
HAL Id: hal-01964246
https://centralesupelec.hal.science/hal-01964246v1

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence Detection of Asynchronous Iterations
Based on Modified Recursive Doubling

Qinmeng Zou, Frédéric Magoulès

To cite this version:
Qinmeng Zou, Frédéric Magoulès. Convergence Detection of Asynchronous Iterations Based
on Modified Recursive Doubling. 17th International Symposium on Distributed Computing
and Applications for Business Engineering and Science (DCABES), Oct 2018, Wuxi, China.
�10.1109/dcabes.2018.00081�. �hal-01964246�

https://centralesupelec.hal.science/hal-01964246v1
https://hal.archives-ouvertes.fr

Convergence Detection of Asynchronous Iterations
based on Modified Recursive Doubling

Qinmeng Zou∗ Frédéric Magoulès†

Abstract
This paper addresses the distributed convergence detection problem in asynchronous
iterations. A modified recursive doubling algorithm is investigated in order to adapt to
the non-power-of-two case. Some convergence detection algorithms are illustrated based
on the reduction operation. Finally, a concluding discussion about the implementation
and the applicability is presented.

Keywords: recursive doubling; asynchronous iterations; convergence detection; message
passing interface

1 Introduction
Consider the following linear system

Ax = b,

where A ∈ Rn×n and b ∈ Rn. A splitting

A = M −N,

yields an iterative scheme
xk+1 = Txk + c,

where k ∈ N, T = M−1N and c = M−1b. Generally, this scheme is well suited for parallel
computing of the form

xk+1
i = Tix

k + ci, i ∈ {1, . . . , p},

where p is the number of processors. Here, xi and ci might be two values or two smaller
vectors. Similarly, Ti might be a row vector or a smaller matrix. They are distributed in
different processors. However, a specific point is required at the end of each iteration to
synchronize between the processors. The waste of time may be significant in the case of
unbalanced working load and node failure, which gives rise to the asynchronous iterative
methods. The asynchronous iterative scheme has been proposed by Chazan and Miranker
[4] for the solution of linear equations and generalized by several researchers (see, e.g.,
[17, 1, 5, 2]) for the general problem

xk+1 = f
(
xk
)
,

where f is a fixed point mapping. The asynchronous iterative scheme is shown as follows

xk+1
i =

{
fi
(
x
τi,1,k
1 , . . . , x

τi,p,k
p

)
, i ∈ P k,

xki , i /∈ P k,

where τi,j,k ≤ k is a sequence of iterations with retards for each element j in each processor i,
and P k ⊂ {1, . . . , p} is a sequence of subsets of processor numbers. In this case, processors
∗CentraleSupélec, Université Paris-Saclay, France.
†CentraleSupélec, Université Paris-Saclay, France (correspondence, frederic.magoules@hotmail.com).

Preprint May 30, 2018

are not required to wait for receiving all messages and allowed to keep on their own pace.
We often add the following conditions to better investigate the chaotic process{∣∣{k ∈ N | i ∈ P k

}∣∣ = +∞, ∀i ∈ {1, . . . , p},
lim

k→+∞
τi,j,k = +∞, ∀i, j ∈ {1, . . . , p},

where |.| is the cardinality of a set that measures the number of elements. It means that no
processors should be abandoned forever and more and more recent values should be used.

Asynchronous iterative algorithms must terminate after a finite number of iterations, as
suggested in [19]. Thus, a practical implementation involves a set of admissible solutions S,
such that

x∗ ∈ S,

where x∗ is a solution vector. We would like to find a vector x̄ established by the components
from each processor, and we have to evaluate x̄ ∈ S. If true, then x∗ = x̄; otherwise, continue
the computation, as well as the evaluation. Thus, the termination condition can be expressed
by a residual evaluation

‖f (x̄)− x̄‖ < ε, ε > 0,

where ‖.‖ is a norm, ε is a well-chosen threshold. x̄ is given as an arbitrary combination of
local components

x̄ =
(
xk11 , . . . , x

kp
p

)
, k1, . . . , kp ∈ N.

The major problem of termination detection is how to collect xkii and execute the evaluations.
Recently, several developments for the asynchronous iterations have been proposed in dif-

ferent domains, such as domain decomposition methods [14, 15, 13], convergence detection
methods [18, 11], and programming libraries [10, 12]. In this paper, we propose a modified
recursive doubling algorithm applied to the non-blocking collective communication, which is
addressed in the next section. In Section 3, we present some convergence detection strate-
gies based on our new method. Finally, further discussion is given in Section 4 about the
implementation and performance.

2 Modified Recursive Doubling
Recall that p is the number of processors. We define a µ0 ∈ N such that

p0 = 2µ0 ≤ p < 2µ0+1,

where p0 denotes a pivot. Note that for the parallel iterative methods, the Allreduce func-
tion is very useful because we need to collect residual values from different processors. For
the asynchronous iterations, however, the collective operations should be not only efficient,
but also performed in a non-blocking way.

Traditional recursive doubling (see, e.g., [20]) is one of the possible algorithms for the
Allreduce function. It involves a power-of-two number of processors, which adapts only
to some special situations. We consider a modified version of recursive doubling, in which
a backward shift and a forward shift are required in the general case. The first step is
sending data from the extra processors to the first several processors, called backward shift,
illustrated in Figure 1. During this process, we proceed the corresponding arithmetical oper-
ations, such as summation, maximization, and minimization. Then, the recursive doubling
algorithm is proceeded only within the power-of-two processors to exchange data and exe-
cute reduction operation as shown in Figure 2. Finally, a forward shift is proceeded to send
back the final data to the extra processors as illustrated in Figure 3, which is indeed the
inverse operation of the first shift.

Asynchronous iterations require non-blocking communication, which can be implemented
is several ways. For example, we might prefer to create a new thread for a desired collective

2

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 1: Backward shift

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 2: Recursive doubling

P0 P1 P2 P3 P9 P8 P7 P6 P5 P4

Figure 3: Forward shift

function, and then design its behavior by some external interface functions; we could also
create a state-based interface that should be invoked repeatedly in user applications, in which
some lightweight functions act as different states in the life cycle of a collective operation.
Here, we adopt the latter and give an example of state diagram depicted in Figure 4, which
implements a non-blocking Allreduce function. From the picture, we can see that each
cycle begins with the backward shift operation. If the rank of processor belongs to the
extra range, it sends data and enters into the forward shift state. In other cases, the relative
processors must enter into the updating loop, which involves all the processors having a rank
smaller than the pivot p0. Finally, a forward shift process is executed to gather the final
results to the non-power-of-two processors. Notice that the first several processors within
the exponential area engage as well in the shift subroutines.

The amount of data exchanged by each processor depends on the way of collecting
residual values. We need exactly log p0 + 2 steps to finish a cycle in the synchronous case. If
there is only a floating point residual value being exchanged in each processor, then totally
p0 log p0 + 2(p− p0) data are exchanged in each cycle. In asynchronous mode, this number
keeps the same. However, processors wait no longer the others and conduct iterations on
their own pace.

3 Convergence Detection Algorithms
We could also develop other collective operations based on the backward-forward recursive
doubling algorithm. In practice, however, these functions are rarely used in the context
of asynchronous iterations because we expect to exploit the most recent values as much as

3

BackwardShiftStart

BackwardShiftEnd
Handling shift msg.

reception

UpdateStart
Handling recursive msg.

reception

UpdateEnd

[i < p - p0]

when (recursive msg. received) /
Perform collective op.

j = j + 1

/ j = 0

Finalize

ForwardShift
Handling shift msg.

reception

when (shift msg. received) /
Perform collective op.

[else]

[i >= p0] /
Send shift msg.

when (shift msg. received)

/ Send recursive msg.

[else] [j < μ0]

[i < p - p0] /
Send shift msg.

[else]

Figure 4: Statechart of a non-blocking Allreduce function

possible, which favors the point-to-point operations like Send and Recv functions. On the
other hand, the residual collection requires intrinsically an Allreduce operation. Therefore,
we address the convergence detection problem in terms of the non-blocking reduction.

We consider first an inexact residual collection strategy that involves only the Allreduce
function, depicted as follows.
res_norm = res_thresh
res_loc = res_thresh
res_glb = res_thresh
flag = 1
while res_norm ≥ res_thresh do
zi = xi
Compute(xi, Ai, bi, x)
Send(xi)
Allreduce(res_glb, res_loc, flag)
if flag then
res_norm = res_glb
res_loc = ‖xi − zi‖∞
flag = 0

end if
Recv(x)

end while
We mention here that although such algorithm is not exact, it might be efficient due to the
simplicity and still has an acceptable precision. In the algorithm, we take the maximum

4

norm as an example to compute residual and omit some function parameters, e.g., the arith-
metic operation of reduction. Unlike the message-passing standard [16], our implementation
is based on the state that requires the function invocation repeatedly, not just a request
handler. The Compute function could be any appropriate iterative algorithm, such as Jacobi
method or gradient method (see, e.g., [2]). This is inexact because res_loc might not be
monotone all over the iterations. Sometimes global residual indicates a convergence signal
but local residual rises instead due to the retard term.

Now we give a second version that leads to an exact solution in view of the residual
collection, shown as follows.
res_norm = res_thresh
sflag = 1
eflag = 0
while res_norm ≥ res_thresh do
Compute(xi, Ai, bi, x)
Send(xi)
if sflag then
Snapshot(x̄, xi, eflag)
if eflag then
zi = x̄i
Compute(x̄i, Ai, bi, x̄)
res_loc = ‖x̄i − zi‖∞
sflag = 0
eflag = 0

end if
else
Allreduce(res_glb, res_loc, eflag)
if eflag then
res_norm = res_glb
sflag = 1
eflag = 0

end if
end if
Recv(x)

end while
This algorithm involves a distributed snapshot process that generates a consistent solution
buffer [3] (see also, e.g., [19, 11]). The snapshot algorithm first sends xi to the processors
that depend on xi. In this situation, we call them dependent neighbors; then, processor i
begins to wait for the necessary data from some other processors, which are called essential
neighbors [2]; finally, it returns a collection of essential data that are used for the residual
computation. Here we simplify the process by assuming that the communication follows an
“all-to-all” pattern, which implies that both dependent neighbors and essential neighbors are
all the other processors so that they are the same. For the general case, the algorithm would
be similar. We first set sflag = 1 to enable snapshot process. Then, we compute res_loc
when snapshot finishes and set all sflag = 0, which enables the reduction process. Finally,
Allreduce is called repeatedly that is exactly the first algorithm, except that this time we
keep a set of consistent data that provides an exact result.

4 Further Discussion
In this section we first discuss the implementation issue of the convergence detection algo-
rithms. Here we take the message passing interface (MPI) standard as an example. Notice
that in order to implement a non-blocking function, we should execute the relative in-
structions in an independent thread, which involves an explicit construction or an implicit

5

10 20 30 40 50 60 70 80

p

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ti
m

e

Figure 5: Asynchronous iterations in a concentrated environment

invocation. We choose the latter and invokes the non-blocking point-to-point instructions to
exchange messages. We can use the external interface functions to generate a non-blocking
function under the name of generalized requests. In current version, the two main functions
are MPI_Grequest_start and MPI_Grequest_complete. In the next version, these functions
will be redefined in order to provide a more flexible interface.

Notice that if the number of processors falls on the power-of-two case, the iterations in
Figure 4 will jump over all the shift steps appropriately. Such case has been proven very
efficient in several situations [20], whereas our algorithm can benefit from it as well. On the
other hand, our Send operation is implemented in a blocking mode because it causes rarely
a negative impact in practice on the efficiency. We could avoid wasting time by switching it
to non-blocking mode without changing so much codes.

Finally, we mention here that our algorithm is suitable for a relatively “close” distributed
environment; otherwise, there might be a great deal of communication operations exchang-
ing data between long-distance nodes, which increases the transfer time. In such case, a
tree-based algorithm is preferred. However, asynchronous iterations may not exhibit ad-
vantages in a completely local cluster, even perform sequentially like synchronous scheme
with much more ongoing messages. Consider a two-point boundary value problem with an
asynchronous relaxation solver [4]. We implement the mathematical operations by Alinea
[6] and the asynchronous iterations by JACK [12], which have been proven very efficient for
the large-scale scientific computing [7, 8, 9]. The finite difference scheme is adopted for the
discretization. The matrix dimension n = 10000 and b is chosen arbitrarily from −10 to
10. Results are shown in Figure 5. We observe that the iteration curve shows synchronous
behavior that exists a bottleneck within a specific range of processors. The experiment was
performed on a cluster of Intel Xeon CPU E5-2670 v3, connected by FDR Infiniband network
with 56 Gbit/s, which is concentrated and favors synchronous iterations. Furthermore, an
“all-to-all” algorithm generates huge amounts of messages in the asynchronous mode, which
makes the network too messy to be efficient. In this case, we prefer the traditional syn-
chronous iterative scheme, even for large-scale parallel computing.

6

Acknowledgment
This work was supported by the French national programme LEFE/INSU and the project
ADOM (Méthodes de décomposition de domaine asynchrones) of the French National Re-
search Agency (ANR).

References
[1] G. M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–

244, 1978.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[4] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications,
2(2):199–222, 1969.

[5] M. N. El Tarazi. Some convergence results for asynchronous algorithms. Numerische
Mathematik, 39(3):325–340, 1982.

[6] F. Magoulès and A.-K. Cheik Ahamed. Alinea: An advanced linear algebra library
for massively parallel computations on graphics processing units. The International
Journal of High Performance Computing Applications, 29(3):284–310, 2015.

[7] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Auto-tuned Krylov methods
on cluster of graphics processing unit. International Journal of Computer Mathematics,
92(6):1222–1250, 2015.

[8] F. Magoulès, A.-K. Cheik Ahamed, and R. Putanowicz. Optimized Schwarz method
without overlap for the gravitational potential equation on cluster of graphics processing
unit. International Journal of Computer Mathematics, 93(6):955–980, 2015.

[9] F. Magoulès, A.-K. Cheik Ahamed, and A. Suzuki. Green computing on graphics pro-
cessing units. Concurrency and Computation: Practice and Experience, 28(16):4305–
4325, 2016.

[10] F. Magoulès and G. Gbikpi-Benissan. JACK: an asynchronous communication kernel
library for iterative algorithms. The Journal of Supercomputing, 73(8):3468–3487, 2017.

[11] F. Magoulès and G. Gbikpi-Benissan. Distributed convergence detection based on global
residual error under asynchronous iterations. IEEE Transactions on Parallel and Dis-
tributed Systems, 29(4):819–829, 2018.

[12] F. Magoulès and G. Gbikpi-Benissan. JACK2: An MPI-based communication library
with non-blocking synchronization for asynchronous iterations. Advances in Engineering
Software, 119:116–133, 2018.

[13] F. Magoulès, G. Gbikpi-Benissan, and Q. Zou. Asynchronous iterations of Parareal
algorithm for option pricing models. Mathematics, 6(4):1–18, 2018.

[14] F. Magoulès, D. B. Szyld, and C. Venet. Asynchronous optimized Schwarz methods
with and without overlap. Numerische Mathematik, 137(1):199–227, 2017.

[15] F. Magoulès and C. Venet. Asynchronous iterative sub-structuring methods. Mathe-
matics and Computers in Simulation, 145:34–49, 2018.

7

[16] Message Passing Interface Forum. MPI: A message passing interface standard. Inter-
national Journal of Supercomputer Applications, 8(3/4):159–416, 1994.

[17] J.-C. Miellou. Algorithmes de relaxation chaotique à retards. ESAIM: Mathematical
Modelling and Numerical Analysis, 9(R1):55–82, 1975.

[18] J.-C. Miellou, P. Spiteri, and D. El Baz. A new stopping criterion for linear per-
turbed asynchronous iterations. Journal of Computational and Applied Mathematics,
219(2):471–483, 2008.

[19] S. A. Savari and D. P. Bertsekas. Finite termination of asynchronous iterative algo-
rithms. Parallel Computing, 22(1):39–56, 1996.

[20] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication
operations in MPICH. The International Journal of High Performance Computing
Applications, 19(1):49–66, 2005.

8

	Introduction
	Modified Recursive Doubling
	Convergence Detection Algorithms
	Further Discussion

