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The present study concerns a frequency domain approach in the stability analysis and stabilization via reduced-order controller design for linear time-invariant retarded Time-delay systems. More precisely, we address the problem of the spectral abscissa characterization and the coexistence of non oscillating modes for such functional differential equations. The design approach we propose is merely a delayed-output-feedback where the candidates' parameters result from the manifold defined by the coexistence of an exact number of negative spectral values, which guarantees the asymptotic stability of the system's solutions. The dominancy of such non oscillating modes is analytically shown for the considered reduced order Time-delay systems. Finally, using the W-Lambert function, further description of the spectrum distribution is presented.

Introduction

Investigation of dynamical systems with time-delay is an active research area that connects a wide range of scientific disciplines including mathematics, physics, engineering, biology, economics etc. The present paper focuses on stability and stabilizing-controllers design for linear time-invariant retarded time-delay systems. The study of conditions on the equation parameters that guarantees the exponential stability of solutions is a question of ongoing interest and remains an open problem especially when the systems are of high order or having multiple and/or distributed delays. In particular, in frequency-domain, the problem reduces to the analysis of the distribution of the roots of the corresponding characteristic equation, see for instance [2,[START_REF] Cooke | On zeroes of some transcendental equations[END_REF][START_REF] Walton | Direct method for tds stability analysis[END_REF][START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Michiels | Stability and stabilization of time-delay systems[END_REF][START_REF] Olgac | An exact method for the stability analysis of time delayed linear time-invariant (lti) systems[END_REF][START_REF] Sipahi | Stability and stabilization of systems with time delay[END_REF].

The starting point of the present work is an interesting property, discussed in recent studies, called multiplicity induced-dominancy. As a matter of fact, it is shown that multiple spectral values for Time-delay systems can be characterized using a Birkhoff/Vandermondebased approach; see for instance [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF][START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Multiplicity and stable varieties of timedelay systems: A missing link[END_REF]. More precisely, in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems[END_REF], it is shown that the admissible multiplicity of the zero spectral value is bounded by the generic Polya and Szegö bound denoted P S B , which is nothing but the degree of the corresponding quasipolynomial (i.e the number of the involved polynomials plus their degree minus one), see for instance [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]. In [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF], it is shown that a given crossing imaginary roots with non vanishing frequency never reaches P S B and a sharper bound for its admissible multiplicities is established. Moreover, in [START_REF] Boussaada | Multiplicity and stable varieties of timedelay systems: A missing link[END_REF], the variety corresponding to a multiple root for scalar Time-delay equations defines a stable variety for the steady state. The multiplicity of a root itself is not important as such but its connection with the dominancy of this root is a meaningful tool for control synthesis. An example of a scalar retarded equation with two delays is studied in [START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF] where it is shown that the multiplicity of real spectral values may reach the P S B . In addition, the corresponding system has some further interesting properties: (i) it is asymptotically stable, (ii) its spectral abscissa (rightmost root) corresponds to this maximal allowable multiple root located on the imaginary axis. Such observations enhanced the outlook of further exhibiting the existing links between the maximal allowable multiplicity of some negative spectral value reaching the quasipolynomial degree and the stability of the trivial solution of the corresponding dynamical system. This property induced from multiplicity appears also in optimization problems since such a multiple spectral value is nothing but the rightmost root, see also [START_REF] Vanbiervliet | A nonsmooth optimisation approach for the stabilisation of time-delay systems[END_REF][START_REF] Michiels | Continuous pole placement for delay equations[END_REF]. Also notice that the property was already observed in [START_REF] Ramirez | Design of proportional-integralretarded (pir) controllers for second-order lti systems[END_REF], where a tuning strategy is proposed for the design of a delayed Proportional-Integral controller by placing a triple real dominant root for the closed-loop system. However, the dominancy is only checked using a Mikhailov curve and QPmR toolbox, see for instance [START_REF] Vyhlídal | Mapping based algorithm for large-scale computation of quasi-polynomial zeros[END_REF]. To the best of our knowledge, the first time an analytical proof of the dominancy of a spectral value for the scalar equation with a single delay was presented in [START_REF] Hayes | Roots of the transcendental equation associated with a certain differencedifferential equation[END_REF]. The dominancy property is further explored and analytically shown in the case of second-order systems and a rightmost root assignment based design using delayed state-feedback is proposed in [START_REF] Boussaada | On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control[END_REF][START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF] where its applicability in damping active vibrations for a piezo-actuated beam is proved. See also [START_REF] Boussaada | Toward a decay rate assignment based design for time-delay systems with multiple spectral values[END_REF][START_REF] Boussaada | On the dominancy of multiple spectral values for time-delay systems with applications[END_REF] which exhibit an analytical proof for the dominancy of the spectral value with maximal multiplicity for second-order systems controlled via a delayed proportional-derivative controller.

By this paper, we would like to extend such an analytical characterization of the spectral abscissa for retarded time-delay system with real spectral values which are not necessarily multiple. The effect of the coexistence of such non oscillatory modes on the asymptotic stability of the trivial solution will be explored. In particular, the coexistence of P S B real spectral values makes them rightmost-roots of the corresponding quasipolynomial. Furthermore, if they are negative, this guarantees the asymptotic stability of the trivial solution. The study of oscillatory/non oscillatoty solutions of delay differential equation has been the focus of numerous contributions, see for instance [1,2,[START_REF] Gopalsamy | Stability and oscillations in delay differential equations of population dynamics[END_REF], and [START_REF] Guo | Existence of nonoscillatory solutions for a second-order nonlinear neutral delay differential equation[END_REF] where the strongest deal is with linear delay differential equations with constant coefficients and constant delay. In this case necessary and sufficient conditions are given for all solutions to be oscillatory, for the case of non constant coefficient and non constant delay and for nonlinear equations, typical results give conditions sufficient for all solutions to be oscillatory, or conditions sufficient for some solutions to be non oscillatory see for instance [START_REF] James | Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients[END_REF] and [START_REF] Jack | Introduction to functional differential equations[END_REF].

The remaining paper is organized as follows; in Section 2 we recall some important facts on the spectrum distribution for retarded Time-delay systems. Section 3 is dedicated to investigate the coexistence non oscillatory modes for the scalar differential equation with a single delay. In Section 4 second order delay equation with three real spectral values is considered. In Section 5, some concluding remarks ends the paper.

Prerequisites and Problem Statement

In this section, we present some important facts and properties of the spectrum distribution of Time-delay systems. Let consider the generic n-order system with a single time delay:

ẋ(t) = A 0 x(t) + A 1 x(t -τ ). (2.1)
Here τ is a positive constant delay and the matrices A j ∈ M n (R) for j = 0 . . . 1. It is well known that the asymptotic behavior of the solutions of (2.1) is determined from the spectrum designating the set of the roots of the associated characteristic function (denoted in the sequel ∆(s, τ )). Namely, the characteristic function corresponding to system (2.1) is a quasipolynomial ∆ : We start by introducing a proposition which plays an important role in the study of continuity properties of the spectrum of retarded Time-delay systems. For more details see [19, page 10].

C × R + → C of the form: ∆(s, τ ) = det(sI -A 0 -A 1 e -τ s ). ( 2 

Proposition 1 ([19]

). If s is a spectral value corresponding to system (2.1) then it satisfies

|s| ≤ A 0 + A 1 e -sτ
2 .

(

The above proposition allows to construct an envelope curve around the characteristic roots of the quasipolynomial (2.2).

The following result was first introduced and claimed in the problems collection published in 1925 by G. Pólya and G. Szegö. In the fourth edition of their book [START_REF] Pólya | Problems and Theorems in Analysis[END_REF]Problem 206.2, page 144 and page 347], G. Pólya and G. Szegö emphasize that the proof was obtained by N. Obreschkoff in 1928 using the principle argument, see [START_REF] Obreschkoff | Nullstellen linearer kombinationen von exponentialfunktionen[END_REF]. Such a result gives a bound for the number of quasipolynomial's roots in any horizontal strip. As a consequence, a bound for the number of quasipolynomial's real roots can be easily deduced.

Theorem 1 ([22]

). Let τ 1 , . . . , τ N denote real numbers such that τ 1 < τ 2 < . . . < τ N and d 1 , . . . , d N positive integers such that d 1 + d 2 + . . . + d N = D. Let f i,j (s) stand for the function f i,j (s) = s i-1 exp(τ j s), for 1 ≤ i ≤ d j and 1 ≤ j ≤ N . Let be the number of zeros of the function

f (s) = 1≤j≤N 1≤i≤dj c i,j f i,j (s) (2.4)
that are contained in the horizontal strip α ≤ Im(z) ≤ β. Assuming that

1≤k≤d1 |c k,1 | > 0 and 1≤k≤d N |c k,N | > 0 then (τ N -τ 1 )(β -α) 2π -D + 1 ≤ ≤ (τ N -τ 1 )(β -α) 2π + D + N -1. (2.5)
Setting α = β = 0, the above theorem yields P S ≤ D + N -1 where D stands for the sum of the degrees of the polynomials involved in the quasipolynomial function f and N designates the associated number of polynomials. This gives a sharp bound for the number of f s real roots.

3 On the coexistence of real spectral value and their dominancy for scalar delay equation

Consider the simple scalar differential equation with one delay representing a biological model discussed by K.L.Cooke in [START_REF] Cooke | Stability analysis for a vector disease model[END_REF]. It describes a vector disease dynamics where the infected host population x(t) is governed by:

ẋ(t) + ax(t) + bx(t -τ ) = 0, (3.1) 
here b > 0 designates the contact rate between infected and uninfected populations and it is assumed that the infection of the host recovery proceeds exponentially at a rate b > 0, see also [START_REF] Ruan | Delay differential equations in single species dynamics[END_REF] for more insights on the modeling and stability results. The characteristic equation associated to (3.1) is as follows:

∆(s, τ ) := s + a + b exp(-sτ ) = 0. (3.2) 
Theorem 2. For a given delay τ > 0, the system (3.1) admits two distinct real spectral values at s = s 2 and s = s 1 , with s 2 < s 1 , if and only if

     a = a(s 1 , s 2 , τ ) := s 2 exp(-s 1 τ ) -s 1 exp(-s 2 τ ) exp(-s 2 τ ) -exp(-s 1 τ ) ; b = b(s 1 , s 2 , τ ) := s 1 -s 2 exp(-s 2 τ ) -exp(-s 1 τ ) . (3.3) 
• Moreover, both spectral values s 2 and s 1 of (3.1) are negative, if and only if equation

a(s 1 , s 2 , τ ) = 0
is solvable with respect to τ > 0. Furthermore, the zero solution of (3.1) is asymptotically stable.

• The spectral value s 1 is nothing but the spectral abscissa corresponding to (3.1).

Proof. According to the Theorem 1, see also [START_REF] Pólya | Problems and Theorems in Analysis[END_REF], the number of real roots for (3.2) is two, hence we are interested to investigate the existence of two distinct negative spectral values, s 2 and s 1 with s 2 < s 1 . The values of a and b are calculated by solving the system:

s 2 + a + b exp(-s 2 τ ) = 0; s 1 + a + b exp (-s 1 τ ) = 0. (3.4)
We obtain immediately the values of a and b given in (3.3), as functions of s 2 and s 1 and τ . These values are unique for each fixed τ > 0. Observe that b(s 1 , s 2 , τ ) > 0 for every τ > 0, while the parameter a(s 1 , s 2 , τ ) changes the sign according to the delay τ and the position of s 1 and s 2 on the real line. On the other hand, both s 1 + a and s 2 + a are not null, otherwise, b = 0 and then s 1 = s 2 . Which is impossible. Now, from (3.4), we have

s 1 + a s 2 + a = exp(-τ (s 1 -s 2 )).
This means that s 2 + a and s 1 + a have necessarily same sign, and the following expression of τ :

τ = - ln(s 1 + a) -ln(s 2 + a) s 1 -s 2 (3.5)
is well-defined. Applying the Mean Value Theorem to the function

t → ln (t + a), t ∈ [s 2 , s 1 ]. This ensures the existence of c ∈]s 2 , s 1 [ such that τ = - 1 c + a . (3.6) 
Since τ > 0 so c + a < 0. Consequently s 2 + a < a + c < 0. This means that s 2 < -a.

Likewise for s 1 , since sign(s 1 + a) = sign(s 2 + a), we get s 1 < -a.

To show the negativeness of s 1 , we use the variations of the mapping τ → a(s 1 , s 2 , τ ). An easy calculation shows that a is a continuous function with respect to τ , and increasing from -∞ to -s 1 . So, if equation a(s 1 , s 2 , τ ) = 0 admits a root τ * * > 0, then such root is necessarily

τ * * = ln |s 2 | -ln |s 1 | s 1 -s 2 (3.7)
and a(s 1 , s 2 , τ ) ≥ 0 holds for all τ ≥ τ * * . Consequently, we get s 1 < 0. The converse implication is obvious.

The study of the stability of the system (3.1) is based on the dominancy of s 1 . To do this, we use an adequate factorization of the quasipolynomial ∆(s, τ ) from the characteristic equation (3.2). This later can be written as follows:

∆(s, τ ) = (s -s 1 ) 1 - (a + s 1 ) -exp(-(s -s 1 )τ ) s -s 1 = (s -s 1 ) 1 -(a + s 1 ) -exp(-(s -s 1 )τ ) s -s 1 + 1 s -s 1 . (3.8) Thus, ∆(s, τ ) = (s -s 1 ) 1 -τ (a + s 1 ) 1 0 exp(-τ (s -s 1 )t)dt . (3.9)
To prove that s 1 is the right most root (dominancy), we assume that there exists some
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s 0 = ζ + jη, a root of (3.2) such that ζ > s 1 . Then 1 = τ (a + s 1 ) 1 0 exp(-τ (s 0 -s 1 )t)dt = Re τ (a + s 1 ) 1 0 exp(-τ (ζ + jη -s 1 )t)dt) ≤ τ |a + s 1 | 1 0 exp(-τ (ζ + jη -s 1 )t)dt ≤ τ |a + s 1 | 1 0 exp(-τ (ζ -s 1 )t)dt. (3.10)
From (3.6), we have

τ < 1 -(a + s 1 ) = 1 |a + s 1 | . (3.11) Thus τ | a + s 1 |< 1. (3.12)
Moreover, since ζs 1 > 0, we have

1 0 exp(-τ (ζ -s 1 )t)dt < 1. (3.13) 
Inequality (3.10) can not be satisfied simultaneously with (3.12) and (3.13). Which proves that the hypothesis ζ > s 1 is inconsistence. So s 1 is the spectral abscissa corresponding to (3.1), guarantying the asymptotic stability of the system (3.1).

Remark 1. Theorem 2 shows that the co-existence of two spectral negative values s 1 and s 2 is guaranteed by the positivity of the mapping τ → a(s 1 , s 2 , τ ), in some interval. Inequality a(s 1 , s 2 , τ ) ≥ 0 is satisfied if and only if τ ≥ τ * * . From a control theory point of view, the assignment of such real negative spectral values subjects to choose them in the interval ] -∞, -a[.

Remark 2.

1. In recent results [START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices[END_REF][START_REF] Boussaada | Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach[END_REF], the question of the effect of multiple spectral values on the dynamics of time-delay systems is investigated. So, consider s 0 to be the corresponding double real root, we are interested in the behavior and the geometric structure of the corresponding envelope. In such case, the coefficients a and b satisfy the following relations a(s 0 , τ ) = -s 0 -1 τ ; and b(s 0 , τ ) = 1 τ exp(τ s 0 ). Furthermore, there exists a critical value τ = -1 s0 , which corresponds to the vanishing of a(s 0 , τ ). The connected structure of the envelope is then observed, with the appearance of an invariant node with respect to the delay, at the spectral abscissa s 0 , for every τ ≥ τ . see Figure 1 τ , see [START_REF] Boussaada | Multiplicity and stable varieties of timedelay systems: A missing link[END_REF].

delay τ * , the connected structure of the envelope is preserved, only in a single point (a node), see Figure 2 (left). Exceeding this critical value τ * , there is appearance of two disconnected components, which moving away more and more until a constant distance that is reached for every delay τ ≥ τ * * , see Figure 2 (right). 3. Such a geometry is encountered in [START_REF] Qiao | A linear time-invariant consensus dynamics with homogeneous delays: Analytical study and synthesis of rightmost eigenvalues[END_REF], where an analytical study and synthesis of rightmost eigenvalues of ẋ(t) = Ax(tτ ) is considered.

The description of this kind of curve, when considering two simples spectral values s 2 , s 1 , with s 2 < s 1 < 0, is given in the following theorem.

Theorem 3. Let C τ := C (s 2 , s 1 , τ ) = (x, y) ; x 2 + y 2 = (|a (s 2 , s 1 , τ )| + |b (s 2 , s 1 , τ )| exp(-xτ ))
(3.14) be the envelope curve associated to the quasipolynomial (3.2).

By browsing the delay τ from a small value until a large value, the following assertions holds for (3.2):

1. For any τ > 0, the envelope curve C τ intersects one times the real axis, in a positive abscissa, x + (τ ).

2. There exists τ * , τ * * > 0, with τ * < τ * * , such that:

• When τ = τ * , the curve C τ * contains a node, (x(τ * ), 0), in the region x < 0.

• For τ < τ * , there is only one intersection of the envelope curve with the real axis. • For τ ∈]τ * * , τ * [, the curve C τ splits into two disjoint segments C τ 1 and C τ 2 , which intersect the the region ]s 2 , s 1 [ at points (x - 1 (τ ), 0) and (x - 2 (τ ), 0), respectively.

• There exists x (τ * * ) < s 2 such that for every τ < τ * * ,

• C τ * * ⊂ • C τ in the region
x > x (τ * * ), and for every τ > τ * * ,

• C τ ⊂ • C τ * * . • For τ ≥ τ * * , the curve C τ splits into two disjoint segments C τ 1 and C τ 2 , with the property that (s 2 , 0) ∈ τ ≥τ * * C τ 1 and (s 1 , 0) ∈ τ ≥τ * * C τ 2 and d(C τ 1 , C τ 2 ) = |s 2 -s 1 |. 3. As τ → ∞, • x - 1 (τ ) → s 2 , x - 2 (τ ) → s 1 and x + (τ ) → -s 1 .
The two first limits are reached from τ = τ * * , see Figure 4.

• C ∞ , the envelope limit, is the circle centered at the origin with the rayon r = |s 1 |.

Proof.

To find the point of intersection of the curve with the x-axis, we solve this system of two equation obtained from (3.14) using the W-Lambert function [START_REF] Yi | Analysis and control of time delayed systems via the lambert W function[END_REF] |a|

+ |b|e -xτ -x = 0 |a| + |b|e -xτ + x = 0. (3.15)
Using a change of variable z = -xτ we obtain

|s 1 -s 2 |e z - z τ |e -s2τ -e -s1τ | + |s 2 e -s1τ -s 1 e -s2τ | = 0 (3.16
)

|s 1 -s 2 |e z + z τ |e -s2τ -e -s1τ | + |s 2 e -s1τ -s 1 e -s2τ | = 0. (3.17)
The above two equation are under the following form γe z + β + σ = 0, where γ = |s 1s 2 |, β = ± e -s 2 τ -e -s 1 τ τ and σ = |s 2 e -s1τs 1 e -s2τ | The existence of real solutions depends on the sign of the discriminant ∆(τ ) = γ β e -σ β and its position with respect to -e -1 .

-

3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
The segment C τ 1. For τ > 0, we search the positive solution, so we study the equation (3.17). The discriminant of this equation is given by:

∆ + (τ ) = τ |s 1 -s 2 | |e -s2τ -e -s1τ | exp - τ |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | . (3.18) 
Hence equation (3.17) has a positif real solution

z + 1 (τ ) = -W 0 (∆ + ) - |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | , thus x + (τ ) = 1 τ W 0 (∆ + ) + |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | , (3.19) 
which implies that the envelope curve intersects only one times the real axis in the right half plan at x + (τ ).

2. Now we study the equation (3.16), where the discriminant is written as follows:

∆ -(τ ) = - τ |s 1 -s 2 | |e -s2τ -e -s1τ | exp τ |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | . (3.20) 
Since ∆ -(τ ) < 0, we need to evaluate the sign of ∆ -(τ ) + e -1 . Note that the function τ → ∆ -(τ )+exp (-1) is continuous on R + . In addition, as τ → 0, ∆ -(τ )+exp (-1) → exp (1) + exp (-1) < 0. We have then x + (τ)

∆ -(τ * * ) = -ln s 1 s 2 s 1 s 2 - s 1 s 2 -s 1 - s 1 s 2 - s 2 s 2 -s 1 -1 + e -1 .

The variations of

F (t) := -ln (t) t -t 1-t -t -(1-t) -1 -1 + e -1 , t ∈ R * + -{1} 0.5 1 
x - 1 (τ)

x - 2 (τ)

τ * * = ln(2)
x - • For τ = τ * , ∆ -(τ * ) = -e -1 , so (3.16) admits a (double) negative real solution

1 (τ) = s 1 = -1, ∀τ ≥ τ * * x - 2 (τ) = s 2 = -2, ∀τ ≥ τ * * τ * ≃ 0.67288 x - d (τ * ) ≃ -1.5280
x - d (τ * ) = 1 τ * W 0 (-e -1 ) - |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | = - 1 τ * - |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | ,
which allows to the appearance of a node at the point (x(τ * ), 0). This equation admits also a positive solution (x + (τ ), 0) given by (3.19), from which we deduce that there are two intersections with the real axis.

• For τ < τ * , there exists one positive solution (x + (τ ), 0) given by (3.19), which corresponds to unique intersection with the half real axis, x > 0.

• For τ ∈]τ * , τ * * [, we have ∆ -(τ ) + e -1 > 0, then equation (3.16) admits two negative real solutions

z 1 (τ ) = -W 0 ∆ -+ τ |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | , z 2 (τ ) = -W -1 ∆ -+ τ |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | , thus x - 1 (τ ) = 1 τ W 0 ∆ -- |s 2 e -s1τ -s 1 e -s2τ | |e -τ s2 -e -s1τ | , (3.21) 
x .22) this implies that the curve C τ intersects two times the real axis, from which we deduce that the curve splits into two disjoints segments C τ 1 and C τ 2 which inter-sect the region ]s 2 , s 1 [ at points (x - 1 (τ ), 0) and (x - 2 (τ ), 0) respectively. Details about the property C τ 2 ∩ C τ 2 = ∅ will be presented bellow. • Here we consider the case where τ < τ * * . Recall that the sign of a(s 2 , s 1 , τ ) depends on the parameter τ > 0, while b(s 2 , s 1 , .) > 0. So

- 2 (τ ) = 1 τ W -1 ∆ -- |s 2 e -s1τ -s 1 e -s2τ | |e -s2τ -e -s1τ | , ( 3 
|s 2 exp(-s 1 τ ) -s 1 exp(-s 2 τ )| =    0 if τ = τ * * s 2 exp(-s 1 τ ) -s 1 exp(-s 2 τ ) if τ > τ * * s 1 exp(-s 2 τ ) -s 2 exp(-s 1 τ ) if τ < τ * * Hence d dτ (|a (s 2 , s 1 , τ )|) =          e -τ s2 e -τ s1 (s 2 -s 1 ) 2 (e -τ s2 -e -τ s1 ) 2 if τ > τ * * -e -τ s2 e -τ s1 (s 2 -s 1 ) 2 (e -τ s2 -e -τ s1 ) 2 if τ < τ * * d dτ (|b (s 2 , s 1 , τ )| exp(-xτ )) = e -xτ (s 1 -s 2 ) (e -τ s2 -e -τ s1 ) s 2 e -τ s2 -s 1 e -τ s1 e -τ s2 -e -τ s1 -x Note that s 2 e -τ s1 -s 1 e -τ s2 = (1 -θτ ) e -θτ (s 2 -s 1 ), for some θ ∈ ]s 2 , s 1 [ , so x(τ ) ∆ = s 2 e -τ s1 -s 1 e -τ s2
e -τ s2e -τ s1 < 0, ∀τ > 0.

In addition, τ → x(τ ) is continuous and increasing on ]0, τ * * [, with

lim τ →τ * * x (τ ) = s 2 -(s 1 -s 2 ) s 2 s 1 s 1 s 2 -s 1 s 2 s 1 s 2 s 2 -s 1 - s 2 s 1 s 1 s 2 -s 1 = x (τ * * ) < s 2 .
Thus τ → |b (s 2 , s 1 , τ )| exp(-xτ ) is decreasing on R + * , for every x > x (τ * * ) . This means that when x > x (τ * * ) , the function

τ → |a (s 2 , s 1 , τ )| + |b (s 2 , s 1 , τ )| exp(-xτ )
is continuous and decreasing on ]0, τ * * [ . We deduce that

∀τ ∈ ]0, τ * * [ ; C (s 2 , s 1 , τ * * ) ⊂ C (s 2 , s 1 , τ ) .
On the other hand, the variations of (3.23) from which we deduce that

x → |a(s 2 , s 1 , τ )| + |b(s 2 , s 1 , τ )| exp (-xτ ) show that for all x ∈ R -[s 2 , s 1 ] and for all τ > τ * * |b(s 2 , s 1 , τ * * )| exp (-xτ * * ) -|a(s 2 , s 1 , τ )| + |b(s 2 , s 1 , τ )| exp (-xτ ) < 0,
∀ τ > τ * * ; C (s 2 , s 1 , τ * * ) ⊂ C (s 2 , s 1 , τ ) .
(3.24)

• Now we study the case of τ > τ * * . We have

lim τ →τ * * C (s 2 , s 1 , τ ) = τ <τ * * C (s 2 , s 1 , τ ) = C (s 2 , s 1 , τ * * ) = (x, y) ; x 2 + y 2 = M (s 2 , s 1 , x) where M (s 2 , s 1 , x) = s 1 -s 2 s 2 s 1 - s 2 -x s 1 -s 2 - s 2 s 1 - s 1 -x s 1 -s 2 .
Observe that

M (s 2 , s 1 , s 2 ) = -s 2 ; M (s 2 , s 1 , s 1 ) = -s 1 .
Hence the boundary of C (s 2 , s 1 , τ * * ) contains both (s 1 , 0) and (s 2 , 0). We get more, that is

(s 2 , 0) ∈ τ ≥τ * * C τ 1 and (s 1 , 0) ∈ τ ≥τ * * C τ 2 . (3.25)
On the other hand, since

M (s 2 , s 1 , αs 1 + (1 -α) s 2 ) = -s 2 s 1 s 2 α
for every α ∈ ]0, 1[, we can show that

C (s 2 , s 1 , τ * * ) ∩ ]s 2 , s 1 [ = ∅. Indeed, if not there exists z ∈ ]s 2 , s 1 [ , such that |z| ≤ M (s 2 , s 1 , z) . Writing z = αs 1 + (1 -α) s 2 , for some α ∈ ]0, 1[ , we have -s 1 < |z| ≤ -s 2 s 1 s 2 α < -s 2 s 1 s 2 = -s 1 .
This implies that -s 1 < -s 1 allowing to a contradiction. This reasoning allows us to show that

C (s 2 , s 1 , τ * * ) ∩ (x, y) ∈ R 2 , s 2 < x < s 1 = ∅. (3.26) 
In fact, in the contrary case, we will get

-s 1 ≤ s 2 1 + y 2 < x 2 + y 2 = |z| ≤ -s 2 s 1 s 2 α < -s 1 .
Impossible. This means that the envelope curve C (s 2 , s 1 , τ * * ) is splits into two disjointed parts C x<s2 (s 2 , s 1 , τ * * ) and C x>s1 (s 2 , s 1 , τ * * ), separated by the band (x, y) ∈ R 2 , s 2 < x < s 1 . As a consequence, we get that distance

d C x<s2 (s 2 , s 1 , τ * * ) , C x>s1 (s 2 , s 1 , τ * * ) = d C x<s2 (s 2 , s 1 , τ ) , C x>s1 (s 2 , s 1 , τ ) = inf z1∈C x<s 2 (s2,s1,τ * * ) z2∈C x>s 1 (s2,s1,τ * * ) d (z 1 , z 2 ) = s 1 -s 2 , ∀τ > τ * * .
d being the Euclidean distance.

3. Now, we deal with the asymptotic behavior of the envelope curve, x - 1 (τ ), x - 2 (τ ), and x + (τ ) as τ → ∞.

• Since ∆ -(τ ) ∈ -e -1 , 0 , we have W 0 (∆ -(τ )) satisfies:

-1 = W 0 -e -1 < W 0 ∆ -(τ ) < W 0 (0) = 0, thus lim τ →∞ 1 τ W 0 ∆ -= 0.
From this we deduce that lim

τ →∞ x - 1 (τ ) = s 1 .
On the other hand, since we have

d(C τ 1 , C τ 2 ) = s 1 -s 2 , ∀τ > τ * * ,
we deduce that lim

τ →∞ x - 2 (τ ) = s 2 . 1 (3.27) 
Similarly, we prove that lim τ →∞

x + (τ ) = -s 1 . Indeed, there is always

τ 0 > 0 such that |s 2 e -s1τ -s 1 e -s2τ | |e -τ s2 -e -s1τ | > - s 1 2
, for all τ ≥ τ 0 .

This means that x + (τ ) in (3.19) given via the WLambert function satisfies

x + (τ ) > - s 1 2 , ∀τ ≥ τ 0 .
Using the fact that

0 < e -τ x + (τ ) |e -τ s2 -e -s1τ | < e s 1 τ 2 |e -τ s2 -e -s1τ |
, ∀τ ≥ τ 0 .

1 As a consequence, using (3.22), we get the following property of the WLambert function:

limτ→∞ 1 τ W -1 ∆ -(τ ) = 0.
we deduce that e -τ x + (τ ) |e -τ s2e -s1τ | = 0. Letting τ tend to ∞ in the following expression:

x + (τ ) = e -τ x + (τ ) |e -τ s2 -e -s1τ | + |s 1 e -τ s2 -s 2 e -s1τ | |e -τ s2 -e -s1τ | (3.28) 
we obtain lim Hence, we deduce that as τ → ∞ the envelope curve (3.14) becomes

x 2 + y 2 = s 2 1 ,
which corresponds to a circle C ∞ with the ray r = |s 1 |. Concerning the region x < s 2 , simulation results show that for τ sufficiently large, the segment C τ 1 disappears. The question of finding the upper bound of τ for which C τ 1 is exactly the half-plan x ≤ s 2 remains open.

Second-order systems

Second-order linear systems capture the dynamic behavior of many natural phenomena, and have found wide applications in a variety of fields, such as vibration and structural analysis. The equation of this system is given as follows:

ẍ(t) + a ẋ(t) + bx(t) + αx(t -τ ) = 0. (4.1)
The characteristic equation associated to (4.1) is given by: ∆(s, τ ) = s 2 + as + b + α exp(-sτ ) = 0. (4.2)

2 As a consequence, we get the following property lim

τ →∞ 1 τ W 0 ∆ + = 0.
Theorem 4. The system (4.1) admits three distinct real spectral values s 3 , s 2 and s 1 with s 3 < s 2 < s 1 if and only if the parameters a, b and α satisfy

                       a = a(s 1 , s 2 , s 3 , τ ) := 1 Q i,j,k∈Λ i<j,i =j =k (-1) i+j (s 2 i -s 2 j ) exp(-s k τ ) b = b(s 1 , s 2 , s 3 , τ ) := - 1 Q i,j,k∈Λ i<j,i =j =k (-1) i+j s i s j (s i -s j ) exp(-s k τ ) α = (s 1 , s 2 , s 3 , τ ) := - 1 Q i,j∈Λ i<j (s i -s j ) (4.3)
where

Q := Q(s 1 , s 2 , s 3 , τ ) = i,j,k∈Λ i<j,k =i,j (-1) i+j (s i -s j ) exp(-s k τ ).
In this case, α is necessarily negative.

• The spectral value s 1 is negative if and only if there exists τ 0 > 0 such a(s 1 , s 2 , s 3 , τ 0 ) + s 2 = 0.

This guarantees the asymptotic stability of the system.

• The root s 1 is the spectral abscissa of (4.1).

Proof. The parameters given in (4. 

α = - (s 1 -s 2 ) (s 2 -s 3 ) (s 1 -s 3 ) Q (s 1 , s 2 , s 3 , τ ) . (4.5) 
We apply twice the Mean Value Theorem to the denominator Q (s 1 , s 2 , s 3 , τ ), we get:

Q (s 1 , s 2 , s 3 , τ ) = s 2 e -τ s3
s 1 e -τ s3 + s 1 e -τ s2s 3 e -τ s2 + s 3 e -τ s1s 2 e -τ s1 = (s 2s 1 ) e -τ s3e -τ s1 + (s 3s 1 ) e -τ s1e -τ s2

= -τ (s 2s 1 ) (s 3s 1 )

1 0 e -τ (ts1+(1-t)s3) dt +τ (s 3 -s 1 ) (s 2 -s 1 ) 1 0 e -τ (ts1+(1-t)s2) dt = -τ (s 2 -s 1 ) (s 3 -s 1 ) 1 0 e -τ (ts1+(1-t)s3) -e -τ (ts1+(1-t)s2) dt = τ 2 (s 2 -s 1 ) (s 3 -s 1 ) (s 3 -s 2 ) 1 0 1 0 (1 -t) e -τ (ts1+(1-t)(θs3+(1-θ)s2)) dθdt.
On the spectral abscissa and rightmost-roots of TDS This means that

α (s 1 , s 2 , s 3 , τ ) = -1 τ 2 Q (s 1 , s 2 , s 3 , τ ) (4.6)
where

Q (s 1 , s 2 , s 3 , τ ) = 1 0 1 0 (1 -t) e -τ (ts1+(1-t)(θs3+(1-θ)s2)) dθdt > 0.
Now, let us show the negativeness of s 1 , s 2 , s 3 . From (4.4) and (4.6) , we get that

   (s 3 -s 2 ) [s 3 + s 2 + a] = -α [e -τ s3 -e -τ s2 ] > 0 (s 2 -s 1 ) [s 2 + s 1 + a] = -α [e -τ s2 -e -τ s1 ] > 0 (s 3 -s 1 ) [s 3 + s 1 + a] = -α [e -τ s3 -e -τ s1 ] > 0.
Since s 3 < s 2 < s 1 , we obtain the following equations:

   s 3 + s 2 < -a s 2 + s 1 < -a s 3 + s 1 < -a (4.7) 
System (4.7) is reduced to the single inequality s 2 + s 1 < -a, from which we deduce that s 3 < s 2 < -a 2 , and s 1 < -as 2 . Since the mapping τ → a(s 1 , s 2 , s 3 , τ ) + s 2 is continuous and increasing from -∞ to -s 1 when τ varies in R + * , this means that a(s 1 , s 2 , s 3 , τ ) + s 2 takes positive values if and only if s 1 < 0. This means that the equation a(s 1 , s 2 , s 3 , τ ) + s 2 = 0 has a unique root, τ 0 > 0. Now, to study the stability of the system, we need to study the dominancy of s 1 by using an adequate factorization of the quasipolynimial (4.2), so we have:

s 2 + as + b + α exp (-τ s) = (s -s 2 ) (s -s 1 ) s 2 + as + b + α exp (-τ s) (s -s 2 ) (s -s 1 ) = (s -s 2 ) (s -s 1 ) P (s, s 1 , s 2 , τ ).
The factor P (s) := P (s, s 1 , s 2 , τ ) can be rewritten under the more suitable form

P (s) = 1 + (a + s 2 + s 1 ) s + b -s 2 s 1 (s -s 2 ) (s -s 1 ) + α exp (-τ s) (s -s 2 ) (s -s 1 ) = 1 - s 2 2 + as 2 + b (s 1 -s 2 ) (s -s 2 ) + s 2 1 + as 1 + b (s 1 -s 2 ) (s -s 1 ) + α exp (-τ s) (s 2 -s 1 ) (s -s 2 ) - α exp (-τ s) (s 2 -s 1 ) (s -s 1 ) = 1 + α exp (-τ s) (s 2 -s 1 ) (s -s 2 ) - α exp (-τ s 2 ) (s 2 -s 1 ) (s -s 2 ) + α exp (-τ s 1 ) (s 1 -s 2 ) (s -s 1 ) - α exp (-τ s) (s 2 -s 1 ) (s -s 1 )
.

Using the integral form of the remainder in Taylor's Theorem, we get

P (s) = 1 + αe -τ s2 e -τ (s-s2) -1 (s 2 -s 1 ) (s -s 2 ) + αe -τ s1 1 -e -τ (s-s1) (s 2 -s 1 ) (s -s 1 ) (4.8) = 1 + αe -τ s2 -τ (s -s 2 ) 1 0 e -τ (s-s2)t dt (s 2 -s 1 ) (s -s 2 ) - αe -τ s1 -τ (s -s 1 ) 1 0 e -τ (s-s1)t dt (s 2 -s 1 ) (s -s 1 ) = 1 + ατ (s 2 -s 1 )
1 0 e -τ ts e -τ (1-t)s1e -τ (1-t)s2 dt.

Using again the following integral representation

exp (-τ (1 -t) s 1 )-exp (-τ (1 -t) s 2 ) = -τ (s 1 -s 2 ) 1 0 exp (-τ (1 -t) (θs 2 + (1 -θ) s 1 )) dθ we get P (s, s 1 , s 2 , τ ) = 1+ατ 2 1 0 1 0 (1 -t) exp (-τ t (s -s 1 )) exp (-τ [s 1 + θ (1 -t) (s 2 -s 1 )]) dθdt.
To prove the dominancy property, namely s 1 is the rightmost root of (4.2), let us assume that there exists some s 0 = ζ + jη a root of (4.2) such that ζ > s 1 . Then P (s 0 , s 1 , s 2 , τ ) = 0 and for any t > 0, one has: exp

(-τ [t (ζ -s 1 )]) < 1. So 1 = -ατ 2 1 0 1 0 (1 -t) exp (-τ t (s 0 -s 1 )) exp (-τ [s 1 + θ (1 -t) (s 2 -s 1 )]) dθdt = Re -ατ 2 1 0 1 0 (1 -t) exp (-τ t (s 0 -s 1 )) exp (-τ [s 1 + θ (1 -t) (s 2 -s 1 )]) dθdt ≤ |α| τ 2 1 0 1 0 (1 -t) exp (-τ t (ζ -s 1 )) exp (-τ [s 1 + θ (1 -t) (s 2 -s 1 )]) dθdt < |α| τ 2 1 0 1 0 (1 -t) exp (-τ [(1 -θ (1 -t)) s 1 + θ (1 -t) s 2 ]) dθdt. (4.9) Using the relation 1 -θ (1 -t) = t + (1 -t) (1 -θ) , we get exp (-τ (1 -θ (1 -t)) s 1 ) = exp(-τ ts 1 ) exp (-τ (1 -t) (1 -θ) s 1 ) .
Moreover, since s 3 < s 1 , we obtain, for every t ∈ (0, 1) and every θ ∈ (0, 1) , the following estimation exp

(-τ (1 -t) (1 -θ) s 1 ) < exp (-τ (1 -t) (1 -θ) s 3 ) .
On the spectral abscissa and rightmost-roots of TDS Summing up, using (4.6) , inequality (4.9) becomes

1 < |α| τ 2 1 0 1 0 (1 -t) exp(-τ ts 1 ) exp (-τ (1 -t) [(1 -θ) s 3 + θs 2 ]) dθdt = |α| τ 2 Q = 1,
which is inconsistent. This proves the dominancy of s 1 . The proof of Theorem 4 is achieved. 2. If s 3 > -R, the connected structure of the envelope is preserved independently of the delay τ . For τ sufficiency large, the envelope takes the shape of a "vertical Omega" Ω never closing, positioned in s 3 , and which is carried by the centered circle of radius R, see Figure 6 (left).

3. If s 3 = -R, the connected structure of the envelope is still preserved as in the second case. Here the "vertical Omega" structure is also observed. This structure is deformed when the delay increases. Indeed, the angular points are getting closer and closer, until forming a node at s 3 , see Figure 6 (right). 

Concluding remarks

The property of multiplicity induced-dominancy for spectral value of time-delay systems of retarded type is extended through this work. More precisely, it is shown, for reduced order Time-delay systems, that assigning P S B real spectral values (not necessarily multiple root) make them the rightmost roots of the corresponding quasipolynomial. Furthermore, if they are set to be negative, this guarantees the asymptotic stability of the trivial solution. This new result emphasizes a new delayed controller-design based on the trivial solution's decay rate assignment.
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 251 Figure 1: Envelope curve of the characteristic equation (3.2). Case when s 0 = -2 is a double root. The critical delay τ = 0.5 corresponds to the value that vanishes the coefficient a = 2 -1τ , see[START_REF] Boussaada | Multiplicity and stable varieties of timedelay systems: A missing link[END_REF].
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 2 Figure 2: Envelope curve of the characteristic equation (3.2). Case of co-existence of two simple real roots s 1 = -1, s 2 = -2.
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 2101813 Figure 3: (Left) Decreasing behavior of the envelope curve versus τ < τ * * . (Right) Increasing behavior of the envelope curve versus τ ≥ τ * * . Case s 1 = -1 and s 2 = -2
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 4 Figure 4: Asymptotic behavior of the roots of the envelope curve. Case s 1 = -1, s 2 = -2 show that ∆ -(τ * * ) + e -1 > 0, ∀t ∈ R * + -{1}. Thanks to the intermediate values theorem, there exists τ * ∈]0, τ * * [ such that ∆ -(τ * ) + e -1 = 0.
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 2 →∞ x + (τ ) = |s 1 |. Let us consider the equation of the envelope curve (3.14). In the region x > s 1 , we have lim τ →∞ |b(s 1 , s 2 , τ )| exp (-xτ ) = 0, and lim τ →∞ |a(s 1 , s 2 , τ )| = |s 1 |.

3 ) s 2 3 + 2 + 1 +

 3321 can be easily obtained by solving the system   as 3 + b + αe -s3τ = 0 s 2 as 2 + b + αe -s2τ = 0 s 2 as 1 + b + αe -s1τ = 0. (4.4) Now, let us study the sign of α. Recall that
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 321225 Figure 5: Envelope curve of the characteristic equation (4.2). Case s 1 = -2, s 2 = -3, s 3 = -13.
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 6226 Figure 6: Envelope curve of the characteristic equation (4.2). Case s 1 = -2, s 2 = -3, and s 3 ≥ -R.
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