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Abstract 13	

Health monitoring and diagnosis of photovoltaic (PV) systems is becoming crucial to 14	

maximise the power production, increase the reliability and life service of PV power plants.  15	

Operating under faulty conditions, in particular under shading, PV plants have remarkable 16	

shape of current-voltage (I-V) characteristics in comparison to reference condition (healthy 17	

operation). Based on real electrical measurements (I-V), the present work aims to provide a 18	

very simple, robust and low cost Fault Detection and Classification (FDC) method for PV 19	

shading faults. At first, we extract the features for different experimental tests under healthy 20	

and shading conditions to build the database. The features are then analysed using Principal 21	

Component Analysis (PCA). The accuracy of the data classification into the PCA space is 22	

evaluated using the confusion matrix as a metric of class separability. The results using 23	

experimental data of a 250 Wp PV module are very promising with a successful classification 24	

rate higher than 97% with four different configurations. The method is also cost effective as it 25	

uses only electrical measurements that are already available. No additional sensors are 26	

required.	 27	
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1. Introduction 30	
 31	

In recent years, photovoltaic (PV) systems have received considerable attention thanks to 32	

the development of PV technologies and the growing demand for renewable energy in a wide 33	

range of applications (satellites, telecommunication, electric vehicles, homes, agriculture…).  34	

Solar PV energy has become the third most important renewable energy after hydro and 35	

wind energy with a global installed capacity of 402 GWp by the end of 2017 (REN21, 2018).  36	

The efficiency of PV systems is limited to 15–20% (Maghami et al., 2016). In addition, PV 37	

modules present an average performance degradation rate of 0.923% per year according to the 38	

study of Tabatabaei et al. (2017), which has been evaluated for mono-crystalline silicon (mc-39	

Si) PV systems. More recently, for the same PV technology, Quansah et al. (2018) reported an 40	

annual degradation rate of maximum produced power of 1.54%.  41	

PV systems are subject to various types of faults. These faults can be related to many 42	

factors such as material interactions (corrosion of connectors, yellowing, browning of 43	

encapsulation material and discoloration of busbars…) and environment factors such as 44	

soiling and shading. Soiling refers to the accumulation of snow, dirt, dust, leaves, pollen, and 45	

bird droppings on PV panels (Maghami et al., 2016). Shading may be a result of soiling or 46	

occurs due to obstructions caused by trees, buildings or chimneys. Thus, PV cells or modules 47	

may be partially or completely shaded during their operation. Shading is one of the most 48	

recurrent and damageable faults. In fact, this condition induces important degradation of PV 49	
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system performances. Partial shading can lead to more than 10-20% of annual reduction in 50	

power production in residential applications as shown by Deline et al. (2011). Moreover, the 51	

presence of localized shading on PV modules leads to an overheating of the shaded cells 52	

despite the presence of bypass diodes. Using the infrared thermography (IRT) many studies 53	

prove the presence of hot spot zones on the shaded PV cells (Basri et al., 2015; Tsanakas et 54	

al., 2016). Thus, the temperature increase in these zones leads to a thermal power dissipation 55	

(Bressan et al., 2016), reduces considerably the PV module lifetime and can damage the 56	

shaded cells (Brooks et al., 2015). The detection of such undesirable operating conditions has 57	

become mandatory for obvious safety and economic reasons.  58	

a) Existing PV diagnosis approaches in literature  59	

Several PV diagnosis and monitoring studies have been developed. However, the used 60	

techniques often require a relatively high cost in equipment or complexity in the diagnosis 61	

process development.  In general, they are three main approaches used for PV fault diagnosis: 62	

image-based, model-based and process history-based also known as data-driven.  63	

The common image-based PV diagnosis methods are the ElectroLuminescence (EL) and 64	

the IRT imaging under steady state conditions. These methods are becoming increasingly 65	

popular, since they offer efficient solution not only for detecting the fault occurrence within a 66	

PV plant, but also for isolating accurately the fault. Such optical inspection techniques need 67	

appropriate and expensive equipment (thermal camera, silicon charged coupled device (CCD) 68	

camera…). EL-based diagnosis method is rather efficient to indicating the existence and the 69	

location of contact failures; cell cracks and shunts, inactive PV cells or sub-strings (due to 70	

disconnection or shunted bypass diodes) and potential induced degradation (PID) with high 71	

accuracy (IEA, 2014). Nevertheless, this technique requires particular test conditions. A 72	
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camera with high resolution and a high pass filter are required. In addition, electroluminescent 73	

inspections must not be done under maximum power point (MPP) conditions; they are 74	

performed either in dark environment or after interrupting the PV system’s operation. To 75	

perform the EL technique, the PV module must be supplied by a DC-current to stimulate 76	

radiative recombination in the PV cells (IEA, 2014). Thus, in the case of large PV 77	

installations, the experimental setup may become complex, costly and time-consuming. From 78	

this point of view, this technique appears more practical for small PV plants. IRT 79	

measurements are conducted outdoors and at MPP operation. The majority of faults detected 80	

by this method, which are similar to those detected by EL-imaging, have a significant effect 81	

on the defective PV module’s thermal behaviour; their signature appears as marked and 82	

inhomogeneous points in the temperature distribution on the surface of the PV module. IRT-83	

based method is fast, real time and effective to detect and exactly locate the faults thanks to 84	

the thermal signature, and without disturbing or interrupting the PV system operation.  85	

However, IRT method needs also specific conditions to be performed (sunny cloudless day, 86	

high irradiation, low ambient temperature and wind speed, accurate angle of view…) for 87	

correct and accurate temperature measurement (IEA, 2014). 88	

Model-based approaches generally use an analytical model of the PV system to estimate 89	

the parameters, which will be compared to the measured ones obtained from real data. The 90	

generated residuals are used as fault features for diagnosis purposes. Recently, some model-91	

based techniques rely on the PV power losses analysis. These modelling methods need 92	

knowledge of both irradiance and PV generator temperature to predict the output power of the 93	

PV system (Chouder and Silvestre, 2010; Kang et al., 2010). More recently, model-based 94	

techniques use the empirical parameters (fill factor (ff), short-circuit current (Isc), open-circuit 95	
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voltage (Voc)…) that are calculated from the shape of the current-voltage (I-V) curves 96	

(Garoudja et al., 2017; Ali et al., 2016; Spataru et al., 2015). The main advantage of these 97	

methods is that they have low hardware requirements and are applicable to a wide range of 98	

PV systems. If the designed model can capture the main physics of the system, these methods 99	

are efficient for shading detection. 100	

Data-driven approach is based on data history, collected during operation. Fault features 101	

are extracted and analysed for fault diagnosis. Different techniques can be used ranging from 102	

signal processing to computational intelligence and machine learning. They do not require any 103	

explicit model of the process under monitoring. Among signal processing techniques, time-104	

domain reflectometry (TDR) (Takashima et al., 2008) is used to detect and identify open-105	

circuit faults and spread spectrum time-domain reflectometry (SSTDR) techniques are used to 106	

detect catastrophic faults, ground-faults and PV arc faults (Alam et al., 2013; Alam et al, 107	

2014). These techniques are costly and require a specific external signal function generator. 108	

Moreover, they are not used to detect and identify shading faults. Other techniques extract the 109	

fault features from the I-V characteristic of PV module, string or array. Based on the analysis 110	

of the first and the second derivatives of I-V curves, Bressan et al. (2016) detect the activation 111	

of bypass diodes that indicate the presence of shading fault.  This fault is also detected by 112	

comparing the I-V curves in normal and shaded operations as studied by El Basri et al. 113	

(2015). These methods are simple and effective to detect shading faults, but they are not able 114	

to identify and classify the type of shading patterns.  115	

Artificial neural network (ANN) and fuzzy classifier are the most used methods for 116	

shading fault detection as described in (Dhimish et al., 2017; Spataru et al., 2015). However, 117	
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these methods suffer from several disadvantages like requiring a large amount of training data 118	

for accuracy detection, time-consuming training step and sensitivity to unbalanced weather 119	

conditions. In addition, this data is obtained for a specific PV installation. Thus, the rules are 120	

strongly tied to the system under study. Another disadvantage of these techniques is that the 121	

trained data need to be updated periodically. This is due to the high variability of operating 122	

conditions such as the environment variation or solar cells degradation and aging. This means 123	

that a trained data in low irradiance and low temperature condition for example, may 124	

misclassify the data and generate false alarms for healthy operating conditions if the 125	

irradiance and the temperature are higher.  126	

However, taking advantage of the PV systems during operation, a huge quantity of data 127	

can be collected for analysis. Therefore, data-driven modelling is relevant, and features can be 128	

extracted then analysed for fault diagnosis purposes. In the field of features extraction 129	

techniques, Principal Component Analysis (PCA) is one of the most common multivariate 130	

statistical tools used for data representation and classification (Jollife, 2002).  131	

PCA has been proved in several studies to be effective and powerful for the diagnosis in 132	

different applications and shows good classification performances as in many studies (Harkat 133	

et al., 2006; Harmouche et al., 2012; Gharavian et al., 2013; Harmouche et al., 2014; Adouni 134	

et al., 2015; Harmouche et al., 2015). This technique is very attractive for applications 135	

involving complex systems. To the best of our knowledge, it has not yet been used for PV 136	

systems diagnosis in such operating conditions. 137	

b) Paper Contribution 138	
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We propose in this study to investigate the effectiveness of shading fault diagnosis using PCA 139	

for the analysis of the features extracted from real I-V curves. The proposed method is applied 140	

offline, for the case of a PV module. Based on the obtained results, the PCA’s performances 141	

for fault detection and classification are discussed.  142	

Here are the research contributions:  143	

 144	

- For the first time, an implicit PCA model is developed for PV system fault 145	

detection and classification (FDC). This model has several advantages over the 146	

reported models in literature, such as simplicity and low training cost. Moreover, this 147	

model leads to good and clear data visualization. 148	

- Compatibility with the existing PV systems. The FDC method can operate with 149	

any connected PV system, thanks to the integration of online I-V tracers for the new 150	

existing PV inverter technologies. It takes the advantage of available measurements in 151	

such existing systems with no additional hardware.   152	

- In addition to its ability to discriminate the healthy data from the faulty ones, 153	

the proposed approach shows a good classification capability for the same category of 154	

fault  155	

(shading). In fact, the different shaded configurations are well classified using the 156	

PCA algorithm. 157	

 158	

c) Paper outline 159	
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The paper is organised as follows; in section 2, preliminary simulation results are presented 160	

to verify the ability of using I-V curve and data processing with PCA to separate different 161	

faulty conditions. In section 3, a brief description of the experimental setup is done and the 162	

experimental tests in healthy and faulty operations are presented. In section 4, the fault 163	

detection methodology is described and implemented. The data processing and the 164	

evaluation’s results are also detailed both in the training and the validation steps. Section 5 165	

concludes the paper.  166	

2. Preliminary studies: analysis of the I-V curves for different faults 167	
 168	

For PV systems, the degradation (or the faulty) modes are reflected differently in the I-169	

V curve, which has a particular shape under shaded condition due to the activation of bypass 170	

diodes. In the following, we consider a PV module with the same specifications as the one 171	

considered in this paper and a series resistance of 0.3 Ω at Standard Test Conditions (STC). 172	

To show the effects of some of the PV faults on the I-V curve, we present in Fig.1 the 173	

simulation results obtained under healthy conditions, partial shading and degradation of the 174	

series resistance. Under shading fault, we consider that the three sub-strings receive non-175	

uniform irradiations. We can observe from Fig.1 that a degradation of the series resistance 176	

mainly modifies the I-V curve in the region close to the open circuit voltage Voc (Rodríguez et 177	

al. 2015). The same effect can be observed in the case of potential-induced degradation (PID) 178	

(Spataru et al. 2015). 179	

 180	
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 181	
Fig. 1: PV faults’ signatures on the I-V curve 182	

 183	

From Fig.2 we can deduce that the projection of the data in the new reference frame spanned 184	

by (PC1, PC2) that the partial shading fault could be clearly separated from the degraded 185	

series resistance. However to separate the healthy case from the degraded series resistance, 186	

additional data processing or/and additional information should be done or included.  187	

																	 	188	
Fig. 2: PCA results in the subspace spanned by PC1 and PC2 for the simulated PV faults 189	

	190	

In the following, we will focus on the shading fault detection with experimental data. Also 191	

more details will be provided on the features selected for PCA evaluation. 192	
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3. PV system and shading condition 193	
 194	

The common models used to reproduce the I-V characteristic of a PV cell are based on the 195	

one diode or two diodes equivalent electrical circuit (Askarzadeh and Rezazadeh, 2012). 196	

Other models have been developed to offer a better modelling of the physical phenomena in a 197	

PV cell (Tossa et al., 2014; Bishop 1988). The classical single diode model is generally used 198	

since it is adequate at reproducing the main characteristics of a PV cell. Shading the total or 199	

the partial PV system surface is a very serious concern in such systems (Quaschning and 200	

Hanitsch, 1996; Patel and Agarwal, 2008). In order to mitigate the shading effects, PV 201	

systems are equipped with bypass diodes. These diodes become operational when the PV cells 202	

are reverse biased under shading condition. The activation of these diodes creates a short 203	

circuit of the shaded cells, which limits their reverse voltage and thus the dissipated power. In 204	

practice, a single bypass diode is usually connected across a group of 18-20 cells. 205	

3.1. Experimental set-up description 206	
 207	

The evaluation of the proposed fault detection technique is carried out using real data 208	

generated from the FL60-250MBP PV module. The main parameters are given in Table 1 209	

under Standard Test Condition (STC) (1000 W/m2, 25 °C).  It is composed of 60 mc-Si based 210	

PV cells, connected in series and gathered into three sub-strings of 20 PV cells for each one. 211	

This module is equipped with three bypass diodes; each one is mounted in anti-parallel to 212	

protect a PV sub-string.   213	

In this experiment, the I-V curves are obtained online using a variable load (Programmable 214	

DC electronic load Chroma 63600), which provides 101 data from open-circuit voltage to 215	
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short-circuit current for each I-V curve. Online measuring methods of the I-V characteristic 216	

can be also done using other real devices. In fact, their main principle is to apply a variable 217	

impedance, which changes from a very large (or small) value to a small (or large) one in order 218	

to extract voltages and currents values between open circuit voltage and short circuit current. 219	

Many examples of these methods can be found in the literature. Varying the impedance can 220	

be created by using resistive load (Van Dyk et al, 2005), charging or discharging a capacitor 221	

(Benzagmont et al., 2018; Mahmoud 2006; Muñoz and Lorenzo, 2006; Spertino et al., 2015) 222	

or using an electronic switch like MOS transistor (Kuai and Yuvarajin, 2006). The use of one 223	

device depends on the PV power and the desired accuracy of measurements. For example, the 224	

use of the capacitive load is recommended for measuring in PV installations from 2 up to 50 225	

kWp (IEC, 1995). Considering 101 samples in this experiment is enough to sweep the I-V 226	

curve of the module under study. A reference cell (RG100 by SOLEMS) is used to measure 227	

the solar irradiance captured by the PV module area and a 4-wire Pt100 probe, bonded on the 228	

back face of the PV module, is used to measure the temperature.  229	

A data acquisition system is installed and a computer is used for supervision and data 230	

visualization using LABVIEW®. This experimental setup is installed at the French national 231	

observatory SIRTA (Haeffelin et al., 2005). A picture and a diagram describing the 232	

instrumentation are displayed in Fig.3. 233	
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 234	

Fig. 3: Layout of the experimental setup 235	

 236	
Table 1 237	
PV module specifications at STC 238	
Symbol Quantity Value 

mppP  Maximum Power (Wp) 250 

mppI  Current at mppP (A) 8.21 

mppV  Voltage at mppP (V) 30.52 

scI  Short-circuit Current (A) 8.64 

ocV  Open-circuit voltage (V) 37.67 

S Area of the module (m2) 1.64 

 239	

3.2.  Data Acquisition  240	
 241	

Five sets of experimental tests have been conducted to assess the fault detection approach. 242	

They have been realised under several operating conditions:  243	

	

	

PV	module	under	test	

Reference 
cell RG100 

4-wire Pt 100 
probe, class 
A 

FL 60-250 
MBP PV 
Module 

Variable load  

Programmable DC 
Electronic Load 
Chroma 63600 

+ 

- 

𝑉"#  𝐼"# 

Solar irradiation  
PV module temperature  Data 

acquisition NI 

Data transfer 

Data visualization 
and analysis 

HMI 
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• One healthy mode  244	

• Four faulty modes with different shading conditions: for each set, the shading is 245	

applied by covering the PV cells with a survival blanket. 246	

The experimental data is redundant. We have recorded three measurements (Am, Bm and 247	

Cm) of a complete I-V characteristic for each set of healthy and faulty tests. The collected data 248	

sets Am and Bm will be used for the training step while Cm will be used for validation as 249	

explained in section 4. Each I-V curve is composed of 101 samples. It is recorded in one 250	

minute. 101 samples are enough for our system to sweep a complete I-V characteristic. 251	

Generally, the number of samples needed to extract these characteristics is selected according 252	

to the size of the PV system and to the mismatching conditions in order to clearly show the 253	

deviations and the inflection points on the I-V curve. Despite the short duration between 254	

measurements, the irradiation can change significantly. For each I-V curve (Fig.4 and Fig.5), 255	

the three cases Am, Bm and Cm are drawn in blue, red and mustard lines respectively. 256	

3.2.1. Healthy condition  257	
 258	

Fig.4 illustrates the experimental I-V curve measured three times when the PV module 259	

operates in healthy condition and clear condition (more than 800 W/m2). As the PV module 260	

short-circuit current is proportional to the solar irradiation, it produces less current when 261	

receiving low irradiation level. We notice that these results are consistent with the datasheet 262	

information given under STC (Table 1).  263	



14	
	
	

	

	

	264	
	265	

Fig. 4: Experimental I-V curve under healthy (normal) condition 266	
 267	

 268	
3.2.2.  Shading conditions  269	

 270	
 271	

The four configurations of shading, the active diodes and the I-V characteristics (measured 272	

three times for each configuration) are illustrated in Fig.5. In shaded conditions, all the I-V 273	

curves show multiple peaks explained by the state of the bypass diodes relative to each type 274	

of the applied shading. These peaks prove the efficiency degradation of the PV system under 275	

shading since its maximum produced power is reduced. As it is partially shaded, the PV cells 276	

of the module under test are under non-uniform irradiation. We note that for each I-V 277	

characteristic, the solar irradiation displayed in the legend is the one measured with the 278	

reference cell (RG100). The behaviour of the experimental curves differs according to the 279	

shading configuration (row level, column level and number of shaded cells) and to the 280	

environmental variations (temperature and solar irradiation). Fig.5a shows the first shading 281	

configuration; one PV sub-string is partially shaded. The shading of 12 cells leads to the 282	

activation of one bypass diode so the deactivation of the faulty sub-string. This is confirmed 283	

with the voltage steep variation due to the lost of this sub-string. (Fig.5e). For the rest of the 284	
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configurations, two bypass diodes are activated, as two sub-strings are partially shaded for 285	

each configuration. According to the severity of the shading fault, we have two cases: the 286	

diodes are conducting simultaneously (Fig.5c) and there is one voltage peak (Fig.5g), or they 287	

are activated one after the other (Fig.5b and Fig.5d) and we observe two peaks in the voltage. 288	

 
 

 
 

 
 

(a) (e) 

(b) (f) 

(g) 
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 289	

Fig. 5: Shading configurations (a) 1, (b) 2, (c) 3, (d) 4, and experimental I-V curves (e), (f), (g), (h) 290	

	291	

3.3. Data reproducibility 292	
 293	

For our evaluation, the I-V curve is acquired three times for each experimental test. The 294	

main idea behind the data redundancy is to create a database for the diagnosis algorithm. This 295	

database will be divided into training data and test data. The experimental tests show that the 296	

shading faults strongly modify the shape of the I-V characteristics. Therefore, we investigate 297	

in this paper the use of area under the curve (AUC) as a metric to analyse the differences 298	

between the redundant data of each experimental test. It is computed based on the PV current 299	

and PV voltage. We consider the normalized current with respect to the measured irradiation. 300	

An approximation of the AUC is expressed as following:  301	

1 , , 1 , 1 1
1[( )( )] ( )
2 j j norm j norm j norm j j j

i
AUC v v i i i v v− − − −= − − + −∑  (1) 

	  

	 STC
norm

mes

Gi i
G

=  (2) 

	  
																																								302	

          
 

(d) (h) 

(c) 
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where STCG and mesG are respectively the irradiations for STC and the measured one. 303	

The standard and relative errors of the AUC computed for each test are given in Table 2. 304	

We can first notice that the highest AUC values are obtained under healthy condition. This is 305	

consistent with the I-V curves. This area mainly varies with reference to the test condition 306	

(healthy or faulty) and to the shading fault type.  307	

The replication of the measurements shows very little deviations between the I-V data 308	

obtained for each test, which is consistent with the one-minute measurement process. In fact, 309	

the solar irradiation changes little for a maximum rate of 13 W/m2 in healthy case and 25 310	

W/m2 for the first faulty configuration, 50 W/m2 for the second, 53 W/m2 for the third and 15 311	

W/m2 for the last one. The maximum relative error accounted for the healthy operation is 312	

4.69% and 2.36% for the faulty one. According to this variability, we assume that the 313	

database is representative of all operating conditions and can be used for evaluating the fault 314	

detection. 315	

Table 2 316	
Evaluation of area under the curve, the standard and the relative errors for the experimental tests 317	
 318	

 
 Healthy 

condition 
Shading configurations  

    1                     2      3                  4 

Area under the 
curve 

Am 299.62 153.34 83.06 71.64 157.15 

Bm 296.49 154.26 82.34 72.08 160.87 

Cm 285.56 155.04 82.16 72.10 159.84 

 
      

Standard error 

   ∆AmBm 3.13 0.92 0.72 0.44 3.72 

   ∆AmCm 14.06 1.70 0.90 0.46 1.03 

   ∆BmCm 10.93 0.78 0.18 0.02 2.69 



18	
	
	

	

	

 
 Healthy 

condition 
Shading configurations  

    1                     2      3                  4 

 
      

Relative error 
(%) 

 ∆AmBm/A 1.04 0.60 0.86 0.61 2.36 

∆AmCm/A 4.69 1.10 1.08 0.64 0.65 

∆BmCm/B 3.82 0.50 0.21 0.02 1.67 

 319	

 320	

4. Shading fault detection  321	

The flowchart of the method is displayed in Fig.6. The first step consists in the modelling. 322	

The training data represents 67% of the experimental measurements determined for the 323	

healthy and all cases of PV shading faults. The second step consists in the data pre-324	

processing. The PV power and efficiency are used as additional information to build the 325	

matrix X . Then, the logarithm function is applied to each variable of this database. Finally, 326	

the features are extracted and analysed.   327	

Modelling : Data-driven I-V curves acquisition

Data pre-processing

Features extraction

Features analysis

I,V,P, ƞ

PCA for data 
representation

PCA for data 
classification

Fault Detection and 
Classification 

Fault Detection and 
Classification 

	328	

Fig. 6: Flowchart of the FDC algorithm 329	
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	330	

When dealing with I-V curves in real environmental conditions, it might be difficult to 331	

distinguish healthy operations from faulty ones. Therefore, to ensure reliable fault detection 332	

one should find an appropriate workspace in which the data’s separability is highlighted. 333	

Indeed, PCA is known to be an efficient multivariate statistical tool for this purpose.  334	

The PCA is applied to the matrix X  to get the principal scores that form the PCA space for 335	

data representation and classification. 336	

4.1. Principal Component Analysis formulation  337	

Principal Component Analysis (PCA) is a multivariate statistical technique that seeks in the 338	

multidimensional space of system variables the most dominating dimensions to re-express the 339	

multivariate database built from a large number of measurements recorded at different times. 340	

The new dimensions are uncorrelated so the reduced subspace acts like a denoising filter and 341	

keeps the underlying “latent structures” in the data. This new subspace is denoted the principal 342	

subspace or the ‘representation’ subspace. Its complementary subspace into which noises and 343	

outliers are rejected is termed the residual subspace. Analytically, PCA searches orthogonal 344	

directions, which contain the maximum variance of the projections for the data set points. The 345	

PCA task is formulated by a problem of the eigenvector decomposition of the data covariance 346	

matrix (Jollife, 2002).  347	

 348	
The data consists of measurements collected at N different sampling times of M variables. 349	

The time points represent the observations. PCA uses a linear combination of the original 350	

variables to build the new variables while keeping maximum variance information. The first 351	
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principal components, which span the principal subspace, are given by the first l dominant 352	

eigenvectors of the data covariance matrix. They are associated to the l highest eigenvalues. 353	

The last non-retained eigenvectors (M – l) define the residual subspace. In the representation 354	

subspace containing the most significant variations, the eigenvectors are denoted loading 355	

vectors and the projection of the data on these loading vectors are called principal component 356	

scores. These searched directions are called principal components (PCs), each one being 357	

characterised by a loading vector and a score component. The percentage of the variance of 358	

data contained in each PC is expressed by its corresponding eigenvalue. Each PC is aligned in 359	

a direction corresponding to the largest variance of the data, starting with the first PC. Principal 360	

components are therefore ordered from the most energised associated to the highest 361	

eigenvalue, to the less energised associated to the lowest eigenvalue. Based on stop criteria the 362	

principal subspace is spanned with most energised PCs while the residual one is spanned with 363	

the remaining PCs. For this purpose, many stopping criteria have been proposed in the 364	

literature such as the cumulative percentage of total variance (CPV) (Chiang et al., 2001) and 365	

minimizing the Variance of Reconstitution Error (VRE) (Qin et al., 2000). A comparison 366	

between 11 methods to determine the number of most energised PCs has been given by Valle 367	

et al. (1999). From the data collected in the healthy operating mode of the process, PCA is 368	

applied and the loading vectors are used as references to design the model. The scores or their 369	

statistical distributions can be also used to design the implicit model. When new data is 370	

collected, it is projected in the subspace (principal or/and residual). The deviation from the 371	

reference is then measured and analysed to assess the fault occurrence. 372	

Let us consider N observations of M process variables gathered into the original data matrix373	

X [N×M ]  given by: 374	



21	
	
	

	

	

                                    375	
X [N×M ] = [x1,...,xk ,...,xM ]  (3) 

 376	

Where x j ( j=1,..N )  is the thj  variable.  377	

 378	
At first, it consists in centring (zero mean) and reducing (unit variance) the variables for each 379	

observation k of x j ( j=1,..N) :  380	

(x
i
)
c
(k) =

x
i
(k) − (x

i
)

(σ i )
	

 

(4) 

where ( )j cx  is the centred and reduced variable, ( )jx and ( )jσ  are respectively the mean value 381	

and the standard deviation of x j ( j=1,..M ) . 382	

 383	
We can therefore define the new data matrix as: 384	

 385	
(Xc )[N×M ] = [(x1)c ,...,(xk )c ,...,(xM )c ] 	 (5) 
 386	
The covariance matrix is then calculated as:  387	

 388	
1
1

T
c cC X X

N
=

−
 (6) 

 389	
The quality of the representation for the collected measurements for fault diagnosis 390	

purposes relies on the accuracy of the PCA model. This model depends on the retained PCs to 391	

represent the data variability. Let us denote P the column matrix of loading vectors, which are 392	

arranged in the descendent order of their corresponding eigenvalues. The principal component 393	

scores are obtained by the projection of the original data centred and reduced on the new space 394	

spanned with P. The matrix T[N×M ] of the principal component scores is defined by:  395	

T[N×M ] = (Xc )[N×M ]P[M ×M ] = [t1 ,...,tk ,...,tM ]  (7) 
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 396	

4.2. Data pre-processing and features extraction  397	

The selection of the variables is very important to obtain the best representation and 398	

discrimination of the data. In order to detect the shading fault, Fadhel et al. (2018) have used 399	

the voltage, the current and the power of the PV module as variables. Thanks to PCA, they 400	

have successfully distinguished the healthy data from the faulty one. However, using these 401	

variables in our case has led to a severe overlapping in the space spanned with the principal 402	

scores. This is due to the variation of the irradiance between two measurements for the same 403	

operating condition and also to the common levels of voltage between the PV curves obtained 404	

under shading faults (Fig.5). In order to have a fault diagnosis, robust to environmental 405	

changes and sensitive to fault occurrence, we have: 406	

ü normalised the PV voltage and power with respect to the PV efficiency, 407	

ü used the log function.  408	

The selection of these features allows us to use experimental measurements obtained in 409	

non-controlled irradiance operating conditions without a huge influence of this environmental 410	

parameter.   411	

The principal component analysis is finally applied to the training data matrix 412	

[1010 3] / / ]log[X v Pi× η η=  composed of 1010 observations of 3 variables (Fig. 7) where P   413	

and η  are respectively the power and the efficiency. It consists of 5 sub-matrices of 101*2 414	

training observations. The efficiency is computed for each couple of observation ( , )i v  and is 415	

expressed as follows:  416	
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100
mes

P
G S

η =  (8) 

                                417	

where S is the area of the PV module under test. 418	

 419	

v / η     i  P/ η 
   
   
   

   
   
   

 420	

                                         Fig. 7: Data set design for PCA analysis 421	

The data set generated for both healthy and shading conditions during the experimental 422	

tests is composed of 1515 samples. The training step is performed with 1010 samples using 423	

the first two measurements Am and Bm of each test. The main task of this step consists in the 424	

construction of the PCA model from the learning data set. This implicit model will be used for 425	

validation of the test data set.  426	

4.3. Features analysis in the training step  427	

Table 3 presents the eigenvalues and their relative contributions. The first two PCs retain 428	

99.99% of the information. Projecting the training data into the PCA subspace spanned with 429	

PC1 and PC2, PC2 and PC3, PC1 and PC3 gives the data scatter displayed in Fig.8a, Fig.8b 430	

and Fig.8c respectively. The inclusion of the three principal components in the PCA space 431	

used to project the data gives the 3D representation of Fig.8d. The representation in the 432	

subspace spanned with the first two PCs is able to detect and identify the fault. We can 433	

…
	

…
	

Healthy 

Faulty 
configurations 1 

to 4 
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observe four classes: one healthy named class C0 and 3 faulty obtained from 4 faulty 434	

configurations as given in Table 4. Indeed, shading configurations 2 and 3 correspond to the 435	

simultaneous activation of two bypass diodes. The healthy class is well separated from the 436	

faulty classes. Those ones are distinguished with reference to the fault size and location. 437	

 438	

Table 3 439	
Eigenvalues and Percentage of the Principal Component contributions 440	

 Principal components 
 PC1               PC2     PC3 
Eigenvalue 1.99               1.006     3.09 E-32 

Variance (%) 66.45               33.54     1.03 E-30 

 441	

  
(a) (b) 
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Fig. 8: PCA training data set results in the subspace spanned by PC1 and PC2 (a), PC2 and PC3 (b), PC1 and 442	
PC3 (c), and 3D PCA plot 443	

	444	

   Table 4 445	
   Classes in the PCA space 446	

Test Condition Class 
Healthy C0 
Shading configuration 1 C1 
Shading configurations 2 and 3 C2 
Shading configuration 4 C3 

 447	

 448	

4.4. Classification performance in the training step  449	

The results are analysed through the confusion matrix displayed in Table 5. The columns 450	

of this table show the percentage of affectation of the observations of a class a priori in a 451	

class a posteriori. The error rates of class separability are checked by the one-leave-out cross 452	

validation method. We first compute the coordinates of the gravity centre (considered as the 453	

mean value in our case) of each class a priori in the PCA space. Then, the Euclidean distance 454	

(c) (d) 
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between these centres and each observation in the training database are evaluated. Finally, an 455	

observation is assigned to a class among the four obtained classes if it is the closest to its 456	

centre of gravity. This table shows that a few errors are found by classifying the 457	

measurements of the training data set. We found that 97.03% of the measurements in healthy 458	

condition have been classified in their a priori class C0 and only 2.97% misclassification is 459	

found and affected to the faulty class C2 (corresponding to three misclassified healthy 460	

measurements). We have also found that 100% of the faulty data of shading configuration 4, 461	

represented by faulty class C3, are perfectly classified. Based on these good discrimination 462	

results, we can use the implicit model obtained from the training data and PCA for the 463	

analysis of the new observations.  464	

 465	

Table 5 466	
 Confusion Matrix for training data set classification 467	

Class  
a priori 

Data Assignement a posteriori 
Healthy Class C0 

(%) 
Faulty Class C1 

(%) 
Faulty Class C2 

(%) 
Faulty Class C3 

(%) 
Healthy Class C0 97.03 0 2.97 0 
Faulty Class C1 0 98.52 1.48 0 
Faulty Class C2 12.62 0 87.38 0 
Faulty Class C3 0 0 0 100 

	468	

4.5. Fault identification performance in the validation step  469	
 470	

In order to evaluate the effectiveness of the PCA model for PV system Fault Detection and 471	

Classification, we have used a new data set composed of 505 observations, representing 33% 472	

of the experimental database. The test data set corresponds to the measurements Cm that were 473	

not included in the training data. These measurements are grouped in the test database 474	
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according to the three selected representative variables, v / η, i  and P/ η.  Then they are 475	

projected into the PCA space spanned by the eigenvectors determined during the training step 476	

using (7). This projection gives the data classification shown in Fig.9. We can conclude that 477	

all the test observations are well identified and classified in the relevant group. The data 478	

dispersion obtained for the new data in the PCA space is similar to the one obtained with the 479	

training data. The faulty classes are well separated and discriminated from the healthy one.		480	

  

  

 481	

(a) (b) 

(c) (d) 
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Fig. 9: PCA results for the test data set in the subspace spanned by PC1 and PC2 (a), PC2 and PC3 (b), PC1 and 482	
PC3 (c) and 3D PCA plot 483	

	484	

With the PCA, we are able to identify successfully the test data in their corresponding 485	

groups. This performance is evaluated through the confusion matrix given in Table 6. We 486	

have succeeded to separate the four a priori defined classes with a minimum rate of 97.03%. 487	

Only 4/505 test samples are misclassified in two a posteriori groups; 3/101 for healthy class 488	

C0 and 1/101 for faulty class C1 representing a classification error of 2.97% and 0.99% 489	

respectively. This confirms that the developed PCA model is very efficient to detect and 490	

identify the fault.  491	

Table 6 492	
Confusion Matrix for test data set classification 493	

Class  
a priori 

Data Assignement a posteriori 
Healthy Class C0 

(%) 
Faulty Class C1 

(%) 
Faulty Class C2 

(%) 
Faulty Class C3 

(%) 
Healthy Class C0 97.03 0 2.97 0 
Faulty Class C1 0 99.01 0.99 0 
Faulty Class C2 12.62 0 100 0 
Faulty Class C3 0 0 0 100 

 494	

 495	

5. Conclusion 496	
 497	

In this study, a data-driven FDC approach is proposed for a PV module shading fault 498	

diagnosis.  This method uses the I-V curve of the PV module generated under healthy and 499	

faulty conditions. An experimental setup has allowed the collection of data for five different 500	

operating conditions to build the database. In the pre-processing step the power P  has been 501	

added to the original variables v / ηand i . Then a normalisation with the efficiency has been 502	
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done to mitigate the variation of the irradiance and the logarithmic function has been 503	

introduced to make the method more sensitive to fault occurrence. Principal Component 504	

Analysis has been applied to the training database (66% of the data history). The obtained 505	

model has been used for fault detection and classification. In the training step, we have rather 506	

good performances with a minimum classification success rate of 87.38% for the 4 classes 507	

(one healthy and three faulty). During the validation step (with the remaining 33% of data 508	

history), we have obtained successful classification rate with a minimum of 97%.  509	

This method does not depend on any particular PV size and only uses available measurements 510	

(PV current and voltage) avoiding extra hardware and costs. Furthermore, it is insensitive to 511	

the weather conditions changes (sudden variations of solar irradiation and temperature of the 512	

PV module). Based on the analysis of real PV data, the study demonstrates the feasibility and 513	

effectiveness of the PCA for the diagnosis of PV shading faults.  514	

 515	
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