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Abstract—We investigate the problem of multi-hop scheduling
in self-backhaul mmWave networks, owing to the high path loss
of mmWave, multi-hop routes between the macro base station
and the intended users via full-duplex small cells need to be care-
fully selected. This paper addresses the fundamental question:
“how to select the best paths and to allocate rates over paths subject
to latency constraints with a guaranteed probability?”. To answer
this question, we propose a new system design, which factors
in channel variations and network dynamics. The problem is
cast as a network utility maximization subject to a bounded
delay constraint with a guaranteed probability and network
stability. The studied problem is decoupled into path/route
selection and rate allocation, whereby learning the best paths
is done by means of a reinforcement learning algorithm, and
the rate allocation is solved by applying the successive convex
approximation method. Via numerical results, our approach
ensures reliable communication with a guaranteed probability
of 99.9999%, and reduces latency by 50.64% and 92.9% as
compared to baselines, respectively.

Index Terms—Self-backhaul, mmWave communications,
multi-hop scheduling, ultra dense small cells, stochastic opti-
mization, non-convex optimization.

I. INTRODUCTION

To support reliable communication with an over-the-air
latency of few milliseconds and extreme throughput, a number
of candidate solutions are currently investigated for 5G: 1)
higher frequency spectrum, e.g., centimeter and millimeter
waves (mmWaves); 2) advanced spectral-efficient techniques,
e.g., massive multiple-input multiple-output (MIMO); and 3)
ultra-dense self-backhauled small cell deployments [1].

In this paper, we are motivated by the combination of
the above techniques, which holds the promise of providing
great enhancements of the overall system performance [1],
[2]. To do so, an in-band wireless backhauling solution
allows to deploy such ultra-dense small cells [2], [3] when
massive MIMO and mmWave are combined to provide the
wireless backhaul. Although, mmWave frequency bands offer
huge bandwidth to meet the exponentially growing traffic
demands [3], [4], operating at higher frequency bands ex-
periences high propagation attenuation [4], which requires
smart beamforming to achieve highly directional gain [5].
Owing to the short wavelength, mmWave frequency bands
allow for packing a massive number of antennas into highly
directional beamforming over a short distance as compared
to the conventional frequency bands [4]. Besides, mmWave
communication requires higher transmit power and is very
sensitive to blockage, when transmitting over a long distance
[3], [4]. Hence, instead of using a single hop [3], [6], a multi-
hop self-backhauling architecture is a promising solution [7],
[8]. The authors in [9] studied the multi-hop routing for
device-to-device communication, focusing on maximizing the
quality for multimedia applications. More importantly, allow-

ing multi-hop transmissions raises a problem of increased
delay, which has been ignored. Further, the ultra-dense SC
network is mainly operated based on the multi-hop multi-
path transmission. Hence, there is a need for fast and efficient
multi-hop scheduling with respect to traffic dynamics and
channel variance in self-backhauled mmWave networks [7].
To our best knowledge, we are the first to provide a practi-
cal and efficient solution for multi-hop multi-path mmWave
networks.

Main contributions: Considering a multi-hop self-
backhauled mmWave network, we propose a new
system design to support ultra-reliable and low latency
communication (URLLC). In particular, our goal is to
maximize a general network utility, subject to a probabilistic
delay constraint and network stability. Leveraging the
stochastic optimization [10], the studied problem is
decoupled into multi-hop path/route selection and rate
allocation. We leverage regret learning techniques to exploit
the benefits of the historical information to aid in selecting
the best paths. Second, the rate allocation sub-problem is a
non-convex combinatorial program [11], by exploiting the
hidden convexity of the problem, we propose an iterative rate
allocation based on the second-order cone program (SOCP)
in order to obtain a local optimal of the approximated convex
problem. The proposed approach answers the following
questions: (i) over which paths the traffic flow should be
forwarded? and (ii) what is the data rate per flow/sub-flow
while ensuring low-latency and ultra-reliability constraints?

Related work: Path selection and multi-path congestion
control are well-studied in [12] in which the aggregate utility
is increased as more paths are provided. However, splitting
data into too many paths leads to increased signaling overhead
and makes the traffic congested. Moreover, [12] did not
consider the problem of providing URLLC. In this paper, we
determine the best paths to maximize the network throughput
subject to the delay bound violation constraint with a tolerable
probability (reliability). A recent work in [13] has studied
the multi-hop relaying transmission challenges for mmWave
systems, aiming at maximizing the network throughput, while
taking account into traffic dynamics and link qualities. In our
work, we further address two fundamental questions in multi-
hop self-backhauled mmWave networks: (i) how to select
the best paths while taking account into traffic dynamics
and link qualities and (ii) how to capture the URLLC while
maximizing the network utility. Our previous work [6] studied
URLLC-centric mmWave networks for single hop transmis-
sion, in this work we extend it to the multi-hop wireless
backhaul scenario and study a joint path selection and rate
allocation optimization.
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Fig. 1: 5G multi-hop self-backhauled mmWave networks.

II. SYSTEM MODEL

Let us consider a multi-hop heterogeneous cellular network
(HCN) which consists of a macro base station (MBS), a set
of B self-backhauled small cell base stations (SCBSs), and
a set K of UEs K single-antenna user equipments (UEs) as
shown in Fig 1. Let B = {0, 1, · · · , B} denote the set of all
BSs in which index 0 refers to the MBS. We consider the
downlink transmission in which the traffic is generated from
the MBS to UEs via self-backhauled SCBSs and co-channel
time-division duplexing (TDD) protocol is considered. The
in-band wireless backhaul is used to provide backhaul among
base stations (BSs) and a full-duplex transmission protocol is
assumed at SCBS with perfect self-interference cancellation
[14]. Each BS is equipped with Nb transmitting antennas and
we denote the propagation channel between BS b and UE k

as h(b,k) =
√
NbΘ

1/2
(b,k)h̃(b,k) [3], where Θ(b,k) ∈ CNb×Nb

depicts the antenna spatial correlation, and the elements of
h̃(b,k) ∈ CNb×1 are independent and identically distributed
(i.i.d.) with zero mean and variance 1/Nb.

The network topology is modeled as a directed graph
G = (N ,L), where N = B ∪ K represents the set of nodes
including BSs and UEs. L = {(i, j)|i ∈ B, j ∈ N} denotes
the set of all directional edges (i, j) in which nodes i and j
are the transmitter and the receiver, respectively.

We consider a (stochastic) queuing network operating in
discrete time t ∈ Z+ [10]. There are F independent data at
the MBS. Each data traffic is destined for one UE, whereas
one UE receives multiple data streams, i.e., F ≥ K. Hereafter,
we refer to data traffic as data flow. We use F to represent the
set of F data flows. The MBS splits each flow f into multiple
sub-flows which are sent through a set of disjoint paths. The
traffic aggregation capability is assumed at the UEs [15].

We assume that there exits Zf number of disjoint routes
from the MBS to the UE for flow f . For any disjoint route
m = {1, · · · , Zf}, we denote Zmf as the route state, which
contains all route information such as topology and queue
states for every hop. Let Zf = {Z1

f , · · · ,Zmf , · · · Z
Zf

f }
denote route states observed by flow f . We use the flow-
split indicator vector zf = (z1

f , · · · , z
Zf

f ) to denote how the
MBS splits flow f , where zmf = 1 means path m is used to
send data for flow f . Otherwise, zmf = 0. Let N (o)

i denote
the set of the next hops from node i via a directional edge.
We denote the next hop of flow f from BS b as b(o)

f .
In addition, h =

(
h(i,j)|(i, j) ∈ L

)
consists of the

channel propagations and we denote pf(i,j) as the transmit

power of node i assigned to node j for flow f , such that∑
f∈F

∑
j∈N (o)

i
pf(i,j) ≤ P

max
i , where Pmax

i is the maximum
transmit power of node i. We have the power constraint as

P =

{
pf(i,j) ≥ 0, i, j ∈ N ,

∣∣∣ ∑
f∈F

∑
j∈N (o)

i

pf(i,j) ≤ P
max
i

}
. (1)

Vector p = (pf(i,j)|∀i, j ∈ N ,∀f ∈ F) denotes the transmit
power over all flows. Therefore, for a given channel state and
transmit power, the data rate in edge (i, j) over flow f can
be posted as a function of channel state and transmit power,
i.e., Rf(i,j)(h,p), such that

∑
f∈F R

f
(i,j) = R(i,j). We denote

R = (Rf(i,j)|∀i, j ∈ N ,∀f ∈ F) as a vector of data rates
over all flows.

Let Qfb (t) denote the queue length1 at BS b at time slot t
for flow f . The queue length evolution at the MBS b = 0 is

Qfb(t+1) =

[
Qfb(t)−

Zf∑
m=1,b

(o)
f ∈Z

m
f

zmf R
f

(b,b
(o)
f )

(t), 0

]+

+µf (t).

(2)
where µf (t) is the data arrival at the MBS during slot t, which
is independent and identical distributed (i.i.d.) over time with
a mean value µ̄f . Due to the disjoint paths, the incoming rate
at the SCBS is either from one SCBS or the MBS, which
is denoted as b(I). The queue evolution at the SCBS b =
{1, · · · , B} is given by

Qfb (t+ 1) ≤
[
Qfb (t)−Rf

(b,b
(o)
f )

(t), 0

]+

+Rf
(b(I),b)

(t). (3)

III. PROBLEM FORMULATION
Assume that the MBS determines routes to split data

flow f with a given probability distribution, i.e., πf =(
π1
f , · · · , π

Zf

f |πmf = Pr(zf = zmf )
)
. Here, πf is

the probability mass function (PMF) of the flow-split
vector, i.e.,

∑Zf

m=1 Pr(zmf ) = 1. We denote π =
{π1, · · · ,πf , · · · ,πF } ∈ Π as the global probability dis-
tribution of all flow-split vectors in which Π is the set
of all possible global PMFs. Let x̄f0 denote the achievable
average rate of flow f , where x̄f0 , lim

t→∞
1
t

∑t
τ=1 x

f
0 (τ)

and xf0 (τ) =
∑Zf

m=1,b
(o)
f ∈Z

m
f

E
[
zmf R

f

(b,b
(o)
f )

(τ)
]∣∣∣b = 0. We

assume that the achievable rate is bounded, i.e.,

0 ≤ xf0 (t) ≤ afmax, (4)

where afmax is the maximum achievable rate of flow f at every
time t. Vector x̄ = (x̄1

0, · · · , x̄F0 ) denotes the time average of
rates over all flows. Let R denote the rate region, which is
defined as the convex hull of the average rates, i.e., x̄ ∈ R.

We define U0 as a network utility function, i.e., U0 (x̄) =∑
f∈F U

(
x̄f0

)
. Here, U(·) is assumed to be a twice dif-

ferentiable, concave, and increasing L-Lipschitz function for
all x̄ ≥ 0. According to Little’s law [16], the queuing
delay is defined as the ratio of the queue length to the
average arrival rate. By taking into account the probabilistic
delay constraints for each flow/subflow, the following network
utility maximization (NUM) is formulated as:

1The queues at the UEs are assumed to be empty and to be removed
completely from network.



OP: max
π,x,p

U0(x̄) (5a)

subject to Pr

(
Qfb (t)

µ̄f
≥ β

)
≤ ε,∀t, f ∈ F , b ∈ B, (5b)

lim
t→∞

E
[
|Qfb |

]
t

= 0,∀f ∈ F ,∀b ∈ B, (5c)

x(t) ∈ R, (5d)
π ∈ Π, (5e)
and (1), (4),

where Pr(·) denotes the probability operator, β reflects the
maximum allowed delay requirement for UEs, and ε � 1
is the target probability for reliable communication. The
probabilistic delay constraint (5b) implies the probability that
the delay for each flow at node b is greater than β is very
small, which captures the constraints of ultra-low latency and
reliable communication. It is also used to avoid congestion for
each flow f at any point (BS) in the network, if the queue
length is greater than βµ̄f . More importantly, (5b) forces the
transmission of all BSs, and (5c) maintains network stability.

The above problem has a non-linear probabilistic constraint
(5b), which cannot be solved directly. Hence, we replace
the non-linear constraint (5b) with a linear deterministic
equivalent by applying Markov’s inequality [17]. In Markov’s
inequality, we have Pr(X ≥ a) ≤ E[X]/a for a non-negative
random variable X and a > 0. Thus, we relax (5b) as

E
[
Qfb (t)

]
≤ µ̄f εβ. (6)

Assuming that µf (t) follows a Poisson arrival process [17],
we derive the expected queue length in (2) for b = 0 as

E[Qfb (t)] = tµ̄f −
t∑

τ=1

∑
m=1,b

(o)
f ∈Z

m
f

πmf z
m
f R

f

(b,b
(o)
f )

(τ), (7)

and the expected queue length in (3), for each SCBS, i.e.,

E[Qfb (t)] =
t∑

τ=1

∑
m

πmf z
m
f

(
Rf

(b(I),b)
(τ)−Rf

(b,b
(o)
f )

(τ)

)
. (8)

Subsequently, combining the URLLC constraint (6) and (7),
we obtain, for the MBS b = 0,

µ̄f (t− εβ)−
t−1∑
τ=1

∑
m=1,b

(o)
f ∈Z

m
f

πmf z
m
f R

f

(b,b
(o)
f )

(τ)

≤
∑

m=1,b
(o)
f ∈Z

m
f

πmf z
m
f R

f

(b,b
(o)
f )

(t). (9)

Similarly, for each SCBS b = {1, · · · , B}, we have

− µ̄f εβ +

t−1∑
τ=1

∑
m

πmf z
m
f

(
Rf

(b(I),b)
(τ)−Rf

(b,b
(o)
f )

(τ)

)
≤
∑
m

πmf z
m
f

(
Rf

(b,b
(o)
f )

(t)−Rf
(b(I),b)

(t)

)
, (10)

by combining (6) and (8). With the aid of the above deriva-
tions, we consider (9) and (10) instead of (5b) in the original
problem (5). In practice, since the statistical information of
all candidate paths to decide πf ,∀ f ∈ F , is not available
beforehand, that would be very challenging when solving (5).
One solution is that paths are randomly assigned to each flow

which does not guarantee optimality, whereas applying the
high-complexity exhaustive search is not practical. Therefore,
in this work, we propose a low-complexity approach by
invoking the tools from Lyapunov stochastic optimization
which achieves the optimal performance without requiring the
statistical information beforehand.

IV. PROPOSED ALGORITHM

Let us start by rewriting (5) equivalently as [10]

RP: max
ϕ̄,π,p

U0 (ϕ̄) (11a)

subject to ϕ̄f0 − x̄
f
0 ≤ 0, ∀f ∈ F , (11b)

(1), (4), (5c), (5e), (9), (10),

where the new constraint (11b) is introduced to replace
the rate constraint (5d) with new auxiliary variables ϕ =(
ϕ1

0, · · · , ϕF0
)
. In (11b), ϕ̄ , lim

t→∞
1
t

∑t
τ=1 E [|ϕ(τ)|]. In

order to ensure the inequality constraint (11b), we introduce
a virtual queue vector Y f0 (t), which is given by

Y f0 (t+ 1) =
[
Y f0 (t) + ϕf0 (t)− xf0 (t)

]+
, ∀f ∈ F . (12)

Then, we write the conditional Lyapunov drift-plus-penalty
for slot t as

∆(Σ(t)) = E [L (Σ(t+ 1))− L (Σ(t)) |Σ(t)]− νU0 (ϕ̄) ,
(13)

where L(Σ(t)) , 1
2

[∑F
f=1

∑B
b=0Q

f
b (t)2 +

∑F
f=1 Y

f
0 (t)2

]
is the quadratic Lyapunov function of the queue backlogs
Σ(t) = (Q(t), Y(t)) [10]. Here, ν is a control parameter,
which is chosen to trade off utility optimality and queue
length. Note that the stability of Σ(t) assures that the con-
straints of problem (5c) and (11b) are held. Subsequently,
following the straightforward calculations of the Lyapunov
optimization which are omitted here for space, we obtain

(13) ≤
F∑
f=1

B∑
b=1

∑
m

πmf z
m
f Q

f
b

(
Rf

(b(I),b)
−Rf

(b,b
(o)
f )

)

−
F∑
f=1

∑
m=1,b

(o)
f ∈Z

m
f

πmf z
m
f Q

f
bR

f

(b,b
(o)
f )

∣∣∣b = 0(14)

+

F∑
f=1

[
Y f0 ϕ

f
0 − νU

(
ϕf0

)
− Y f0 x

f
0

]
+ Ψ.

Due to space limitation, we omit the details of the constant
value Ψ, which does not influence the system performance
[10]. The solution to (11) can be obtained by minimizing the
upper bound in (14), in which we have three decoupled sub-
problems as follows: The flow-split vector and the probability
distribution are determined by

SP1 : min
π,z

F∑
f=1

Ξf

subject to (5e),

where

Ξf =

B∑
b=1

∑
m

πmf z
m
f Q

f
b

(
Rf

(b(I),b)
−Rf

(b,b
(o)
f )

)
−

∑
m=1,b

(o)
f ∈Z

m
f

πmf z
m
f Q

f
bR

f

(b,b
(o)
f )

∣∣∣b = 0.

Then, we select the optimal auxiliary variables by solving the
following convex optimization problem



SP2: min
ϕ|z

F∑
f=1

[
Y f0 ϕ

f
0 − νU

(
ϕf0

)]
subject to ϕf0 (t) ≥ 0, ∀f ∈ F .

Let ϕf∗0 be the optimal solution obtained by the first order
derivative of the objective function of SP2. Assuming a loga-
rithmic utility function, we have ϕf∗0 (t) = max

{
ν

Y f
0

, 0
}
.

Finally, the rate allocation is done by assigning transmit
power, which is obtained by

SP3: min
x,p|z

F∑
f=1

−Y f0 x
f
0

subject to (1), (4), (9), (10).

A. Route Selection

To select the optimal routes in SP1, we leverage regret
reinforcement learning which exploits the historical system
information such as queue state and channel state [18]. The
intuition behind this approach is that the regret learning
method results in maximizing the long-term utility for each
flow, by leveraging stochastic optimization [10], which allows
to design the optimal utility-delay trade-off.

We denote umf = uf

(
zmf , z

−m
f

)
as an utility function of

flow f when using path m. The vector z−mf denotes the flow-
split vector excluding path m. The MBS probably chooses
more than one path to deliver data, from SP1, the utility gain
of flow f is

uf =
∑
m

umf = −Ξf .

To exploit the historical information, the MBS determines a
flow-split vector for each flow f from Zf based on the PMF
from the previous stage t− 1, i.e.,

πf (t− 1) =
(
π1
f (t− 1) , · · · , πmf (t− 1) · · · , πZf

f (t− 1)
)
.

(15)
Here, we define rf (t) = (r1

f (t) , · · · , rmf (t) · · · , rZf

f (t)) as a
regret vector of determining flow-split vector for flow f . The
MBS tends to determine the flow-split vector with highest
regret in which the mixed-strategy probability is given as

πmf (t) =

[
rmf (t)

]+
∑
m′∈Zf

[
rm

′
f (t)

]+ . (16)

We introduce the Boltzmann-Gibbs (BG) distribution,
βmf (r̃f (t)) to capture the exploitation and exploration for
efficient learning, given by

βmf (r̃f (t)) = argmax
πf∈Π

∑
m∈Zf

[
πmf (t) r̃mf (t)

−κfπmf (t) ln(πmf (t))
]
,

(17)

where r̃f (t) = (r̃1
f (t) , · · · , r̃mf (t) · · · , r̃Zf

f (t)) is the esti-
mated regret vector of flow f , and the trade-off factor κf is
used to balance between exploration and exploitation. If κb
is small, the SC selects zb with highest payoff. For κb →∞
all decisions have equal chance.

For given set of r̃f (t) and κf , we solve (17) to find the
probability distribution in which the solution determining the
disjoint routes for each flow f is given as

βmf (r̃f (t)) =

exp

(
1
κf

[
r̃mf (t)

]+)
∑

m′∈Zf

exp

(
1
κf

[
r̃m

′
f (t)

]+) . (18)

We denote ũ (t) as the estimated utility of
flow f at time instant t with action zf , i.e,
ũf (t) = (ũ1

f (t) , · · · , ũmf (t) · · · , ũZf

f (t)). In addition, ûf (t)
denotes the utility observed by flow f , i.e., ûf (t) = uf (t−1).
Finally, we propose the learning mechanism at each time
instant t as follows.

Learning procedure: The estimates of the utility, regret,
and probability distribution functions are performed, and are
updated for all actions as follows:
ũmf (t) = ũmf (t− 1) + ξf (t)I{zf=zm

f }

(
ûf (t)− ũmf (t− 1)

)
,

r̃mf (t) = r̃mf (t− 1) + γf (t)
(
ũmf (t)− ûf (t)− r̃mf (t− 1)

)
,

πmf (t) = πmf (t− 1) + ιf (t)
(
βmf (r̃f (t))− πmf (t− 1)

)
,

(19)
Here, ξf (t), γf (t), and ιf (t) are the learning rates which
are chosen to satisfy the convergence properties (please see
[18] for more details and convergence proof). Based on the
probability distribution as per (19), the MBS determines the
flow-split vector for each flow f as defined in Section III. Note
that the learning-aided route selection2 is performed in a long-
term period to ensure that the routes do not suddenly change
such that the SCBSs have enough time to release traffic from
the queues.

B. Rate Allocation

Consider Rf(i,j) = log(1 + pf(i,j)|g(i,j)(h)|2) as the trans-
mission rate, where the effective channel gain3 for mmWave
channels can be modeled as g(i,j)(h) =

g̃(i,j)(h)

1+Imax [5]. Here,
under the noise-limited regime of mmWave channels g̃(i,j)(h)
and Imax denote the normalized channel gain and the max-
imum interference, respectively [3]. Denoting the left hand
side (LHS) of (9) and (10) as Df

b for simplicity, the optimal
values of flow control x and transmit power p are found by
minimizing

min
x,p|z

F∑
f=1

−Y f
0 xf

0 (20a)

subject to 1 + pf
(0,0

(o)
f

)
|g

(0,0
(o)
f

)
|2 ≥ ex

f
0 ,∀f ∈ F , (20b)

1 + pf
(b,b

(o)
f

)
|g

(b,b
(o)
f

)
|2

1 + pf
(b(I),b)

|g(b(I),b)|2
≥ eD

f
b , ∀b ∈ Sf , f ∈ F ,

(20c)∑
f∈F

pf
(b,b

(o)
f

)
≤ Pmax

b ,∀b ∈ B, ∀f ∈ F . (20d)

The constraint (20c) is non-convex, and the LHS of (20c)
is an affine-over-affine function, which is jointly convex w.r.t
the corresponding variables [19], [11]. By exploiting the
hidden convexity of the problem, we propose an iterative
rate allocation based on the successive convex approximation

2Moreover, the routes are decided before transmission, which helps design-
ing smart beamforming and beam-allignment to achieve higher directional
gain, while mitigating interference.

3The effective channel gain captures the path loss, channel variations, and
interference penalty (Here, the impact of interference is considered small due
to highly directional beamforming and high pathloss for interfered signals at
mmWave frequency band.).
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Fig. 2: Information flow diagram of the learning-aided path
selection and rate allocation.

method. In this regard, we introduce the slack variable y to
(20c) and rewrite it as

2 + pf
(b,b

(o)
f )
|g

(b,b
(o)
f )
|2

2
≥

√√√√√√y2 +

pf(b,b(o)f )
|g

(b,b
(o)
f )
|2

2


2

,

(21)
y2

1 + pf
(b(I),b)

|g(b(I),b)|2
≥ eD

f
b . (22)

Here, the constraint (21) holds a form of the second-order
cone inequalities [11], while the LHS of constraint (22) is a
quadratic-over-affine function which is iteratively replaced by
the first order to achieve a convex approximation as follow

2yy(l)

1 + p
f(l)

(b(I),b)
|g(b(I),b)|2

−
y(l)2

(
1 + pf

(b(I),b)
|g(b(I),b)|2

)
(

1 + p
f(l)

(b(I),b)
|g(b(I),b)|2

)2 . (23)

Here, the superscript l denotes the lth iteration. Hence, we
iteratively solve the approximated convex problem of (20) as
Algorithm 1 in which the approximated problem is given as

min
x,p|z

F∑
f=1

−Y f0 x
f
0 (24)

subject to (20b), (4), (20d), (21), (23).

Finally, the information flow diagram of the learning-aided
path selection and rate allocation approach is shown in Fig.
2, where the rate allocation is executed in a short-term period.

Algorithm 1 Iterative rate allocation

Initialization: set l = 0 and generate initial points y(l).
repeat

Solve (24) with y(l) to get the optimal value y(l)?.
Update y(l+1) := y(l)?; l := l + 1.

until Convergence

V. NUMERICAL RESULTS

In this section, we provide numerical results by assuming
two flows from the MBS to two UEs, while the number

of available paths for each flow is four [12]. The MBS
determines two best routes from four most popular routes4.
Each route contains one or two relays, the one-hop distance is
varying from 50 to 100 meters. The maximum transmit power
of MBS and each SC are 43 dBm and 30 dBm, respectively.
The SC antenna gain is 5 dBi and the number of antennas
at each BS is Nb = 8. We assume that the traffic flow is
divided equally into two subflows, the arrival rate for each
sub-flow is varying from 2 to 5 Gbps. The path loss is
modeled as a distance-based path loss with the line-of-sight
(LOS) model5 for urban environments at 28 GHz with 1 GHz
of bandwidth [20]. The maximum delay requirement β and
the target reliability probability ε are set to be 10 ms and 5%,
respectively [6]. For the learning algorithm, the Boltzmann
temperature (trade-off factor) κf is set to 5, while the learning
rates ξf (t), γf (t), and ιf (t) are set to 1

(t+1)0.5
, 1

(t+1)0.55
, and

1
(t+1)0.6

, respectively [18].
Furthermore, we compare our proposed scheme with the

following baselines:
• Baseline 1 considers a general NUM framework [10]

with the best path learning function [18].
• Baseline 2 considers a general NUM framework [10]

and a random path section scheme, subject to (5b).
• Baseline 3 considers a general NUM framework [10]

and a random path section scheme.
• Single hop scheme: The MBS delivers data to UEs over

one single hop at long distance in which the probability
of LOS communication is low, and then the blockage
needs to be taken into account [20].

In Fig. 3, we report the average one-hop delay6 versus the
mean arrival rates µ̄. As we increase µ̄, baseline 3 vio-
lates the latency constraints, whereas our proposed algorithm
outperforms the other baselines. The average one-hop delay
of baseline 1 with learning outperforms baselines 2 and 3,
whereas our proposed scheme reduces latency by 50.64%,
81.32% and 92.9% as compared to baselines 1, 2, and
3, respectively, when λ = 4.5 Gbps. When λ = 5 Gbps,
the average delay of all baselines increases, violating the
delay requirement of 10 ms, while our proposed scheme is
robust to the latency requirement. Moreover, for throughput
comparison, we observe that as λ = 4.5 Gbps, our proposed
algorithm is able to deliver 4.4874 Gbps of average network
throughput per each subflow, while the baselines 1, 2, and 3
deliver 4.4759, 4.4682, and 4.3866 Gbps, respectively. Here,
the single hop scheme only delivers 3.55 Gbps due to the
blockage, which resulting in large delay.

In Fig. 4, we report the tail distribution (complementary
cumulative distribution function (CCDF)) of latency to show-
case how often the system achieves a delay greater than
the target delay levels. In contrast to the average delay, the
tail distribution is an important metric to reflect the URLLC
characteristic. For instance, at λ = 4.5 Gbps, by imposing
the probabilistic latency constraint, our proposed approach
ensures reliable communication with better guaranteed prob-
ability, i.e, Pr(Delay > 10ms) < 10−6. In contrast, baseline

4As studied in [12], it suffices for a flow to maintain at least two paths
provided that it repeatedly selects new paths at random and replaces if the
latter provides higher throughput.

5The probability of LOS communication is assumed to be high for one-
hop transmission, while the blockage channel is modeled for the baseline
with single-hop scheme.

6The average end-to-end delay can be defined as the sum of the average
one-hop delay of all hops.
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1 with learning violates the latency constraint with high
probability, where Pr(Delay > 10ms) = 8% and Pr(Delay >
25ms) < 10−6, while the performance of baselines 2 and 3
gets worse.

In Fig. 5, we report the tail distribution of one-hop latency
versus the guaranteed probability ε. By varying ε from 5%
to 15%, the system achieves a delay greater than the target
delay levels with higher probability. As can be seen in Fig. 5,
the probability that the system achieves a delay greater than
4 ms increases when increasing ε.

VI. CONCLUSION

In this paper, we have proposed a multi-hop scheduling to
ensure URLLC by incorporating the probabilistic latency con-
straint in 5G self-backhauled mmWave networks. In particu-
lar, the problem is modeled as a network utility maximization
subject to a probabilistic latency constraints with a guaranteed
probability and queue stability. We have proposed a dynamic
approach, which adapts to channel variations and system dy-
namics. We leverage the stochastic optimization to decouple
the studied problem into path selection and rate allocation.
Numerical results show that our proposed framework reduces
latency by 50.64% and 92.9% as compared to baselines with
and without learning, respectively.
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