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Abstract

The present study concerns a frequency domain approach in the stability analysis
and stabilization via reduced-order controller design for linear time-invariant retarded
Time-delay systems. More precisely, we address the problem of the spectral abscissa
characterization and the coexistence of non oscillating modes for such functional differ-
ential equations. The design approach we propose is merely a delayed-output-feedback
where the candidates’ parameters result from the manifold defined by the coexistence
of an exact number of negative spectral values, which guarantees the asymptotic sta-
bility of the system’s solutions. The dominancy of such non oscillating modes is an-
alytically shown for the considered reduced order Time-delay systems. Finally, using
the W-Lambert function, further description of the spectrum distribution is presented.
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1 Introduction

Investigation of dynamical systems with time-delay is an active research area that connects
a wide range of scientific disciplines including mathematics, physics, engineering, biology,
economics etc. The present paper focuses on stability and stabilizing-controllers design for
linear time-invariant retarded time-delay systems. The study of conditions on the equation
parameters that guarantees the exponential stability of solutions is a question of ongoing
interest and remains an open problem especially when the systems are of high order or
having multiple and/or distributed delays. In particular, in frequency-domain, the problem
reduces to the analysis of the distribution of the roots of the corresponding characteristic
equation, see for instance [2, 12, 30, 27, 15, 19, 21, 26].

The starting point of the present work is an interesting property, discussed in recent
studies, called multiplicity induced-dominancy. As a matter of fact, it is shown that multiple
spectral values for Time-delay systems can be characterized using a Birkhoff/Vandermonde-
based approach; see for instance [5, 4, 3, 10]. More precisely, in [4], it is shown that the
admissible multiplicity of the zero spectral value is bounded by the generic Polya and
Szegö bound denoted PSB , which is nothing but the degree of the corresponding quasipoly-
nomial (i.e the number of the involved polynomials plus their degree minus one), see for
instance [22]. In [5], it is shown that a given crossing imaginary roots with non vanishing
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frequency never reaches PSB and a sharper bound for its admissible multiplicities is estab-
lished. Moreover, in [10], the variety corresponding to a multiple root for scalar Time-delay
equations defines a stable variety for the steady state. The multiplicity of a root itself is
not important as such but its connection with the dominancy of this root is a meaningful
tool for control synthesis. An example of a scalar retarded equation with two delays is
studied in [5] where it is shown that the multiplicity of real spectral values may reach the
PSB . In addition, the corresponding system has some further interesting properties: (i) it
is asymptotically stable, (ii) its spectral abscissa (rightmost root) corresponds to this maxi-
mal allowable multiple root located on the imaginary axis. Such observations enhanced the
outlook of further exhibiting the existing links between the maximal allowable multiplicity
of some negative spectral value reaching the quasipolynomial degree and the stability of the
trivial solution of the corresponding dynamical system. This property induced from multi-
plicity appears also in optimization problems since such a multiple spectral value is nothing
but the rightmost root, see also [28, 18]. Also notice that the property was already observed
in [24], where a tuning strategy is proposed for the design of a delayed Proportional-Integral
controller by placing a triple real dominant root for the closed-loop system. However, the
dominancy is only checked using a Mikhailov curve and QPmR toolbox, see for instance
[29]. To the best of our knowledge, the first time an analytical proof of the dominancy
of a spectral value for the scalar equation with a single delay was presented in [17]. The
dominancy property is further explored and analytically shown in the case of second-order
systems and a rightmost root assignment based design using delayed state-feedback is pro-
posed in [7, 9] where its applicability in damping active vibrations for a piezo-actuated
beam is proved. See also [8, 6] which exhibit an analytical proof for the dominancy of the
spectral value with maximal multiplicity for second-order systems controlled via a delayed
proportional-derivative controller.

By this paper, we would like to extend such an analytical characterization of the spectral
abscissa for retarded time-delay system with real spectral values which are not necessarily
multiple. The effect of the coexistence of such non oscillatory modes on the asymptotic
stability of the trivial solution will be explored. In particular, the coexistence of PSB real
spectral values makes them rightmost-roots of the corresponding quasipolynomial. Further-
more, if they are negative, this guarantees the asymptotic stability of the trivial solution.
The study of oscillatory/non oscillatoty solutions of delay differential equation has been the
focus of numerous contributions, see for instance [1, 2, 13], and [14] where the strongest
deal is with linear delay differential equations with constant coefficients and constant delay.
In this case necessary and sufficient conditions are given for all solutions to be oscillatory,
for the case of non constant coefficient and non constant delay and for nonlinear equations,
typical results give conditions sufficient for all solutions to be oscillatory, or conditions
sufficient for some solutions to be non oscillatory see for instance [31] and [16].

The remaining paper is organized as follows; in Section 2 we recall some important facts
on the spectrum distribution for retarded Time-delay systems. Section 3 is dedicated to
investigate the coexistence non oscillatory modes for the scalar differential equation with
a single delay. In Section 4 second order delay equation with three real spectral values is
considered. In Section 5, some concluding remarks ends the paper.
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2 Prerequisites and Problem Statement

In this section, we present some important facts and properties of the spectrum distribution
of Time-delay systems. Let consider the generic n-order system with a single time delay:

ẋ(t) = A0x(t) +A1x(t− τ). (2.1)

Here τ is a positive constant delay and the matrices Aj ∈ Mn(R) for j = 0 . . . 1. It is
well known that the asymptotic behavior of the solutions of (2.1) is determined from the
spectrum designating the set of the roots of the associated characteristic function (denoted
in the sequel ∆(s, τ)). Namely, the characteristic function corresponding to system (2.1) is
a quasipolynomial ∆ : C× R+ → C of the form:

∆(s, τ) = det(sI −A0 −A1e−τs). (2.2)

Asymptotic stability of the trivial solution and oscillatory behavior of (2.1) are known. In
particular, the zero solution of this equation is asymptotically stable if and only if all roots
of (2.2) lie in the left half plane, and all solutions of (2.1) are non oscillatory if and only if
(2.2) have a real roots.

We start by introducing a proposition which plays an important role in the study of
continuity properties of the spectrum of retarded Time-delay systems. For more details see
[19, page 10].

Proposition 1 ([19]). If s is a spectral value corresponding to system (2.1) then it satisfies

|s| ≤ ‖A0 +A1e
−sτ‖2. (2.3)

The above proposition allows to construct an envelope curve around the characteristic
roots of the quasipolynomial (2.2).

The following result was first introduced and claimed in the problems collection pub-
lished in 1925 by G. Pólya and G. Szegö. In the fourth edition of their book [22, Problem
206.2, page 144 and page 347], G. Pólya and G. Szegö emphasize that the proof was ob-
tained by N. Obreschkoff in 1928 using the principle argument, see [20]. Such a result gives a
bound for the number of quasipolynomial’s roots in any horizontal strip. As a consequence,
a bound for the number of quasipolynomial’s real roots can be easily deduced.

Theorem 1 ([22]). Let τ1, . . . , τN denote real numbers such that τ1 < τ2 < . . . < τN and
d1, . . . , dN positive integers such that d1 + d2 + . . . + dN = D. Let fi,j(s) stand for the
function fi,j(s) = si−1 exp(τjs), for 1 ≤ i ≤ dj and 1 ≤ j ≤ N . Let ] be the number of
zeros of the function

f(s) =
∑

1≤j≤N
1≤i≤dj

ci,jfi,j(s) (2.4)

that are contained in the horizontal strip α ≤ Im(z) ≤ β. Assuming that

∑

1≤k≤d1
|ck,1| > 0 and

∑

1≤k≤dN
|ck,N | > 0
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then

(τN − τ1)(β − α)

2π
−D + 1 ≤ ] ≤ (τN − τ1)(β − α)

2π
+D +N − 1. (2.5)

Setting α = β = 0, the above theorem yields ]PS ≤ D+N−1 where D stands for the sum of
the degrees of the polynomials involved in the quasipolynomial function f and N designates
the associated number of polynomials. This gives a sharp bound for the number of fs real
roots.

3 On the coexistence of real spectral value and their
dominancy for scalar delay equation

Consider the simple scalar differential equation with one delay representing a biological
model discussed by K.L.Cooke in [11]. It describes a vector disease dynamics where the
infected host population x(t) is governed by:

ẋ(t) + ax(t) + bx(t− τ) = 0, (3.1)

here b > 0 designates the contact rate between infected and uninfected populations and it
is assumed that the infection of the host recovery proceeds exponentially at a rate b > 0,
see also [25] for more insights on the modeling and stability results.
The characteristic equation associated to (3.1) is as follows:

∆(s, τ) := s+ a+ b exp(−sτ) = 0. (3.2)

Theorem 2. For a given delay τ > 0, the system (3.1) admits two distinct real spectral
values at s = s2 and s = s1, with s2 < s1, if and only if





a = a(s1, s2, τ) :=
s2 exp(−s1τ)− s1 exp(−s2τ)

exp(−s2τ)− exp(−s1τ)
;

b = b(s1, s2, τ) :=
s1 − s2

exp(−s2τ)− exp(−s1τ)
.

(3.3)

• Moreover, both spectral values s2 and s1 of (3.1) are negative, if and only if equation

a(s1, s2, τ) = 0

is solvable with respect to τ > 0. Furthermore, the zero solution of (3.1) is asymptot-
ically stable.

• The spectral value s1 is nothing but the spectral abscissa corresponding to (3.1).

Proof. According to the Theorem 1, see also [22], the number of real roots for (3.2) is two,
hence we are interested to investigate the existence of two distinct negative spectral values,
s2 and s1 with s2 < s1. The values of a and b are calculated by solving the system:

{
s2 + a+ b exp(−s2τ) = 0;
s1 + a+ b exp (−s1τ) = 0.

(3.4)
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We obtain immediately the values of a and b given in (3.3), as functions of s2 and s1 and
τ . These values are unique for each fixed τ > 0. Observe that b(s1, s2, τ) > 0 for every
τ > 0, while the parameter a(s1, s2, τ) changes the sign according to the delay τ and the
position of s1 and s2 on the real line. On the other hand, both s1 + a and s2 + a are not
null, otherwise, b = 0 and then s1 = s2. Which is impossible. Now, from (3.4), we have

s1 + a

s2 + a
= exp(−τ(s1 − s2)).

This means that s2 + a and s1 + a have necessarily same sign, and the following expression
of τ :

τ = − ln(s1 + a)− ln(s2 + a)

s1 − s2
(3.5)

is well-defined. Applying the Mean Value Theorem to the function t 7→ ln (t+ a), t ∈ [s2, s1].
This ensures the existence of c ∈]s2, s1[ such that

τ = − 1

c+ a
. (3.6)

Since τ > 0 so c + a < 0. Consequently s2 + a < a + c < 0. This means that s2 < −a.
Likewise for s1, since sign(s1 + a) = sign(s2 + a), we get s1 < −a.

To show the negativeness of s1, we use the variations of the mapping τ 7→ a(s1, s2, τ).
An easy calculation shows that a is a continuous function with respect to τ , and increasing
from −∞ to −s1. So, if equation a(s1, s2, τ) = 0 admits a root τ∗∗ > 0, then such root is
necessarily

τ∗∗ =
ln |s2| − ln |s1|

s1 − s2
(3.7)

and a(s1, s2, τ) ≥ 0 holds for all τ ≥ τ∗∗. Consequently, we get s1 < 0. The converse
implication is obvious.

The study of the stability of the system (3.1) is based on the dominancy of s1. To do
this, we use an adequate factorization of the quasipolynomial ∆(s, τ) from the characteristic
equation (3.2). This later can be written as follows:

∆(s, τ) = (s− s1)

(
1− (a+ s1)− exp(−(s− s1)τ)

s− s1

)

= (s− s1)

(
1− (a+ s1)

(− exp(−(s− s1)τ)

s− s1
+

1

s− s1

))
.

(3.8)

Thus,

∆(s, τ) = (s− s1)

(
1− τ(a+ s1)

∫ 1

0

exp(−τ(s− s1)t)dt

)
. (3.9)

To prove that s1 is the right most root (dominancy), we assume that there exists some
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s0 = ζ + jη, a root of (3.2) such that ζ > s1. Then

1 = τ(a+ s1)

∫ 1

0

exp(−τ(s0 − s1)t)dt

= Re

(
τ(a+ s1)

∫ 1

0

exp(−τ(ζ + jη − s1)t)dt)

)

≤ τ |a+ s1|
∣∣∣∣∣

∫ 1

0

exp(−τ(ζ + jη − s1)t)dt

∣∣∣∣∣

≤ τ |a+ s1|
∫ 1

0

exp(−τ(ζ − s1)t)dt. (3.10)

From (3.6), we have

τ <
1

−(a+ s1)
=

1

|a+ s1|
. (3.11)

Thus
τ | a+ s1 |< 1. (3.12)

Moreover, since ζ − s1 > 0, we have

∫ 1

0

exp(−τ(ζ − s1)t)dt < 1. (3.13)

Inequality (3.10) can not be satisfied simultaneously with (3.12) and (3.13). Which proves
that the hypothesis ζ > s1 is inconsistence. So s1 is the spectral abscissa corresponding to
(3.1), guarantying the asymptotic stability of the system (3.1).

Remark 1. Theorem 2 shows that the co-existence of two spectral negative values s1 and s2

is guaranteed by the positivity of the mapping τ 7→ a(s1, s2, τ), in some interval. Inequality
a(s1, s2, τ) ≥ 0 is satisfied if and only if τ ≥ τ∗∗. From a control theory point of view,
the assignment of such real negative spectral values subjects to choose them in the interval
]−∞,−a[.

Remark 2. 1. In recent results [3, 5], the question of the effect of multiple spectral
values on the dynamics of time-delay systems is investigated. So, consider s0 to be
the corresponding double real root, we are interested in the behavior and the geometric
structure of the corresponding envelope. In such case, the coefficients a and b satisfy
the following relations a(s0, τ) = −s0 − 1

τ ; and b(s0, τ) = 1
τ exp(τs0). Furthermore,

there exists a critical value τ̃ = − 1
s0

, which corresponds to the vanishing of a(s0, τ).
The connected structure of the envelope is then observed, with the appearance of an
invariant node with respect to the delay, at the spectral abscissa s0, for every τ ≥ τ̃ .
see Figure 1.

2. Interestingly, when considering two real distinct spectral values, varying the value of
the delay τ may induce a change in the geometry of the envelope curve. The connected
structure of the envelope may be lost. Indeed, as τ increases reaching some critical
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Figure 1: Envelope curve of the characteristic equation (3.2). Case when s0 = −2 is a
double root. The critical delay τ = 0.5 corresponds to the value that vanishes the coefficient
a = 2− 1

τ , see [10].

delay τ∗, the connected structure of the envelope is preserved, only in a single point
(a node), see Figure 2 (left). Exceeding this critical value τ∗, there is appearance of
two disconnected components, which moving away more and more until a constant
distance that is reached for every delay τ ≥ τ∗∗, see Figure 2 (right).
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Figure 2: Envelope curve of the characteristic equation (3.2). Case of co-existence of two
simple real roots s1 = −1, s2 = −2.

3. Such a geometry is encountered in [23], where an analytical study and synthesis of
rightmost eigenvalues of ẋ(t) = Ax(t− τ) is considered.

The description of this kind of curve, when considering two simples spectral values s2,
s1, with s2 < s1 < 0, is given in the following theorem.
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Theorem 3. Let

Cτ := C (s2, s1, τ) =
{

(x, y) ;
√
x2 + y2 = (|a (s2, s1, τ)|+ |b (s2, s1, τ)| exp(−xτ))

}

(3.14)
be the envelope curve associated to the quasipolynomial (3.2).

By browsing the delay τ from a small value until a large value, the following assertions
holds for (3.2):

1. For any τ > 0, the envelope curve Cτ intersects one times the real axis, in a positive
abscissa, x+(τ).

2. There exists τ∗, τ∗∗ > 0, with τ∗ < τ∗∗, such that:

• When τ = τ∗, the curve Cτ
∗

contains a node, (x(τ∗), 0), in the region x < 0.

• For τ < τ∗, there is only one intersection of the envelope curve with the real
axis.

• For τ ∈]τ∗∗, τ∗[, the curve Cτ splits into two disjoint segments Cτ1 and Cτ2 , which
intersect the the region ]s2, s1[ at points (x−1 (τ), 0) and (x−2 (τ), 0), respectively.

• There exists x (τ∗∗) < s2 such that for every τ < τ∗∗,
◦

Cτ∗∗ ⊂
◦
Cτ in the region

x > x (τ∗∗), and for every τ > τ∗∗,
◦
Cτ ⊂

◦
Cτ∗∗ .

• For τ ≥ τ∗∗, the curve Cτ splits into two disjoint segments Cτ1 and Cτ2 , with the
property that (s2, 0) ∈ ⋂τ≥τ∗∗ Cτ1 and (s1, 0) ∈ ⋂τ≥τ∗∗ Cτ2 and

d(Cτ1 , C
τ
2 ) = |s2 − s1|.

3. As τ →∞,

• x−1 (τ) → s2, x−2 (τ) → s1 and x+(τ) → −s1. The two first limits are reached
from τ = τ∗∗, see Figure 4.

• C∞, the envelope limit, is the circle centered at the origin with the rayon r = |s1|.

Proof.

To find the point of intersection of the curve with the x-axis, we solve this system of two
equation obtained from (3.14) using the W-Lambert function [32]

{
|a|+ |b|e−xτ − x = 0
|a|+ |b|e−xτ + x = 0.

(3.15)

Using a change of variable z = −xτ we obtain

|s1 − s2|ez −
z

τ
|e−s2τ − e−s1τ |+ |s2e

−s1τ − s1e
−s2τ | = 0 (3.16)

|s1 − s2|ez +
z

τ
|e−s2τ − e−s1τ |+ |s2e

−s1τ − s1e
−s2τ | = 0. (3.17)

The above two equation are under the following form γez + β + σ = 0, where γ = |s1 − s2|,
β = ± e−s2τ−e−s1ττ and σ = |s2e

−s1τ − s1e
−s2τ | The existence of real solutions depends on

the sign of the discriminant ∆(τ) = γ
β e
−σβ and its position with respect to −e−1.
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Figure 3: (Left) Decreasing behavior of the envelope curve versus τ < τ∗∗. (Right) Increas-
ing behavior of the envelope curve versus τ ≥ τ∗∗. Case s1 = −1 and s2 = −2

1. For τ > 0, we search the positive solution, so we study the equation (3.17). The
discriminant of this equation is given by:

∆+(τ) =
τ |s1 − s2|

|e−s2τ − e−s1τ | exp
(
− τ |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ |
)
. (3.18)

Hence equation (3.17) has a positif real solution

z+
1 (τ) = −W0(∆+)− |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | ,

thus

x+(τ) =
1

τ
W0(∆+) +

|s2e
−s1τ − s1e

−s2τ |
|e−s2τ − e−s1τ | , (3.19)

which implies that the envelope curve intersects only one times the real axis in the
right half plan at x+(τ).

2. Now we study the equation (3.16), where the discriminant is written as follows:

∆−(τ) = − τ |s1 − s2|
|e−s2τ − e−s1τ | exp

(τ |s2e
−s1τ − s1e

−s2τ |
|e−s2τ − e−s1τ |

)
. (3.20)

Since ∆−(τ) < 0, we need to evaluate the sign of ∆−(τ)+e−1. Note that the function
τ 7→ ∆−(τ)+exp (−1) is continuous on R+. In addition, as τ → 0, ∆−(τ)+exp (−1)→
− exp (1) + exp (−1) < 0. We have then

∆−(τ∗∗) = −ln

(
s1

s2

)((
s1

s2

)− s1
s2−s1

−
(
s1

s2

)− s2
s2−s1

)−1

+ e−1.

The variations of

F (t) := −ln (t)
(
t−

t
1−t − t−(1−t)−1

)−1

+ e−1, t ∈ R∗+ − {1}
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Figure 4: Asymptotic behavior of the roots of the envelope curve. Case s1 = −1, s2 = −2

show that ∆−(τ∗∗) + e−1 > 0,∀t ∈ R∗+ − {1}. Thanks to the intermediate values
theorem, there exists τ∗ ∈]0, τ∗∗[ such that ∆−(τ∗) + e−1 = 0.

• For τ = τ∗, ∆− (τ∗) = −e−1, so (3.16) admits a (double) negative real solution

x−d (τ∗) =
1

τ∗
W0(−e−1)− |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | = − 1

τ∗
− |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | ,

which allows to the appearance of a node at the point (x(τ∗), 0). This equation
admits also a positive solution (x+(τ), 0) given by (3.19), from which we deduce
that there are two intersections with the real axis.

• For τ < τ∗, there exists one positive solution (x+(τ), 0) given by (3.19), which
corresponds to unique intersection with the half real axis, x > 0.

• For τ ∈]τ∗, τ∗∗[, we have ∆−(τ) + e−1 > 0, then equation (3.16) admits two
negative real solutions

z1 (τ) = −W0

(
∆−
)

+
τ |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | ,

z2 (τ) = −W−1

(
∆−
)

+
τ |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | ,

thus

x−1 (τ) =
1

τ
W0

(
∆−
)
− |s2e

−s1τ − s1e
−s2τ |

|e−τs2 − e−s1τ | , (3.21)

x−2 (τ) =
1

τ
W−1

(
∆−
)
− |s2e

−s1τ − s1e
−s2τ |

|e−s2τ − e−s1τ | , (3.22)

this implies that the curve Cτ intersects two times the real axis, from which we
deduce that the curve splits into two disjoints segments Cτ1 and Cτ2 which inter-
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sect the region ]s2, s1[ at points (x−1 (τ), 0) and (x−2 (τ), 0) respectively. Details
about the property Cτ2 ∩ Cτ2 = ∅ will be presented bellow.

• Here we consider the case where τ < τ∗∗. Recall that the sign of a(s2, s1, τ)
depends on the parameter τ > 0, while b(s2, s1, .) > 0. So

|s2 exp(−s1τ)− s1 exp(−s2τ)| =





0 if τ = τ∗∗

s2 exp(−s1τ)− s1 exp(−s2τ) if τ > τ∗∗

s1 exp(−s2τ)− s2 exp(−s1τ) if τ < τ∗∗

Hence

d

dτ
(|a (s2, s1, τ)|) =





e−τs2e−τs1
(s2 − s1)

2

(e−τs2 − e−τs1)
2 if τ > τ∗∗

−e−τs2e−τs1 (s2 − s1)
2

(e−τs2 − e−τs1)
2 if τ < τ∗∗

d

dτ
(|b (s2, s1, τ)| exp(−xτ)) = e−xτ

(s1 − s2)

(e−τs2 − e−τs1)

(
s2e
−τs2 − s1e

−τs1

e−τs2 − e−τs1 − x
)

Note that s2e
−τs1 − s1e

−τs2 = (1− θτ) e−θτ (s2 − s1), for some θ ∈ ]s2, s1[ , so

x̄(τ)
∆
=
s2e
−τs1 − s1e

−τs2

e−τs2 − e−τs1 < 0, ∀τ > 0.

In addition, τ 7→ x̄(τ) is continuous and increasing on ]0, τ∗∗[, with

lim
τ→τ∗∗

x (τ) = s2 − (s1 − s2)

(
s2

s1

) s1

s2 − s1

(
s2

s1

) s2

s2 − s1 −
(
s2

s1

) s1

s2 − s1

= x (τ∗∗) < s2.

Thus τ 7→ |b (s2, s1, τ)| exp(−xτ) is decreasing on R+∗, for every x > x (τ∗∗) .
This means that when x > x (τ∗∗) , the function

τ 7→ |a (s2, s1, τ)|+ |b (s2, s1, τ)| exp(−xτ)

is continuous and decreasing on ]0, τ∗∗[ . We deduce that

∀τ ∈ ]0, τ∗∗[ ; C (s2, s1, τ
∗∗) ⊂ C (s2, s1, τ) .

On the other hand, the variations of x 7→ |a(s2, s1, τ)| + |b(s2, s1, τ)| exp (−xτ)
show that for all x ∈ R− [s2, s1] and for all τ > τ∗∗

|b(s2, s1, τ
∗∗)| exp (−xτ∗∗)−

(
|a(s2, s1, τ)|+ |b(s2, s1, τ)| exp (−xτ)

)
< 0, (3.23)

from which we deduce that

∀ τ > τ∗∗; C (s2, s1, τ
∗∗) ⊂ C (s2, s1, τ) . (3.24)
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• Now we study the case of τ > τ∗∗. We have

lim
τ→τ∗∗

C (s2, s1, τ) =
⋂

τ<τ∗∗

C (s2, s1, τ) = C (s2, s1, τ
∗∗)

=
{

(x, y) ;
√
x2 + y2 = M(s2, s1, x)

}

where

M(s2, s1, x) =
s1 − s2

(
s2

s1

)− s2 − x
s1 − s2 −

(
s2

s1

)− s1 − x
s1 − s2

.

Observe that

M(s2, s1, s2) = −s2;

M(s2, s1, s1) = −s1.

Hence the boundary of C (s2, s1, τ
∗∗) contains both (s1, 0) and (s2, 0). We get

more, that is

(s2, 0) ∈
⋂

τ≥τ∗∗

Cτ1 and (s1, 0) ∈
⋂

τ≥τ∗∗

Cτ2 . (3.25)

On the other hand, since

M (s2, s1, αs1 + (1− α) s2) = −s2

(
s1

s2

)α

for every α ∈ ]0, 1[, we can show that

C (s2, s1, τ
∗∗) ∩ ]s2, s1[ = ∅.

Indeed, if not there exists z ∈ ]s2, s1[ , such that |z| ≤ M (s2, s1, z) . Writing
z = αs1 + (1− α) s2, for some α ∈ ]0, 1[ , we have

−s1 < |z| ≤ −s2

(
s1

s2

)α
< −s2

(
s1

s2

)
= −s1.

This implies that
−s1 < −s1

allowing to a contradiction.

This reasoning allows us to show that

C (s2, s1, τ
∗∗) ∩

{
(x, y) ∈ R2, s2 < x < s1

}
= ∅. (3.26)

In fact, in the contrary case, we will get

−s1 ≤
√
s2

1 + y2 <
√
x2 + y2 = |z| ≤ −s2

(
s1

s2

)α
< −s1.
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Impossible. This means that the envelope curve C (s2, s1, τ
∗∗) is splits into two

disjointed parts Cx<s2 (s2, s1, τ
∗∗) and Cx>s1 (s2, s1, τ

∗∗), separated by the band{
(x, y) ∈ R2, s2 < x < s1

}
. As a consequence, we get that distance

d
(
Cx<s2 (s2, s1, τ

∗∗) , Cx>s1 (s2, s1, τ
∗∗)
)

= d
(
Cx<s2 (s2, s1, τ) , Cx>s1 (s2, s1, τ)

)

= inf
z1∈Cx<s2 (s2,s1,τ

∗∗)

z2∈Cx>s1 (s2,s1,τ
∗∗)

d (z1, z2)

= s1 − s2, ∀τ > τ∗∗.

d being the Euclidean distance.

3. Now, we deal with the asymptotic behavior of the envelope curve, x−1 (τ), x−2 (τ), and
x+(τ) as τ →∞.

• Since ∆−(τ) ∈
]
−e−1, 0

[
, we have W0 (∆−(τ)) satisfies:

−1 = W0

(
−e−1

)
< W0

(
∆−(τ)

)
< W0 (0) = 0,

thus

lim
τ→∞

1

τ
W0

(
∆−
)

= 0.

From this we deduce that
lim
τ→∞

x−1 (τ) = s1.

On the other hand, since we have

d(Cτ1 , C
τ
2 ) = s1 − s2, ∀τ > τ∗∗,

we deduce that
lim
τ→∞

x−2 (τ) = s2.
1 (3.27)

Similarly, we prove that lim
τ→∞

x+(τ) = −s1. Indeed, there is always τ0 > 0 such

that
|s2e

−s1τ − s1e
−s2τ |

|e−τs2 − e−s1τ | > −s1

2
, for all τ ≥ τ0.

This means that x+(τ) in (3.19) given via the WLambert function satisfies

x+ (τ) > −s1

2
, ∀τ ≥ τ0.

Using the fact that

0 <
e−τx

+(τ)

|e−τs2 − e−s1τ | <
e

s1τ

2

|e−τs2 − e−s1τ | , ∀τ ≥ τ0.

1As a consequence, using (3.22), we get the following property of the WLambert function:

limτ→∞
1

τ
W−1

(
∆−(τ)

)
= 0.
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we deduce that
e−τx

+(τ)

|e−τs2 − e−s1τ | = 0. Letting τ tend to ∞ in the following ex-

pression:

x+(τ) =
e−τx

+(τ)

|e−τs2 − e−s1τ | +
|s1e

−τs2 − s2e
−s1τ |

|e−τs2 − e−s1τ | (3.28)

we obtain

lim
τ→∞

x+(τ) = |s1|. 2

• Let us consider the equation of the envelope curve (3.14). In the region x > s1,
we have

lim
τ→∞

|b(s1, s2, τ)| exp (−xτ) = 0,

and

lim
τ→∞

|a(s1, s2, τ)| = |s1|.

Hence, we deduce that as τ →∞ the envelope curve (3.14) becomes

x2 + y2 = s2
1,

which corresponds to a circle C∞ with the ray r = |s1|. Concerning the region
x < s2, simulation results show that for τ sufficiently large, the segment Cτ1
disappears. The question of finding the upper bound of τ for which Cτ1 is exactly
the half-plan x ≤ s2 remains open.

4 Second-order systems

Second-order linear systems capture the dynamic behavior of many natural phenomena,
and have found wide applications in a variety of fields, such as vibration and structural
analysis. The equation of this system is given as follows:

ẍ(t) + aẋ(t) + bx(t) + αx(t− τ) = 0. (4.1)

The characteristic equation associated to (4.1) is given by:

∆(s, τ) = s2 + as+ b+ α exp(−sτ) = 0. (4.2)

2As a consequence, we get the following property lim
τ→∞

1

τ
W0

(
∆+

)
= 0.
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Theorem 4. The system (4.1) admits three distinct real spectral values s3, s2 and s1 with
s3 < s2 < s1 if and only if the parameters a, b and α satisfy





a = a(s1, s2, s3, τ) :=
1

Q

∑

i,j,k∈Λ
i<j,i 6=j 6=k

(−1)
i+j

(s2
i − s2

j ) exp(−skτ)

b = b(s1, s2, s3, τ) := − 1

Q

∑
i,j,k∈Λ

i<j,i 6=j 6=k

(−1)
i+j

sisj(si − sj) exp(−skτ)

α = (s1, s2, s3, τ) := − 1

Q

∏
i,j∈Λ
i<j

(si − sj)

(4.3)

where
Q := Q(s1, s2, s3, τ) =

∑

i,j,k∈Λ
i<j,k 6=i,j

(−1)
i+j

(si − sj) exp(−skτ).

In this case, α is necessarily negative.

• The spectral value s1 is negative if and only if there exists τ0 > 0 such

a(s1, s2, s3, τ0) + s2 = 0.

This guarantees the asymptotic stability of the system.

• The root s1 is the spectral abscissa of (4.1).

Proof. The parameters given in (4.3) can be easily obtained by solving the system




s2
3 + as3 + b+ αe−s3τ = 0
s2

2 + as2 + b+ αe−s2τ = 0
s2

1 + as1 + b+ αe−s1τ = 0.
(4.4)

Now, let us study the sign of α. Recall that

α = − (s1 − s2) (s2 − s3) (s1 − s3)

Q (s1, s2, s3, τ)
. (4.5)

We apply twice the Mean Value Theorem to the denominator Q (s1, s2, s3, τ), we get:

Q (s1, s2, s3, τ) = s2e
−τs3 − s1e

−τs3 + s1e
−τs2 − s3e

−τs2 + s3e
−τs1 − s2e

−τs1

= (s2 − s1)
(
e−τs3 − e−τs1

)
+ (s3 − s1)

(
e−τs1 − e−τs2

)

= −τ (s2 − s1) (s3 − s1)

∫ 1

0

e−τ(ts1+(1−t)s3)dt

+τ (s3 − s1) (s2 − s1)

∫ 1

0

e−τ(ts1+(1−t)s2)dt

= −τ (s2 − s1) (s3 − s1)

∫ 1

0

(
e−τ(ts1+(1−t)s3) − e−τ(ts1+(1−t)s2)

)
dt

= τ2 (s2 − s1) (s3 − s1) (s3 − s2)

∫ 1

0

∫ 1

0

(1− t) e−τ(ts1+(1−t)(θs3+(1−θ)s2))dθdt.
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This means that

α (s1, s2, s3, τ) =
−1

τ2Q̃ (s1, s2, s3, τ)
(4.6)

where

Q̃ (s1, s2, s3, τ) =

∫ 1

0

∫ 1

0

(1− t) e−τ(ts1+(1−t)(θs3+(1−θ)s2))dθdt > 0.

Now, let us show the negativeness of s1, s2, s3. From (4.4) and (4.6) , we get that





(s3 − s2) [s3 + s2 + a] = −α [e−τs3 − e−τs2 ] > 0
(s2 − s1) [s2 + s1 + a] = −α [e−τs2 − e−τs1 ] > 0
(s3 − s1) [s3 + s1 + a] = −α [e−τs3 − e−τs1 ] > 0.

Since s3 < s2 < s1, we obtain the following equations:





s3 + s2 < −a
s2 + s1 < −a
s3 + s1 < −a

(4.7)

System (4.7) is reduced to the single inequality s2 + s1 < −a, from which we deduce
that s3 < s2 < −a2 , and s1 < −a − s2. Since the mapping τ 7→ a(s1, s2, s3, τ) + s2

is continuous and increasing from −∞ to −s1 when τ varies in R+∗, this means that
a(s1, s2, s3, τ) + s2 takes positive values if and only if s1 < 0. This means that the equation
a(s1, s2, s3, τ) + s2 = 0 has a unique root, τ0 > 0.

Now, to study the stability of the system, we need to study the dominancy of s1 by
using an adequate factorization of the quasipolynimial (4.2), so we have:

s2 + as+ b+ α exp (−τs) = (s− s2) (s− s1)

[
s2 + as+ b+ α exp (−τs)

(s− s2) (s− s1)

]

= (s− s2) (s− s1)P (s, s1, s2, τ).

The factor P (s) := P (s, s1, s2, τ) can be rewritten under the more suitable
form

P (s) = 1 +
(a+ s2 + s1) s+ b− s2s1

(s− s2) (s− s1)
+

α exp (−τs)
(s− s2) (s− s1)

= 1− s2
2 + as2 + b

(s1 − s2) (s− s2)
+

s2
1 + as1 + b

(s1 − s2) (s− s1)
+

α exp (−τs)
(s2 − s1) (s− s2)

− α exp (−τs)
(s2 − s1) (s− s1)

= 1 +
α exp (−τs)

(s2 − s1) (s− s2)
− α exp (−τs2)

(s2 − s1) (s− s2)
+

α exp (−τs1)

(s1 − s2) (s− s1)
− α exp (−τs)

(s2 − s1) (s− s1)
.
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Using the integral form of the remainder in Taylor’s Theorem, we get

P (s) = 1 +
αe−τs2

(
e−τ(s−s2) − 1

)

(s2 − s1) (s− s2)
+
αe−τs1

(
1− e−τ(s−s1)

)

(s2 − s1) (s− s1)
(4.8)

= 1 +

αe−τs2
(
−τ (s− s2)

1∫
0

e−τ(s−s2)tdt

)

(s2 − s1) (s− s2)
−
αe−τs1

(
−τ (s− s1)

1∫
0

e−τ(s−s1)tdt

)

(s2 − s1) (s− s1)

= 1 +
ατ

(s2 − s1)

1∫

0

e−τts
(
e−τ(1−t)s1 − e−τ(1−t)s2

)
dt.

Using again the following integral representation

exp (−τ (1− t) s1)−exp (−τ (1− t) s2) = −τ (s1 − s2)

∫ 1

0

exp (−τ (1− t) (θs2 + (1− θ) s1)) dθ

we get

P (s, s1, s2, τ) = 1+ατ2

1∫

0

1∫

0

(1− t) exp (−τt (s− s1)) exp (−τ [s1 + θ (1− t) (s2 − s1)]) dθdt.

To prove the dominancy property, namely s1 is the rightmost root of (4.2), let us assume
that there exists some s0 = ζ+jη a root of (4.2) such that ζ > s1. Then P (s0, s1, s2, τ) = 0
and for any t > 0, one has:

exp (−τ [t (ζ − s1)]) < 1.

So

1 = −ατ2

1∫

0

1∫

0

(1− t) exp (−τt (s0 − s1)) exp (−τ [s1 + θ (1− t) (s2 − s1)]) dθdt

= Re

(
− ατ2

1∫

0

1∫

0

(1− t) exp (−τt (s0 − s1)) exp (−τ [s1 + θ (1− t) (s2 − s1)]) dθdt

)

≤ |α| τ2

1∫

0

1∫

0

(1− t) exp (−τt (ζ − s1)) exp (−τ [s1 + θ (1− t) (s2 − s1)]) dθdt

< |α| τ2

1∫

0

1∫

0

(1− t) exp (−τ [(1− θ (1− t)) s1 + θ (1− t) s2]) dθdt. (4.9)

Using the relation 1− θ (1− t) = t+ (1− t) (1− θ) , we get

exp (−τ (1− θ (1− t)) s1) = exp(−τts1) exp (−τ (1− t) (1− θ) s1) .

Moreover, since s3 < s1, we obtain, for every t ∈ (0, 1) and every θ ∈ (0, 1) , the following
estimation

exp (−τ (1− t) (1− θ) s1) < exp (−τ (1− t) (1− θ) s3) .
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Summing up, using (4.6) , inequality (4.9) becomes

1 < |α| τ2

1∫

0

1∫

0

(1− t) exp(−τts1) exp (−τ (1− t) [(1− θ) s3 + θs2]) dθdt = |α| τ2Q̃ = 1,

which is inconsistent. This proves the dominancy of s1. The proof of Theorem 4 is achieved.

Remark 3. The geometric structure of envelope curve of the quasipolynomial (4.2), defined
by √

x2 + y2 − ‖A0‖2 − ‖A1‖2e−τx = 0

, with A0 =

(
−a 1
−b 0

)
and A1 =

(
0 0
−α 0

)
, may loose its connection as observed in the first

order equation, depending on the distribution of the roots s1, s2 and s3. More precisely, three
cases can be observed according to the distance of the root s3 with respect to the centered
circle, of radius R, with

R2 = ‖A0‖22 = 1/2(
√

(a2 + (b− 1)2)(a2 + (b+ 1)2) + a2 + b2 + 1).

1. If s3 < −R, exceeding some critical value of the delay, τ = τ̃ , gives rise to the birth of
two disconnected components, see Figure 1, in which the arrows indicate the motion
direction of the envelope as τ increases. For τ sufficiency large, the right component
is the centered circle, of radius R, while the left component approaches the half-plane
delimited by x = s3. The two components are are separated by the distance −R+ s3.
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τ ∈ [0.1, τ̃ ], with τ̃ = 1.12665
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s3

x2 + y2 = ‖A0‖22

Figure 5: Envelope curve of the characteristic equation (4.2). Case s1 = −2, s2 = −3,
s3 = −13.

2. If s3 > −R, the connected structure of the envelope is preserved independently of the
delay τ . For τ sufficiency large, the envelope takes the shape of a ”vertical Omega”Ω

never closing, positioned in s3, and which is carried by the centered circle of radius
R, see Figure 6 (left).
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3. If s3 = −R, the connected structure of the envelope is still preserved as in the second
case. Here the ”vertical Omega” structure is also observed. This structure is deformed
when the delay increases. Indeed, the angular points are getting closer and closer, until
forming a node at s3, see Figure 6 (right).
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Figure 6: Envelope curve of the characteristic equation (4.2). Case s1 = −2, s2 = −3, and
s3 ≥ −R.

5 Concluding remarks

The property of multiplicity induced-dominancy for spectral value of time-delay systems of
retarded type is extended through this work. More precisely, it is shown, for reduced order
Time-delay systems, that assigning PSB real spectral values (not necessarily multiple root)
make them the rightmost roots of the corresponding quasipolynomial. Furthermore, if they
are set to be negative, this guarantees the asymptotic stability of the trivial solution. This
new result emphasizes a new delayed controller-design based on the trivial solution’s decay
rate assignment.
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[22] G. Pólya and G. Szegő. Problems and Theorems in Analysis, Vol. I: Series, Integral
Calculus, Theory of Functions. Springer-Verlag, New York, Heidelberg, and Berlin,
1972.

[23] W. Qiao and R. Sipahi. A linear time-invariant consensus dynamics with homogeneous
delays: Analytical study and synthesis of rightmost eigenvalues. SIAM Journal on
Control and Optimization, 51(5):3971–3992, 2013.

[24] A. Ramirez, S. Mondie, R. Garrido, and R. Sipahi. Design of proportional-integral-
retarded (pir) controllers for second-order lti systems. IEEE Transactions on Automatic
Control, (99):1–6, 2015.

[25] S. Ruan. Delay differential equations in single species dynamics. In Delay Differential
Equations and Applications, pages 477–517. Springer, 2006.

[26] R. Sipahi, S. i. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu. Stability and
stabilization of systems with time delay. IEEE Control Systems, 31(1):38–65, Feb
2011.

[27] G. Stépán. Retarded Dynamical Systems: Stability and Characteristic Functions. Pit-
man research notes in mathematics series. Longman Scientific and Technical, 1989.

[28] J. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle. A nonsmooth optimi-
sation approach for the stabilisation of time-delay systems. ESAIM: COCV, 14(3):478–
493, 2008.

[29] T. Vyhĺıdal and P. Zitek. Mapping based algorithm for large-scale computation of
quasi-polynomial zeros. IEEE Transactions on Automatic Control, 54(1):171–177,
2009.

[30] K. Walton and J. E. Marshall. Direct method for tds stability analysis. IEE Proceedings
D - Control Theory and Applications, 134(2):101–107, 1987.

[31] James SW Wong. Oscillation and nonoscillation of solutions of second order linear
differential equations with integrable coefficients. Transactions of the American Math-
ematical Society, pages 197–215, 1969.



22 On the spectral abscissa and rightmost-roots of TDS

[32] S. Yi, P-W. Nelson, and G. Ulsoy. Analysis and control of time delayed systems via
the lambert W function. IFAC Proceedings Volumes, 41(2):13414–13419, 2008.

(1) Mouloud Mammeri University of Tizi-Ouzou,
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(3) Inria Saclay Île-de-France, DISCO

(4) DR2I, Institut Polytechnique des Sciences Avances, 94200 Ivry-sur-Seine (France)

.


