to the edge-weight aware scenario).



Note that in both scenarios, every time a new edge is added
to the network, we sample its weight at random from the
weights of the edges incident on its endpoints.
Random graph models. Plugging the Erdős-Rényi (ER)
random graph model (Erdös and Rényi 1960) into our frame-
work returns the uniform perturbation model. A node is
randomly drawn with replacement from V with probabil-
ity 1/n. On the other hand, using the Chung-Lu (CL) ran-
dom graph model (Chung and Lu 2002) gives the degree
assortative perturbation model. A node is randomly drawn
with replacement from V with probability proportional to
its weighted degree. In that case, edges are more likely to
be created/incremented and deleted/decremented between
hubs. For both G = ER and G = CL, self-edges are dis-
regarded. That is, if we select two nodes u and v such that
u = v, we discard the pair and select two other nodes.

Score
Each perturbed version of the original network is separately
scored. Any node scoring function can be used, but as pre-
viously mentioned, P&C strategies work best in Machine
Learning for unstable algorithms, so we expect our method
to be best suited to unstable node scoring functions.

Combine
Following common practice (e.g., bagging regression trees),
we compute the P&C score of a node as the average of its
scores in each perturbed graph.

Parameters and parallelization
Our P&C strategy has the following 5 parameters: the num-
ber M of perturbed versions of the original graph to gen-
erate, the random graph model G, the edge addition and
deletion probabilities εa and εd, and edge weight awareness
(δw).

Clearly, the Score step of our procedure is trivially par-
allelizable. The P&C scores thus do not take more time to
obtain than the original scores, provided that M workers are
available. The only additional cost comes from the initial
Perturb step, but it can be implemented efficiently.

Experiments
Datasets
Social networks. We used a set of 3 well-known, pub-
licly available large social networks (Leskovec and Krevl
2014) which we briefly describe in what follows. Descriptive
statistics can also be found in Table 1. Since these networks
are unweighted, the weights of the edges were assigned as
the maximum degree of their endpoints.

EMAIL-ENRON is an email communication network
built from 500K messages. Each node represents an email
address and there is an edge between two nodes if the users
exchanged at least one email. EPINIONS is a who-trust-
whom online social network constructed from the general
consumer review site epinions.com. Edges represent trust
relationships between users. WIKIVOTE was created by ex-
tracting all Wikipedia administrator elections and vote his-

tory data up to January 2008. It contains data from 2,794
elections with 103,663 total votes and 7,066 users.

Table 1: Statistics of the real-world social networks used in this
study. diam., cum, cwm and prm denote the diameter of G, and
maximum k-core, weighted k-core, and PageRank scores of its
nodes. τ is the epidemic threshold of G.

G(V,E) |V | |E| diam. cum cwm prm τ × 102

EMAIL-ENRON 34K 181K 11 43 19K 15 8.4
EPINIONS 76K 406K 14 67 37K 3 5.5
WIKI-VOTE 7K 101K 7 53 16K 4 7.2

Word co-occurrence networks. We used the standard
Hulth2003 dataset (Hulth 2003), which contains abstracts
from the Inspec research article database. More precisely,
we considered the 500 documents in the validation set and
used the uncontrolled keywords assigned by human annota-
tors as ground truth. The mean document size is 120 words,
and on average, 21 keywords (unigrams) are available for
each document. As a pre-processing step, we applied part-
of-speech tagging and retained only nouns and adjectives,
following common practice (Mihalcea and Tarau 2004). Fi-
nally, we stemmed words with Porter’s stemmer. We then
represented each document as a word co-occurrence net-
work, using a sliding window of size 5. In such a network,
two nodes are linked by an edge if the terms they represent
co-occur within the window, and edge weights indicate co-
occurrence counts. The average number of nodes, edges, and
diameter of the networks were respectively 32, 155, and 3.6.
Human keywords were also stemmed, but not filtered based
on their part-of-speech tags.

Setup
We experimented with the k-core and weighted k-core node
scoring functions. For the sake of comparison, we also in-
cluded PageRank (Page et al. 1999), since it is robust to
link-based perturbations (Ipsen and Wills 2006; Ng, Zheng,
and Jordan 2001). Note that we used the weighted version
of PageRank. In the remainder of this paper, cu, cw, and pr
will denote k-core, weighted k-core, and PageRank.

For each function, we compared the spreading influence
of the nodes with highest scores in the original networks to
that of the nodes with highest P&C scores.
Social networks. Here, we define the spreading influence of
a node v as the number of nodes infected at the end of a SIR
epidemic triggered from v. The SIR epidemic model (Ker-
mack and McKendrick 1932) is widely-used in the domain
of influential spreader detection. As shown in Figure 2, it
is a discrete time model which assumes that at every step,
each node falls into one of the following mutually exclusive
categories: Susceptible (S), Infected (I), and Recovered (R).

S I R
β γ

1− β 1− γ

Figure 2: SIR epidemic model state diagram.



In the I state, a node is capable of contaminating its neigh-
bors in the S state with probability β (infection rate). Then,
at the next time step, it transitions to the R state with prob-
ability γ (recovery rate) or stays in the I state. Nodes in the
R state are not able to get infected or transmit the disease
anymore.

Initially, all the nodes are in the S state, except v which
is in the I state. The process iterates until no new node gets
infected for two consecutive steps. Following common prac-
tice (Kitsak et al. 2010; Malliaros, Rossi, and Vazirgiannis
2016), we average results over 100 epidemics started from
v to account for the stochasticity of the process. We also set
the infection rate β close to the epidemic threshold of the
network τ = 1

λ1
, where λ1 is the largest eigenvalue of the

adjacency matrix (Chakrabarti et al. 2008); and the recovery
rate γ to 0.8, as in Kitsak et al. (Kitsak et al. 2010). For cu
and cw, we trigger an epidemic from each node in the maxi-
mal k-core subgraph. Since we use averaging as our combi-
nation strategy, the aggregated scores may be real numbers,
so we round them to the upper integer before selecting the
top core. For pr, we start an epidemic from the 100 nodes
with highest scores. In each case, we average results over all
trigger nodes to get a final performance score.

For exploration purposes, we experimented with the fol-
lowing P&C parameter values: εa : {0, 0.05, 0.1, 0.2}, εd :
{0, 0.05, 0.1, 0.2}, M : {16, 64}, G : {ER, CL}, and
δw : {0, 1}. Excluding the cases where εa = εd = 0, this
made for 120 combinations.
Word co-occurrence networks. Here, we assume that the
keywords of a document are the influential nodes of the
word co-occurrence network of the document, following
(Tixier, Malliaros, and Vazirgiannis 2016). Hence, influen-
tial spreader detection comes down to keyword extraction.
We tested whether the scores returned by P&C allowed to
improve keyword extraction performance compared to us-
ing the scores computed on the original networks.

For cu and cw, we retained as keywords the words be-
longing to the main core of the network. Again, since we
combine scores by taking the mean, the P&C scores may be
floats. Thus, we rounded them up to the nearest integer be-
fore extracting the main core. For pr, we extracted the top
33% nodes as keywords. We tried with the following param-
eter values: εa : {0, 0.1, 0.2, 0.3}, εd : {0, 0.1, 0.2, 0.3},
M : {8, 32, 96}, G : {ER, CL} and δw : {0, 1}. Excluding
the cases where εa = εd = 0, this made for 180 combina-
tions.

Results
Social networks
As can be seen from Table 2, for all vertex scoring functions
and networks, using the combined scores returned by P&C
to select the nodes from which to trigger the epidemic sys-
tematically leads to a greater severity. Moreover, the differ-
ences are substantial, comparable with the improvements re-
ported in previous research, e.g., between k-truss and k-core
(Malliaros, Rossi, and Vazirgiannis 2016). Although these
results are the ones obtained with the combination of param-
eters that maximized the total number of nodes infected dur-

ing the entire epidemic, one should note that the top nodes in
terms of P&C scores are better spreaders than the top nodes
in terms of original scores even during the early stages of the
diffusion process.

Table 2: Social network results, for cu, cw, and pr (top to bottom).
Numbers represent the average number of nodes infected during
the SIR epidemic. +% is the percent severity increase.

Time Steps
Network Scores 2 4 6 8 10 Total +%
ENRON P&C 16 89 300 419 269 2,538 3.76

original 14 77 269 401 275 2,446
EPINIONS P&C 8 34 110 245 317 2,436 4.35

original 7 30 100 224 301 2,330
WIKIVOTE P&C 3 8 17 29 40 490 3.47

original 3 8 16 28 37 473
ENRON P&C 26 141 407 445 226 2,724 3.52

original 20 110 345 433 253 2,628
EPINIONS P&C 11 46 146 302 353 2,689 2.42

original 11 42 135 286 345 2,624
WIKIVOTE P&C 5 12 24 39 50 612 19.3

original 4 9 18 31 42 513
ENRON P&C 16 86 278 389 266 2,454 4.93

original 15 80 259 366 255 2,333
EPINIONS P&C 11 42 132 276 336 2,598 2.04

original 11 41 127 267 326 2,545
WIKIVOTE P&C 5 11 22 38 49 596 2.35

original 5 11 22 36 48 582
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Figure 3: Fraction of the p% best spreaders (y axis) contained in
the top p% nodes (x axis) in terms of P&C and original scores, for
cu. The table shows the number of best spreaders for each p.

Finally, as shown in Figure 3, the P&C ranking is of bet-
ter quality than the ranking provided by the original scores,
especially for the very top nodes. On ENRON for instance,
the top 0.5% (169) nodes according to P&C contain 75.15%
of the 0.5% best spreaders (in terms of SIR), compared to
only 61.54% when using the original scores. It means that
the P&C scores place more of the most influential spreaders
at the very top of the ranking than the original scores. This
is a very valuable property, especially in practice when the
end user can only select a very small number of nodes. E.g.,
there is often only budget to give away a tiny number of free
samples in growth hacking and viral marketing.

Word co-occurrence networks
Performance is reported in Table 3 in terms of the usual in-
formation retrieval metrics: precision, recall, and F1-score.
Precision measures how many of the nodes detected as influ-
ential are indeed influential (i.e., are keywords), while recall
measures how many of the influential nodes were detected.
The F1-score is the harmonic mean of precision and recall.



Table 3: Word networks results (macro-averaged scores).

Function Scores Precision Recall F1-score +%
cu P&C 52.09 51.25 54.88 5.70

original 48.76 46.90 51.75
cw P&C 50.53 48.54 52.50 7.45

original 48.07 46.81 48.86
pr P&C 45.53 42.73 46.75 2.33

original 45.21 41.89 45.66

Like on social networks, using the P&C scores in lieu of the
original scores greatly improves performance for every node
scoring function, with large absolute gains ranging from
1.09 to 3.64 in F1-score. Even though looking at relative
improvements is sufficient to show that our P&C strategy
is effective, it should be noted that the absolute scores we
reach are equivalent to or exceed the state-of-the-art in un-
supervised keyword extraction (Tixier, Malliaros, and Vazir-
giannis 2016; Rousseau and Vazirgiannis 2015).

Discussion
Importance of parameters. As can be seen in Figure 4,
most (but not all) parameter combinations return scores that
allow the identification of better spreaders than the original
scores. This suggests that while P&C is relatively robust to
the choice of parameter values, some optimization is nec-
essary to get the most out of the procedure. Tables 4 and 5
support this claim, by clearly demonstrating that there is no
single best combination of parameters across networks and
vertex scoring functions.
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Figure 4: Top: distribution of epidemic severity for the 120 P&C
parameter combinations tried on EPINIONS. Bottom: distribution
of macro-averaged F1-score for the 180 combinations tried on
Hulth2003. Red thin bars indicate performance reached using orig-
inal scores.

Nonetheless, depending on the graph and/or scoring func-
tion, some parameters seem more important than others. For
instance, for cu, selecting edges uniformly at random (ER
model) during perturbation tends to work better than select-
ing edges in a biased way (CL model), which is consis-
tent with the fact that cu ignores edge weights, unlike cw
and pr. For cw, generating many perturbed versions of the
original network (large values of M ) also seems advanta-
geous. Further research and analysis should help us under-

Table 4: Top 5 P&C parameter combinations, word networks (F1-
scores).

δw G M εd εa cu cw pr
1 ER 8 0.1 0.3 54.88 50.67 45.99
0 ER 96 0.0 0.3 54.85 52.50 45.99
1 ER 96 0.3 0.3 54.78 51.76 45.65
0 ER 8 0.1 0.3 54.69 52.38 46.06
0 ER 32 0.0 0.3 54.67 52.31 45.90

δw G M εd εa cu cw pr
0 ER 96 0.0 0.3 54.85 52.50 45.99
0 ER 8 0.0 0.3 54.0.2 52.38 45.52
0 ER 8 0.1 0.3 54.69 52.38 46.06
0 ER 32 0.0 0.3 54.67 52.31 45.90
0 ER 96 0.1 0.3 54.62 51.78 46.20

δw G M εd εa cu cw pr
1 CL 32 0.0 0.3 50.94 45.33 46.75
0 CL 32 0.3 0.3 50.45 49.46 46.57
1 CL 8 0.0 0.3 51.86 46.99 46.53
0 CL 32 0.0 0.3 52.39 50.07 46.47
0 CL 32 0.2 0.3 52.22 50.49 46.45

Table 5: Top 5 P&C parameter combinations for ENRON, EPIN-
IONS, WIKIVOTE (top to bottom) and pr, cw, cu (left to right).
Scores indicate average epidemic severity.

δw G M εd εa pr δw G M εd εa cw δw G M εd εa cu
0 ER 64 0.2 0.2 2454 0 CL 64 0.2 0 2724 1 ER 64 0.2 0.05 2538
1 ER 16 0.2 0.2 2454 0 CL 64 0.1 0.1 2718 1 ER 64 0.2 0.1 2529
0 ER 16 0.05 0.2 2447 1 CL 64 0.2 0.2 2717 0 ER 64 0.1 0.1 2521
1 ER 64 0.2 0.2 2446 1 CL 64 0.1 0.1 2710 0 ER 64 0.05 0.05 2513
1 ER 16 0.05 0.2 2445 1 ER 64 0.05 0 2709 0 ER 64 0.1 0.05 2508
1 ER 16 0.2 0.2 2598 0 ER 64 0.1 0 2689 1 ER 16 0.2 0.05 2436
1 CL 64 0.2 0.05 2597 1 CL 64 0.05 0.05 2673 1 ER 16 0.2 0.1 2436
1 ER 64 0.2 0.2 2596 0 ER 64 0.2 0.05 2673 1 CL 64 0.2 0 2423
1 ER 16 0.1 0.2 2596 0 ER 64 0.1 0.2 2672 1 ER 16 0.2 0 2419
1 CL 64 0.2 0.2 2593 1 CL 64 0.1 0.1 2672 1 ER 16 0.2 0.2 2391
0 ER 16 0.2 0.2 596 0 ER 64 0.2 0 612 1 CL 16 0.05 0.05 490
0 ER 16 0 0.2 595 0 CL 64 0.2 0.05 600 1 ER 64 0.2 0 488
1 ER 64 0.05 0.2 594 0 CL 64 0.2 0.1 589 1 CL 16 0.1 0.05 487
0 ER 16 0.1 0.2 593 0 CL 64 0.1 0.1 582 1 ER 16 0.1 0 487
0 ER 16 0.2 0.05 593 0 CL 64 0.1 0.05 578 1 ER 16 0.05 0 485

stand what are the crucial parameters for different settings
(graph type, size, density, diameter, scoring function...) and
what are good priors for them, reducing the need for param-
eter tuning.
P&C improves even the performance of PageRank. This
was unexpected, as PageRank is believed to be stable to
edge-based perturbations (Ipsen and Wills 2006; Ng, Zheng,
and Jordan 2001). The implication could be that our P&C
procedure is beneficial to any node scoring function, not
only unstable ones, or that PageRank features some level of
instability. While we provide some evidence supporting the
former implication in the Theoretical Analysis section, the
latter is a legitimate possibility as well. It has indeed been
suggested that the stability of PageRank depends on the net-
work topology. For instance, PageRank is much more stable
for scale-free graphs like the Web than for random networks
(Ghoshal and Barabási 2011).
For word networks, adding edges is beneficial. Interest-
ingly, for word co-occurrence networks, adding edges or
incrementing the weights of already existing edges seems
much more important than deleting edges (εa ≥ εd), re-
gardless of the scoring function. This is equivalent to copy-
ing and pasting words from/to the input text, which can be
seen as a form of data augmentation. It could also be in-
terpreted as having a sliding window of stochastic size fea-
turing an additional masking mechanism such that edges
are drawn between a subset only of the words in each in-
stantiation of the window. Data augmentation and stochas-
tic windows were proven very beneficial in Computer Vi-
sion and NLP (Krizhevsky, Sutskever, and Hinton 2012;
Mikolov et al. 2013), so this could explain why εa ≥ εd
works well with word networks.



Next, we backup our positive empirical results by explaining
why P&C is effective from a theoretical perspective.

Theoretical Analysis
Underlying graph. Let us assume the existence of a true
but unavailable underlying graph G∗, of which the available
graphG is a snapshot, or sample, so thatG features the same
nodes asG∗ but has a slightly different edge set. This is anal-
ogous to the traditional assumption made in statistics that a
given dataset represents a sample of a true but unknown dis-
tribution. Since G∗ is unavailable, we have to find a way to
emulate sampling from G∗ by using only G. One solution is
to perturb G.
True ranking. Let us also assume the existence of a true
ranking R = {l(1), . . . , l(n)} of the nodes

{
v1, . . . , vn

}
of

G, that associates each node vi with one of K labels l(i),
where vi is ranked before vj if l(i) > l(j). K ≤ n as some
nodes may have equivalent spreading capabilities. This true
ranking can be a given, or can be computed, for instance
with the SIR model.
Objective. Let s : V 7→ R|V | be a vertex scoring function,
i.e., a function that associates each node of G with a real
number, and let R̂ be the ranking induced by s on the nodes
of G. R̂ can be seen as an estimate of the true ranking R,
and s as an estimator. Let us also assume that the quality of
the estimate provided by s (goodness of fit) is measured by
a metric MET accepting R̂ andR as input and taking values
in

[
0, 1

]
. The objective of s is to maximize MET. MET is

a random variable (RV) as R̂ is a RV.
Perturbation as sampling. In each of theM edge-perturbed
version G̃m of G, the individual node scores, and by exten-
sion the rankings R̂m, randomly vary, as our perturbation
strategy is stochastic. We can thus consider the R̂m to be
RVs. Moreover, since the G̃m are generated independently,
the R̂m are independent. Therefore, perturbing G is akin to
sampling independent realizations from the true underlying
graph G∗.
Definitions: bias and variance of a vertex scoring func-
tion. Our goal is to study the impact of P&C on the good-
ness of fit of s. In regression, the error is traditionally decom-
posed into bias and variance terms. We adopt this framework
and define in what follows the bias and variance of s.
In the regression setting, y = f(x) + ε, σ2 = var

[
ε
]
, f̂ is

an estimator of f , and we have the following well-known
breakdown of expected squared error of the estimation into
(squared) bias, variance, and irreducible error terms:

E
[
(y − f̂(x))2

]
= bias

[
f̂(x)

]2
+ var

[
f̂(x)

]
+ σ2 (2)

bias
[
f̂(x)

]
= E

[
f̂(x)− f(x)

]
(3)

var
[
f̂(x)

]
= E

[(
f̂(x)− E

[
f̂(x)

])2] (4)

The expectation is computed for different samples drawn
from the same underlying distribution. By analogy, in our
setting, we can define the bias and variance of s as:

bias
[
s
]
= E

[
1−MET

]
= 1− E

[
MET

]
(5)

var
[
s
]
= E

[(
MET− E

[
MET

])2]
. (6)

The bias captures, on average, how close the estimated rank-
ing R̂ provided by s is to the true rankingR (for which MET
is equal to 1), while the variance measures the instability of
R̂ (variability around its mean). The expectation is to be un-
derstood as computed over a set of observations of G∗.

Since ∀ RVs X,Y and k ∈ R, E
[
X + Y

]
= E

[
X
]

+

E
[
Y
]
, E

[
k
]

= k, and E
[
kX

]
= kE

[
X
]
, developing Eq. 6

gives:

var
[
s
]
= E

[
MET2 − 2E

[
MET

]
MET+ E2[MET

]]
(7)

var
[
s
]
= E

[
MET2]− 2E2[MET

]
+ E2[MET

]
. (8)

Summing the squared bias and variance terms thus gives:

bias2
[
s
]
+ var

[
s
]
= 1− 2E

[
MET

]
+ E

[
MET2] (9)

bias2
[
s
]
+ var

[
s
]
= E

[(
MET− 1

)2] (10)

which can be interpreted as the expectation of the squared
error, like in the case of regression.
Theorem: P&C reduces error.
Proof. Recall that the P&C score spc of node vi is defined as
the average of the scores its gets in each of the M perturbed
graphs {G̃} = {G̃m}Mm=1 generated from G:

spc(vi) =
1

M

M∑
m=1

sG̃m
(vi). (11)

We can write:
R̂pc = E{

G̃
}[{R̂}] (12)

where
{
R̂
}

= {R̂m}Mm=1. This means that the P&C es-
timate R̂pc of the true ranking R is the average of the esti-
mates R̂m over theM perturbed graphs. Similarly, the good-
ness of fit of the P&C ranking can be written:

METpc = E{
G̃
}[MET

({
R̂
}
, R
)]
. (13)

Thus, evaluating Eq. 9 over
{
G̃
}

, and using Eq. 13 above:

E{
G̃
}[(MET− 1

)2]
= 1− 2E{

G̃
}[MET

]
+ E{

G̃
}[MET2]

(14)

E{
G̃
}[(MET− 1

)2]
= 1− 2METpc + E{

G̃
}[MET2] (15)

where MET
({
R̂
}
, R

)
is simply written MET for readabil-

ity. Plus, since ∀ RV X and k ∈ R, E2
[
X
]
≥ E

[
X2

]
and

E
[
k
]

= k, using again Eq. 13, and since E is monotone:

E{
G̃
}[(MET− 1

)2] ≥ 1− 2METpc + E2{
G̃
}[MET

]
(16)

≥
(
1−METpc

)2 (17)

E{
G̃
}[(MET− 1

)2] ≥ E{
G̃
}[(1−METpc

)2]
. (18)

Ineq. 18 shows that the mean squared error of P&C (RHS)
is always lower than or equal to the original mean squared
error (LHS), which is an important result. The improvement
can come from reducing bias, variance, or both. �
Sample bias and variance. To understand how Ineq. 18
holds in practice, we randomly selected 16 Hulth2003 word
networks, and generated 50 perturbed version of each. As



previously explained, this can be considered as drawing 50
independent realizations from the underlying graph that gen-
erated each network. With the cu function, we then scored
the nodes of each graph in the sample with and without us-
ing our P&C strategy, and computed the goodness of fit of
each ranking, using the Normalized Discounted Cumulative
Gain (NDCG) (Järvelin and Kekäläinen 2002) as the metric
MET. The NDCG is a standard metric for assessing ranking
quality in Information Retrieval (IR). In our case, the more
of the most influential spreaders are placed on top of R̂, the
better the NDCG. More precisely, NDCG is computed as:

NDCG = DCG/IDCG (19)

where DCG is the Discounted Cumulative Gain computed
on R̂ and IDCG is the ideal DCG computed on R. NDCG is
maximal and equal to 1 if R̂ matches R exactly. Generally
in IR, the DCG is computed over a shortlist of the best re-
sults, but we can assume without loss of generality that it is
computed over the full list of n nodes:

DCG =
n∑

i=1

2reli − 1

log2(i+ 1)
(20)

where i designates the rank of node vi in the list. We used
as the relevance score reli of vi its SIR influence, i.e., the
average number of nodes infected at the end of multiple epi-
demics triggered from it. We finally computed bias and vari-
ance from the set of 50 NDCGs by using Eq. 5 and Eq. 6. We
repeated the same procedure for the WIKIVOTE network.

Results are shown in Table 6. As can be seen for word
networks, P&C reduces both bias and variance, although its
major contribution appears to lie in the consistent reduction
of bias. The average of the averages of the NDCGs is 0.58
for the rankings obtained with the original scores and 0.73
for P&C, which means that the rankings returned by the
P&C scores fit the true rankings much better. On WIKIV-
OTE, P&C reduces bias, but not variance, which is initially
very low. The P&C NDCG is 0.2032 while the original is
0.1892, indicating again that P&C returns better rankings.

Table 6: Top: sample bias (×102) and variance (×103) for 16 ran-
domly selected word networks. Bottom: Sample bias (×102) and
variance (×105) for WIKIVOTE. Lower is better.

Original P&C
bias 37.06 24.92 ↘
var 4.78 1.17 ↘

bias 41.92 16.66 ↘
var 12.83 4.72 ↘

bias 48.44 35.64 ↘
var 6.02 5.43 ↘

bias 42.86 30.23 ↘
var 0.08 4.44

bias 45.16 31.23 ↘
var 0.03 4.09

bias 64.56 38.97 ↘
var 1.87 4.04

bias 24.75 14.05 ↘
var 0.58 2.52

bias 31.72 19.00 ↘
var 0.58 6.78

Original P&C
bias 51.59 34.97 ↘
var 0.66 1.16

bias 39.16 27.22 ↘
var 0.04 1.79

bias 66.43 54.66 ↘
var 0.09 0.76

bias 46.97 21.98 ↘
var 1.54 2.71

bias 26.40 20.75 ↘
var 0.04 0.49

bias 37.29 24.40 ↘
var 0.27 2.17

bias 33.76 18.68 ↘
var 0.18 2.50

bias 41.61 24.12 ↘
var 6.85 6.60 ↘

Original P&C
bias 81.08 79.68 ↘
var 0.00 0.64

P&C for networks differs from bagging. Our P&C strat-
egy reducing mainly bias rather than variance suggests that

it differs from the most famous of the P&C strategies, boot-
strap aggregation (bagging). Indeed, bagging can increase
variance when it fails (Grandvalet 2004), but it is widely
accepted that it cannot significantly reduce bias. Actually,
as shown by (Breiman 1996a), bagging is only effective
through reducing the high variance of unstable learners (e.g.,
fully-grown decision trees), and does not work well with sta-
ble algorithms (e.g., nearest-neighbors approaches) because
it cannot reduce bias. Another obvious difference is that a
bootstrap sample has always the same size as the original
dataset, whereas in our case, a perturbed graph has as many
edges as the original graph only when εa = εd.
To strictly emulate bagging, we would need to adopt a dif-
ferent framework in which we would draw edges from a true
underlying distribution rather than graphs. The perturbation
step would only consist in sampling edges with replace-
ment (i.e., bootstrapping) from the original set of edges.
Some edges would be selected more than once (their weights
would be incremented), while some edges would not be se-
lected at all. In the final perturbed network, 63.2% of unique
edges would carry over from the original network, but no
new edge would be present. This would remove the need for
the εa and εd parameters, at the cost of losing flexibility. The
improvement brought by P&C would be obtained mainly by
reducing variance as:

var
[
R̂pc

]
= var

[
1

M

M∑
m=1

R̂m

]

=
1

M2

M∑
m=1

var
[
R̂m

]
.

(21)

The extent to which error would be reduced would thus
only depend on the amount of uncorrelation among the rank-
ings R̂m, as correlation adds positive covariance terms to the
RHS of Eq. 21, i.e., increases variance. In other words, if our
approach was equivalent to bagging, it would only work for
unstable vertex scoring functions.

The fact that our procedure is effective even for PageR-
ank, which is considered relatively stable, corroborates the
empirical findings that our method is capable of reducing
bias in addition to variance. Rather than bagging, we think
that our approach is more closely related to noise injection
techniques such as the noisy and smoothed bootstrap (Raviv
and Intrator 1996; Silverman 1986), and, as already men-
tioned, to data augmentation strategies. More generally, per-
turbing graphs could also be seen as a form of adversarial
training (Zügner, Akbarnejad, and Günnemann 2018).

Conclusion
We proposed what is, to the best of our knowledge, the
first application of the Perturb and Combine (P&C) strat-
egy to graphs. Experiments on various real-world networks
demonstrate that for all vertex scoring functions tested, the
P&C scores allow to identify better spreaders than the scores
computed on the original networks. Furthermore, the P&C
scores can be obtained at little extra cost through paralleliza-
tion. We explain our positive empirical results through a the-
oretical analysis.
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Erdös, P., and Rényi, A. 1960. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci 5:17–61.
Ghoshal, G., and Barabási, A.-L. 2011. Ranking stability and
super-stable nodes in complex networks. Nature communications
2:394.
Goltsev, A. V.; Dorogovtsev, S. N.; and Mendes, J. F. F. 2006.
k-core (bootstrap) percolation on complex networks: Critical phe-
nomena and nonlocal effects. Physical Review E 73(5):056101.
Govindan, P.; Wang, C.; Xu, C.; Duan, H.; and Soundarajan, S.
2017. The k-peak decomposition: Mapping the global structure
of graphs. In Proceedings of the 26th International Conference
on World Wide Web, 1441–1450. International World Wide Web
Conferences Steering Committee.
Grandvalet, Y. 2004. Bagging equalizes influence. Machine Learn-
ing 55:251–270.
Hoppensteadt, F. 1975. Mathematical Theories of Populations:
Deomgraphics, Genetics, and Epidemics, volume 20. Siam.
Hulth, A. 2003. Improved automatic keyword extraction given
more linguistic knowledge. In Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
216–223. Association for Computational Linguistics.
Ipsen, I. C., and Wills, R. S. 2006. Mathematical properties and
analysis of googles pagerank. Bol. Soc. Esp. Mat. Apl 34:191–196.
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