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ABSTRACT

The work describes how deep learning by artificial neural net-
works (ANNs) enables online power allocation for energy ef-
ficiency maximization in wireless interference networks. A
deep ANN architecture is proposed and trained to take as in-
put the network communication channels and to output suit-
able power allocations. It is shown that this approach requires
a much lower computational complexity compared to tradi-
tional optimization-oriented approaches, dispensing with the
need of solving the optimization problem anew in each chan-
nel coherence time. Despite the lower complexity, numerical
results show that a properly trained ANN achieves similar per-
formance as more traditional optimization-oriented methods.

1. INTRODUCTION

Future cellular networks will be required to serve more than
50 billions of devices by 2020, providing 1000x higher data
rates compared to present systems, while at the same time
halving the energy consumption. This means that the bit-
per-Joule energy efficiency of future wireless networks will
have to increase by a factor 2000x [1, 2]. This triggered a
great deal of research aimed at allocating the available ra-
dio resources in order to maximize the network bit-per-Joule
energy efficiency. In [3] a tutorial on optimization methods
for energy efficiency is provided, describing the fundamen-
tal tool of fractional programming theory, and pointing out
that energy efficiency maximization requires in general ex-
ponential complexity in realistic interference-limited network
scenarios. To circumvent this issue, a simple approach is to
resort to interference cancelation techniques or to orthogonal
transmission schemes, thus falling back into the noise-limited
regime [4–6]. However, this either leads to a poor resource
reuse, or to noise enhancement effects and/or non-linear re-
ceive schemes. Moreover, unavoidable channel estimation
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errors also break the orthogonality in many cases. Another
approach deals with interference by means of suboptimal op-
timization methods, mainly based on alternating optimization
techniques [7, 8]. However, these approaches typically ei-
ther do not guarantee convergence or are not supported by
strong optimality properties. In order to overcome these is-
sues, a recently proposed approach is the so-called sequen-
tial fractional programming (SFP) framework [9, 10], which
merges fractional programming theory and sequential opti-
mization tools, effectively decomposing complex energy ef-
ficiency maximization problems into a sequence of convex
problems. This ensures strong optimality properties, while at
the same time requiring affordable complexity. Moreover, it
has been shown to achieve global optimality in several prac-
tical scenarios [10], by comparing it with global optimization
methods. Nevertheless, all above approaches still require to
perform the optimization anew anytime the propagation sce-
nario changes. This is especially problematic when the re-
source allocation is based on the channel instantaneous real-
izations, which vary on a small scale in mobile environments.
This forces to update the optimal resource allocation very fre-
quently, thus causing a considerable complexity overhead, ul-
timately limiting the online implementation of available opti-
mization frameworks, especially in complex networks.

The aim of this work is to show that these drawbacks
can be overcome leveraging the emerging framework of deep
learning [11]. Focusing on the problem of energy efficiency
maximization, we show that it is possible to train a deep
ANN to provide near-optimal energy-efficient power alloca-
tions. Overviews on deep learning applications to wireless
communications have recently appeared in [12, 13]. In [14]
and [15] deep learning is used for MMSE channel estimation
and positioning, respectively, while data detection algorithms
based on deep learning have been proposed in [16]. An
overview of deep learning for resource allocation is provided
in [17], while deep learning for power control is proposed
in [18] and [19]. Specifically, [18] applies the recent tool of
deep reinforcement learning to come up with online power



control algorithms, whereas [19] proposes to train a deep
neural network to learn the weighted MMSE algorithm for
sum-rate maximization.

The approach taken in this work is inspired to that from
[19], but with two main differences:

• while [19] focused on sum-rate maximization, this
work is the first to consider the use of deep neural net-
works to learn fractional programming algorithms for
energy efficiency maximization, based on the use of
Dinkelbach’s method and the SFP approach.

• while [19] uses a neural network to separately emulate
each iteration of an iterative algorithm, this work takes
an end-to-end perspective, proposing to use a deep net-
work to learn the overall input-output map of a generic
resource allocation problem.

The rest of this work is organized a follows. Section 2 for-
mulates the problem of global energy efficiency (GEE) max-
imization in a generic interference-limited network. A deep
ANN architecture is proposed in Section 3, showing how a
suitable training set can be obtained and used to train the
ANN for GEE optimization. Numerical results provided in
Section 4 show that the proposed approach is able to provide
satisfactory performance, while at the same time dispensing
with the need to solve the problem for each new channel real-
ization, thus facilitating online implementations.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider the uplink of a multi-cell cellular network in
which M base stations serve K mobile users. Each base sta-
tion is equipped with N antennas whereas the mobile users
have a single antenna, and let us denote by hk,m the N × 1
channel from mobile user k to base station m. Also, let pk
be the k-th user’s transmit power, ck the N × 1 receive vec-
tor for the data from user k, and σ2

m the received noise power
at base station m. Then, the signal-to-interference-plus-noise
ratio (SINR) enjoyed by user k at its intended receiver mk is
expressed as:

γk =
pk|cHk hk,mk

|2

σ2 +
∑

j 6=k pj |cHk hj,mk
|2

=
pkdk,k

σ2 +
∑

j 6=k pjdk,j
,

(1)
with dk,j = |cHk hj,mk

|2, for all k and j. Based on (1), the
network GEE is given by

GEE =
B
∑K

k=1 log2(1 + γk)

Pc +
∑K

k=1 µkpk
[bit/Joule] , (2)

wherein B is the communication bandwidth, Pc is the hard-
ware static power consumed in the whole system1, and µk

1Clearly, Pc will depend on system parameters such as the number of
antennas and efficiency of the hardware components deployed in the system.
However, as far as power control is concerned, it will be a constant term with
respect to the transmit power.

Hidden layerInput layer Output layer

Fig. 1. Scheme of a deep ANN with I inputs, O outputs, L
hidden layers, with N` units in layer `, for all ` = 1, . . . , L.

the inverse of the efficiency of the power amplifier used by
transmitter k.

Given this setup, the considered energy efficiency maxi-
mization problem is stated as the maximization of the GEE
subject to power constraints, namely

max
{pk}Kk=1

GEE(p1, . . . , pK) (3a)

s.t. Pmin,k ≤ pk ≤ Pmax,k ,∀ k = 1, . . . ,K (3b)

with Pmax,k and Pmin,k being the maximum feasible and
minimum acceptable transmit powers for user k. Since the
numerator of (3a) is not a concave function of p = {pk}Kk=1,
Problem (3) is a so-called non-concave fractional problem, for
which no globally optimal, low-complexity optimization ap-
proach is available. Moreover, even by practical approaches,
e.g. [3, 10], Problem (3) needs to be solved anew whenever
the channel realizations {h`,mk

}k,` change. This represents
a critical drawback, especially considering that the resource
allocation process must be completed well before the end of
the channel coherence time in order for the optimized power
vector to be practically useful. The next section proposes the
use of deep ANNs to solve these issues.

3. ENERGY EFFICIENCY MAXIMIZATION BY
DEEP LEARNING

The idea of the proposed approach lies in observing that
Problem (3) can be regarded as an unknown function map-
ping from the coefficients {dk,`}k,` and maximum/minimum
transmit powers Pmax and Pmin to the optimal power alloca-
tion vector p∗, namely

F : d = {dk,`, Pmin,k, Pmax,k}k,` ∈ RK(M+2) → p∗ ∈ RK

(4)
Then, leveraging the result that ANNs are universal function
approximators [20], we propose to train an ANN to learn
the unknown map (4). Specifically, we adopt a feedforward
ANNs according to the general architecture shown in Fig. 1.
The input layer feeds the input data in the form of the N0-
dimensional vector x0 = d to the rest of the network, with



N0 = K(M + 2) for the case at hand. The input data is
then processed by L so-called hidden layers, plus an out-
put layer, each having N` processing units called neurons,
` = 1, . . . , L + 1, to produce an NL+1-dimensional output
vector xL+1 = p∗, with NL+1 = K. Denoting by x`−1 the
input to layer `, each neuron n in layer `, computes

x`(n) = fn,`
(
wT

n,`x`−1 + bn,`
)
, (5)

wherein wn,` ∈ RN`−1 and bn,` ∈ R are neuron-dependent
weights and bias terms, while fn,` is a neuron-dependent non-
linear2 map, called activation function. Typical choices for
fn,` include sigmoidal, hyperbolic tangent, ReLU, and leaky
ReLU functions [11]. Moreover, in order to enforce Con-
straint (3b) on the output vector, for all n = 1, . . . , NL+1,
the output activation function is taken as

fn,L+1(·) = max(Pmin,n,min(·, Pmax,n)) , (6)

The described ANN structure is called feedforward be-
cause the input data propagates only in the forward direction,
from the input layer to the output layer, given that each neu-
ron is only connected to the neurons in the following layer.
Also, the considered network is referred to as a deep ANN,
since multiple hidden layers are present. If instead only one
hidden layer were used, it would be called a shallow ANN.
Deep architectures are usually preferred since they require a
lower number of neurons than shallow networks to learn a
given input-output map [11].

3.1. ANN training

In order for the ANN to learn the desired input-output rela-
tion, it is necessary to tune the parameters wn,` ∈ RN`−1

and bn,` ∈ R in a supervised learning fashion. To elabo-
rate, the training process assumes to have a set of Nt pairs
{(d(nt),p(nt))}NT

nt=1, such that, for each nt, p(nt) is the de-
sired output when the input is d(nt). Such a set is then typ-
ically split into a training set, which is used to train the net-
work parameters, and a validation set, which is used to vali-
date the trained model and obtain an estimate of the network
generalization capabilities.

To elaborate further, denote by x
(nt)
L+1(W , b) the actual

output of the ANN corresponding to d(nt) for given weights
W = {wn,`}n,` and bias terms b = {bn,`}n,`, and define
the loss function L(p(nt),x

(nt)
L+1(W , b)) measuring the loss3

between p(nt) and x
(nt)
L+1(W , b). The goal of the training pro-

cess is to tune the network parameters W and b in order to
minimize the average loss, defined as

L(W , b) =
1

Nt

Nt∑
nt=1

L(p(nt),x
(nt)
L+1(W , b)) . (7)

2In principle linear maps could be used, but if all activation functions
were linear, the ANN would be only capable of learning linear functions and
there would be no advantage in using multiple layers.

3The loss function used in this work is specified in the numerical results.

This minimization problem can be tackled by (stochastic) gra-
dient search methods, i.e. iteratively updating the parameters
according to the formulas:

W (t+ 1) = W (t)− α∇L(W (t)) , (8)
b(t+ 1) = b(t)− α∇L(b(t)) , (9)

with α the learning rate, and where the gradients are conve-
niently estimated based on random subsets of the complete
training set, called mini-batches [11, Ch. 8], and leveraging
the back-propagation algorithm [11, Ch. 6.5].

Finally, it should be remarked that, in order to build a
suitable training set, one should solve Problem (3) for sev-
eral realizations of the entries of d. This can be achieved by
employing the monotonic fractional programming framework
developed in [10], which however requires exponential com-
plexity. For this reason, in this work we will apply the SFP
framework, which requires polynomial complexity, while at
the same time achieving near-optimal performance [10].

3.2. Online implementation and complexity

Once the parameters W and b to be used are determined as a
result of the training process, the ANN is configured and able
to compute energy-efficient power allocations corresponding
to input vectors d that are not part of the training set. This
means that every time the channel realizations change, the
power control policy is updated by simply feeding the new d
to the ANN, without any need to actually solve Problem (3)
anew. This yields a significant complexity reduction, since in
order to obtain the output p for a given input d, an ANN must
perform only

∑L+1
`=1 N`−1N` real multiplications4.

In addition, one should account for the complexity due
to the training phase. However, network training can be per-
formed at a much longer scale than the channel block dura-
tion. Indeed, once the network has been trained, the result-
ing training set can be used at least until the statistics of the
channels significantly change. Instead, Problem (3) should be
solved anew every time the instantaneous realizations of the
channels change.

4. NUMERICAL RESULTS

We consider the uplink of a three-cell MIMO system with
K = 10 users and N = 10 antennas at each base station.
The path-loss model from [21] has been assumed, while fast
fading terms have been modeled as realizations of zero-mean
complex Gaussian random variables. Moreover, µk = 10
for all k, whereas the circuit power Pc follows the model
from [22]. Maximum ratio combining is adopted at all base
stations. The considered ANN has L = 10 hidden layers,

4The complexity related to additions is negligible compared to that related
to multiplications. Similarly, the complexity required to compute the activa-
tion functions is neglected, because the most widely used activation function,
the ReLU, only requires determining the sign of the input.



while n` = n`−2 − 2, if ` is odd, n` = n`−1 if ` is even, and
n1 = 18. Nt = 104 pairs (d,p) have been generated solv-
ing Problem (3) by the SFP framework, and further divided
into a training set containing 9000 samples, and a valida-
tion set containing the remaining 1000 samples. In each sce-
nario, mobile users’ have been randomly and independently
placed in a circular area with radius 500m and assigned to
the closest base station. The loss function (7) has been used,
with L(p(nt),x

(nt)
L+1(W , b)) = ‖p(nt) −x

(nt)
L+1(W , b)‖2, and

a mini-batch size of 256 has been used when implementing
the stochastic gradient descent method. It should be stressed
that typical deep learning applications consider much larger
training sets, usually of the order of 106 samples. However,
the choice of training the network by using only 104 samples
is motivated by the consideration of reducing the complexity
and storage requirements of the proposed approach.

After training and validation, the ANN performance has
been tested over Nr = 104 previously unobserved network
scenarios, that have been randomly and independently gen-
erated with respect to the training and validation samples.
It should be noted that typical deep learning applications
consider much smaller test sets compared to the training set.
However, the choice Nr = 104 is motivated by practical
considerations, since it allows evaluating the average perfor-
mance of the proposed method after 104 unobserved channel
realizations have occurred. The satisfactory results to be il-
lustrated, show that indeed network training can be performed
at a much longer scale than the channel block duration.

In Fig. 2, the average (over the test set) GEE versus Pmax

obtained by the SFP method from [10] and by the proposed
ANN-based approach are compared. As a benchmark, the
GEE obtained by full power allocation for all users is also
reported. It is seen that, despite the much lower complexity,
the ANN-based allocator performs like the sequential method
from [10] for lower Pmax values, while a small gap emerges
for larger Pmax values. However, also in this regime the ANN
method achieves around 95% of the value obtained by SFP.
A similar scenario is considered in Fig. 3, with the difference
that the metric under analysis is the average per-user trans-
mit power. Similar comments as for Fig. 2 apply. Finally,
Tab. 4 shows the ratio of the average CPU times required
to tackle (3) by SFP and by the proposed ANN-based ap-
proach. It is seen that the proposed method is always faster,
especially for larger Pmax. Indeed, as Pmax increases, the
space to search for the optimization algorithm grows wider,
whereas the complexity of the ANN does not change. More-
over, we stress again that adopting any standard optimization
algorithm would require to tackle (3) for each channel real-
ization. Instead, this is not required by ANN-based methods.

5. CONCLUSIONS

It has been shown how deep ANNs are able to learn and
compute energy-efficient power allocations in wireless inter-
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Fig. 2. GEE versus Pmax by: (a) SFP from [10]; (b) Deep
learning by ANN; (c) Full power allocation.
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Fig. 3. Per-user transmit power versus Pmax by: (a) SFP from
[10]; (b) Deep learning by ANN; (c) Full power allocation.

Pmax [dBm] 0 10 20 30
Time Ratio 1.04 21.75 56.27 103.84

Table 1. Ratio of average CPU times required by SFP and
proposed ANN-based approach to tackle (3).

ference networks, as a function of the system propagation
channels. If properly trained, an ANN is able to approach
the performance of sophisticated energy-efficient optimiza-
tion frameworks, such as the near-optimal SFP method, while
requiring a much lower complexity. In particular, ANN-based
methods, do not require solving one optimization problem in
each channel coherence time, thus lending themselves to ef-
fective online resource allocation also in complex and large
interference networks. Numerical results have been provided
to support the claimed advantages.
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