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A New Cyclic Gradient Method Adapted to Large-Scale
Linear Systems

Qinmeng Zou∗ Frédéric Magoulès†

Abstract
This paper proposes a new gradient method to solve the large-scale problems. The-
oretical analysis shows that the new method has finite termination property for two
dimensions and converges R-linearly for any dimensions. Experimental results illus-
trate first the issue of parallel implementation. Then, the solution of a large-scale
problem shows that the new method is better than the others, even competitive with
the conjugate gradient method.

Keywords: gradient methods; linear systems; large-scale problems; Barzilai-Borwein
methods

1 Introduction
We are interested in investigating new gradient methods for the solution of linear system

Ax = b, (1)

where A ∈ Rn×n is symmetric positive definite (SPD) and b ∈ Rn. This problem is equivalent
to the minimization of a convex quadratic function

f(x) =
1

2
xᵀAx− bᵀx. (2)

Gradient methods generate a sequence of the form

xk+1 = xk − αkgk, k = 0, 1, . . . , (3)

where gk = Axk − b. It is well known that the steepest descent (SD) method [3] performs
poor in most cases, where the steplength can be written as follows

αSD
k =

gᵀkgk
gᵀkAgk

. (4)

The iterates generated tend to asymptotically alternate between two directions [1]. In con-
trast, the conjugate gradient (CG) method [11] is often the method of choice that will
terminate in at most n iterations. It is very attractive because of its high efficiency and low
storage requirement. Nonetheless, CG iteration depends strongly on the search of direction
calculation, i.e., any derivation such as round-off errors can seriously degrade performance
[9].

In the past several decades, a renewed interest for gradient methods has appeared since
Barzilai and Borwein [2] proposed two efficient nonmonotone steplengths

αBB1
k =

gᵀk−1gk−1

gᵀk−1Agk−1
. (5)
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αBB2
k =

gᵀk−1Agk−1

gᵀk−1A
2gk−1

. (6)

The motivation consists in approximating the Hessian and imposing some quasi-Newton
properties. Some theories and experiments have shown that BB methods have good per-
formance and are competitive with CG methods when low accuracy is required or small
perturbation exists [9]. The convergence has been proven by Raydan [19]. Furthermore,
Friedlander et al. [10] provided a general framework under the name of “gradient method
with retards” that SD and BB both belong to it, as well as several alternate methods pro-
posed later [4, 5, 21].

Motivated by the two-dimensional finite termination property, Yuan [20] provided a
somewhat complicated steplength

αY
k =

2√(
1

αSD
k−1

− 1
αSD
k

)2
+

4gᵀkgk
sᵀk−1sk−1

+ 1
αSD
k−1

+ 1
αSD
k

, (7)

where sk−1 = xk−xk−1. He gave two algorithms and some variants were investigated further
by Dai and Yuan [6]. Among these methods, the second variant (DY) is the most efficient
one according to the experiments in [6], where iterates are generated of the form

αDY
k =

{
αSD
k , k mod 4 < 2,

αY
k , otherwise.

(8)

In this paper, we address the properties of cyclic gradient methods, especially their
parallel behavior. We propose a new algorithm based on the Yuan steplength, which has
also the two-dimensional finite termination property. In the next section, we introduce
the cyclic gradient methods and propose our new steplength. In Section 3, we give the
convergence results of the new method. Some numerical results are presented in Section 4.
Finally, a concluding remark is shown in Section 5.

2 Cyclic Gradient Methods
Friedlander et al. [10] proposed an ingenious framework that gives rise to a great number
of potentially efficient algorithms. Firstly, assume that m ∈ N represents retard that allows
to employ the information from previous iterations. Let

k̄ = max{0, k −m}, (9)

then a collection of possible choices of steplength can be set as follows

αGMR
k =

gᵀτ(k)A
ρ(k)gτ(k)

gᵀτ(k)A
ρ(k)+1gτ(k)

, (10)

where
τ(k) ∈

{
k̄, k̄ + 1, . . . , k − 1, k

}
, (11)

and
ρ(k) ∈ {q1, . . . , qm} , qj ≥ 0, (12)

where k ∈ N. The next theorem summarizes the convergence result in [10].

Theorem 1 (Friedlander et al., 1999). Consider the linear system (1) with A ∈ Rn×n is
SPD and b ∈ Rn, where x∗ = A−1b is the exact solution. Consider the gradient method
(3) being used to solve (1) and the steplength αk given by (10). Then the sequence {xk}
converges to x∗ starting from any point x0.
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For a proof of the above theorem, see [10]. Incidentally, several potential algorithms
were provided therein, including the first cyclic gradient method under the name of cyclic
steepest descent (CSD) as suggested in [4], which can be summarized as follows

αCSD
k =

{
αSD
k , k mod m = 0,

αk−1, otherwise.
(13)

Notice that if we choose ρ(k) = 0 and τ(k) = k̄ + 1, . . . , k − 1, k, then (10) becomes CSD
method, which satisfies the Theorem 1. On the other hand, Dai [4] proposed a variant called
cyclic Barzilai-Borwein (CBB) method. They suggested that

αCBB
k =

{
αBB1
k , k mod m = 0,

αk−1, otherwise.
(14)

Similarly, if we choose ρ(k) = 0 and τ(k) = k̄, k̄ + 1, . . . , k − 1, then (10) becomes CBB
method.

Although these methods greatly speed up the convergence, their motivation is too straight-
forward to further accelerate the iterations, which relies on the nonmonotone property to
search the whole space without sink into any lower subspace spanned by eigenvectors [9].
This allows to reduce the gradient components more or less in the same asymptotic rate [6].

The recent literature showed that Yuan steplength may lead to efficient algorithms [20, 6].
All methods therein have two-dimensional finite termination property, i.e., if (8) is applied
to a linear system in two-dimensional space, then the algorithm will terminate in at most 3
iterations. In general, such property seems not attractive in practice. However, experiments
showed that they perform well in higher dimensions and are competitive with BB methods
for large-scale problems [6].

Inspired by the Yuan steplength, we suggest a simple way of modifying steepest descent
model to a cyclic gradient method. Consider a steplength of the form

αYB
k =

{
αSD
k , k mod 3 = 0 or 2,

αY
k , k mod 3 = 1.

(15)

Here we modify the order of SD and Y compared to the original YB formula, which is useful
for the development of the new algorithm. Apart from this change, (15) is indeed the second
algorithm propose by the pioneering work of Yuan [20]. It keeps the two-dimensional finite
termination property that performs as well as BB for large-scale problems and better for
small-scale problems. We could introduce simply the cyclic behavior based on (15) of the
form

∀m ∈ N, if k mod (3 +m) > 2, then αk = αk−1. (16)

Besides, we find that De Asmundis et al. [8] gives an interesting view about the iterations
of SD method, where the technique of alignment was proposed therein to force the gradi-
ents into one-dimensional subspace and avoid the zigzag pattern. Notice that the inverse
of constant Rayleigh quotient such as SD and BB steplengths has the similar property.
Thus, constant SD with retards can also give rise to the alignment behavior and keep the
nonmonotone benefit. To achieve this goal, we need to impose a repeat time to the zigzag
process. Meanwhile, we want to keep the process based on Yuan steplength in the first
several iterations. These motivations lead to a new method of the form

αCY
k =


αY
k , k mod (l +m+ 2) = 1,

αSD
k , k mod (l +m+ 2) < l + 2,

αk−1, otherwise,
(17)

where l ≥ 1 and m ≥ 1. Such formula seems complicated, but indeed easy to understand.
There are three components consisting in (17): the first SD and Y are used to insure the
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finite termination property; the parameter l acting on the second part of SD is used to
keep several zigzag iterations; finally, the retard term m induces alignment and provides
nonmonotone behavior to leap from the lower subspace.

3 Convergence Analysis
By the invariance property under any orthogonal transformation, we can assume without
loss of generality that

A = diag(λ1, . . . , λn), (18)

where
1 = λ1 ≤ · · · ≤ λn. (19)

We follow the convergence framework established by Dai [4] and adapt it to our method.
Let

G(k, µ) =

µ∑
i=1

g2i,k, (20)

where gi,k is the ith component of gk. A preliminary property is defined as follows.

Definition 2 (Property A). Suppose that matrix A has the form (18) with condition
(19) holds. If ∃ξ ∈ N, ∃M1,M2 > 0, such that ∀µ ∈ {1, . . . , n − 1}, ∀ε > 0, ∀j ∈
{0, . . . ,min{k, ξ} − 1},

• λ1 ≤ α−1
k ≤M1;

• if G(k − j, µ) ≤ ε and g2µ+1,k−j ≥M2ε, then α−1
k ≥

2
3λµ+1,

then the steplength αk has Property A.

The convergence framework of Dai can be deduced from Property A, stated as follows.

Theorem 3 (Dai, 2003). Consider the linear system (1) with A ∈ Rn×n of the form (18)
and b ∈ Rn. Consider the gradient method (3) being used to solve (1). If the steplength αk
has Property A, then the sequence {‖gk‖} converges to 0 R-linearly for any starting point
x0.

For a proof of the above theorem, see [4]. Many gradient methods have Property A as
mentioned in [4], e.g., the gradient method with retards (10). Inspired by the demonstration
therein, we now develop a convergence result for the CY method.

Theorem 4. Consider the linear system (1) with A ∈ Rn×n of the form (18) and b ∈ Rn.
Consider the gradient method (3) with steplength (17) being used to solve (1). Then the
steplength αCY

k has Property A.

Proof. Note that (17) has three alternate steplengths, whereas the SD updating process and
the constant process using the last SD steplength both follow the framework (10), which has
been proven to have the Property A [4]. Therefore, we only investigate the Yuan steplength.

Recall that Yuan steplength has the following property(
1

αSD
k−1

+
1

αSD
k

)−1

< αY
k < min

{
αSD
k−1, α

SD
k

}
, (21)

which is given in [20]. Hence,

λ1 ≤
1

αSD
k

<
1

αY
k

<
1

αSD
k−1

+
1

αSD
k

≤ 2λn. (22)
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Then the first condition of Property A holds by setting M1 = 2λn. For the second one, let
M2 = 2 and ξ = 1, which yields j = 0. Suppose that

G(k, µ) ≤ ε, g2µ+1,k ≥M2ε, (23)

for all µ ∈ {1, . . . , n− 1}, and ε > 0. Hence, the inverse of Yuan steplength becomes

1

αY
k

>
1

αSD
k

=
gᵀkAgk
gᵀkgk

=

∑n
i=1 λig

2
i,k∑n

i=1 g
2
i,k

≥
λµ+1

∑n
i=µ+1 g

2
i,k∑µ

i=1 g
2
i,k +

∑n
i=µ+1 g

2
i,k

≥ λµ+1∑µ
i=1 g

2
i,k

g2µ+1,k
+ 1

≥ λµ+1
ε
2ε + 1

=
2

3
λµ+1

(24)

Hence, the second condition of Property A is satisfied, which completes the proof.

4 Numerical Results
We first address the issue of parallel implementation. The dot product is engaged in the
computation of steplength, which is the major obstacle of parallelization. Here we have two
strategies to realize this goal. Let Ai be the band matrix stored in the ith processor. The
first one (Gather Algorithm, GA) is to gather the vector qi = Ai ∗g and execute dot product
with global vectors, shown as follows
Allgatherv(q, qi)
α = Dot(g, g) / Dot(g, q)

Then, the second one (Reduce Algorithm, RA) consists in computing the dot product locally,
shown as follows
ci = Dot(gi, qi)
Allreduce(c, ci, SUM)
α = Dot(g, g) / c

Besides, we can see that global gradient vector is used in each iteration that we must proceed
another Allgatherv function to communicate with other processor. Let p be the number of
processors. The two experiments are proceeded by Alinea [12] (see also, e.g., [17, 18, 16]) and
JACK [13, 15] (see also, e.g., [14]) and results are illustrated in Figures 1 and 2. We can see
that generally the results are not good because the first one imposes so much computation
and communication load, while the second one causes indeed the problem of loss of precision.
These problems exist in all projection methods and by now we have not yet managed to find
a solution.

The second experiments are proceeded by Matlab R2017b with a large-scale problem
provided by The SuiteSparse Matrix Collection [7], with n = 50000 and 349968 non-zero
values. All parameters are chosen under a training problem given in [2], such that l = 4,m =
3 for CY, m = 3 for CSD, and m = 4 for CBB. Average results are shown in Table 1. We
use bold numbers indicating the most efficient algorithms under each residual threshold.
Backslash represents a number of iterations more than 10000. From Table 1, we see that the
CY method performs better than other methods except CG. Although we do not yet beat
CG in high precision, our method is still competitive in most cases. Specifically, we can see
that CY is stable throughout the iterations and much better than CG when low accuracy is
required.
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Figure 1: Parallel CY method with GA implementation
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Figure 2: Parallel CY method with RA implementation

Table 1: Gradient methods with different residual threshold

10−1 10−2 10−3 10−4 10−5 10−6

CG 58 735 2617 4251 5786 7535

CY 13 208 1153 4275 6181 \

CSD 27 212 1470 4357 6713 \

CBB 31 241 1965 7534 \ \

DY 15 200 1595 6415 \ \

BB1 356 984 2494 4612 8633 \

SD 61 5773 \ \ \ \
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5 Conclusions
In this paper, we have proposed a new gradient method and shown that it is very com-
petitive with CG method and better than the others for large-scale problems. However, it
is still lack of theoretical evidence supporting such results. It is also important to find a
better parallelization strategy. Therefore it still remains to study the properties and high
performance implementation of gradient methods.
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