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Enhanced Parameter Convergence for Linear Systems Identification:
The DREM Approach*

A. Belov1, S. Aranovskiy2, R. Ortega3, N. Barabanov4 and A. Bobtsov5

Abstract— Dynamic regressor extension and mixing is a new
technique for parameter estimation that has proven instrumen-
tal in the solution of several open problems in system identifi-
cation and adaptive control. A key property of the estimator is
that, for linear regression models, it guarantees monotonicity
of each element of the parameter error vector that is a much
stronger property than monotonicity of the vector norm, as
ensured with classical gradient or least-squares estimators.
On the other hand, the overall performance improvement of
the estimator is strongly dependent on the suitable choice of
certain operators that enter in the design. In this paper we
investigate the impact of these operators on the convergence
properties of the estimator in the context of identification
of linear time-invariant systems. In particular, we give some
guidelines for their selection to ensure convergence under
the same (persistence of excitation) conditions as standard
identification schemes.

I. INTRODUCTION

A new procedure to design parameter estimators for
linear and nonlinear regressions, called dynamic regressor
extension and mixing (DREM), was recently proposed in [2].
The technique has been successfully applied in a variety of
identification and adaptive control problems [3], [5], [6], [7],
[15]. For linear regressions DREM estimators outperform
classical gradient or least-squares estimators in the following
precise aspect: independently of the excitation conditions,
DREM guarantees monotonicity of each element of the
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parameter error vector that is much stronger than mono-
tonicity of the vector norm, which is ensured with classical
estimators. Another interesting property of DREM is that
its convergence is established without the usual, restrictive
requirement of regressor persistence of excitation (PE) [11],
[16]. Instead of PE a non-square integrability condition on
the determinant of a designer-dependent extended (square)
regressor matrix is imposed. Similarly to instrumental vari-
able methods [8] where the regression model is multiplied
by some signals to generate new regressions, in DREM
new regressions are created selecting a certain number of
linear, stable operators, which act on the linear regression
to create new regressors (with filtered signals), which are
then pile up on the aforementioned matrix. Multiplying by
the adjoint of this matrix generates a series of independent
scalar regressions for each of the unknown parameters with
the determinant of the matrix being the common regressor to
all of them. The non-square integrability of this determinant
is, then, the necessary and sufficient condition for param-
eter convergence. To make the paper self-contained a brief
description of DREM as applied in identification problems
is given in the next section—see [2] for a more general and
detailed presentation of DREM and [13] for its reformulation
as a functional Luenberger observer.

Clearly, the overall performance of the estimator is
strongly dependent on the suitable choice of the aforemen-
tioned operators. Roughly speaking, they should be selected
to generate new (filtered) regressors that are, as much as
possible, linearly independent among them. Prior information
on the spectral content of the regressor may then be used
to select these operators, which may be selected as linear
time-invariant (LTI) band-pass filters or simple delays. In
this paper we investigate the impact of these operators on
the convergence properties of the estimator in the context
of parameter identification of linear time-invariant stable
systems. In this case, the (original) regressor is generated
applying some LTI filters to the systems input. It is well
known, cf., Theorem 2.7.3 of [16], that standard gradient
and least-squares algorithms will generate a globally expo-
nentially convergent estimate of the parameters if and only
if the input signal contains a sufficient number of spectral



lines—a property called “sufficient richness” in [16]—where
it is also shown to be equivalent to having a PE regressor.

Two natural questions arise in this respect.

(Q1) Can DREM relax the assumption of sufficiently rich in-
put? More precisely, is there a suitable selection of the
operators of DREM such that parameter convergence
is ensured even if the PE assumption on the regressor
is not satisfied?

(Q2) If the regressor is PE will DREM ensure parameter
convergence for a well-defined class of operators? In
[2] it is shown that there exists a “bad choice” of
operators, in the sense that applied to a PE regressor
generates an (asymptotically) singular extended regres-
sor matrix and, consequently, DREM will not work.
Therefore, the question is how to verify that the chosen
operators are not “bad”.

In the paper we give answers to the previous questions.
Unfortunately, the answer to (Q1) is negative even allowing
for arbitrary linear, possibly time-varying, L∞-stable opera-
tors. On the other hand, we give a positive answer to (Q2)
for LTI filters and delay operators.

The remaining of the paper is organized as follows. The
application of DREM for identification of an LTI system
parameters is presented in Section II. In Section III we give
the answer to (Q1) while the answer to (Q2) is presented
in Section IV. Some simulation results that illustrate our
results and show the performance improvement of DREM,
with respect to gradient estimators, are given in Section V.
The paper is wrapped–up with some conclusions and future
work in Section VI. The proof of the main claim in Section
IV, being notationally involved, is deferred to an appendix,
where a preliminary lemma is also presented.

II. PARAMETER IDENTIFICATION OF LTI SYSTEMS

In this section we briefly review the problem of parameter
identification of LTI systems using the classical gradient
algorithm and the new DREM estimator. For more details
on system identification the reader is referred to [11], [12],
[16].

A. Problem formulation and classical solution

We are interested in the classical problem of parameter
identification of the scalar LTI continuous–time plant

A(p)y(t) = B(p)u(t) (1)

where y(t), u(t) are the plant output and input, respectively,
A(p) =

∑n
i=0 aip

i, B(p) =
∑n−1
i=0 bip

i, p := d
dt , an =

1, A(p) and B(p) are coprime with unknown coefficients.
We make the standard assumptions that A(p) is a Hurwitz
polynomial, u(t) is regular and bounded and n is known.

In [16] it is shown that the system (1) can be represented
in the linear regression form

y(t) = φ>(t)θ + εt (2)

where

F (p) :=
1

λ(p)


1

p
...

pn−1

 , θ :=



λ0 − a0

...
λn−1 − an−1

b0
...

bn−1


,

φ(t) :=

[
F (p)B(p)
A(p)

F (p)

]
u(t),

(3)

λ(p) =
∑n
i=0 λip

i, λn = 1, is an arbitrary Hurwitz
polynomial and εt is the generic notation for an exponentially
decaying term due to the filters initial conditions that, without
loss of generality, we neglect in the sequel.1

The standard gradient estimator

˙̂
θ(t) = Γφ(t)[y(t)− φ>(t)θ̂(t)], Γ > 0, (4)

yields the error equation

˙̃
θ(t) = −Γφ(t)φ>(t)θ̃(t), (5)

where θ̃(t) := θ̂(t)− θ are the parameter estimation errors.
Evaluating the derivative of |θ̃(t)|2, with | · | the Euclidean

norm, is easy to show that

|θ̃(t)| ≤ |θ̃(0)|, ∀t ≥ 0. (6)

Also, it is well–known [1], [16] that the zero equilibrium of
the linear time–varying system (5) is globally exponentially
stable if and only if the regressor vector φ(t) is PE, that is,
if ∫ t+T

t

φ(s)φ>(s)ds ≥ δI,

for some T, δ > 0 and for all t ≥ 0, which will be denoted
as φ(t) ∈ PE. The PE condition of φ(t) is translated to the
input signal u(t) via the following fundamental result.

Proposition 1 ([16], Theorems 2.7.2 and 2.7.3):
Consider the vector φ(t) defined in (3) with u(t) given by

u(t) =

N∑
k=1

Ak sin(ωkt), (7)

with ωk 6= ωj ,∀k 6= j and Ak 6= 0. Then,

φ(t) ∈ PE ⇔ N ≥ n.
Remark 1: For ease of presentation we consider only a

particular case of the more general result reported in [16]. In

1See [16] and Remark 3 in [2] where the effect of these term is rigorously
analysed.



particular, the translation of the PE condition of the regressor
to a suitable excitation of the input is established for all
regular signals admitting a suitable spectral decomposition
without assuming it is of the form (7).

Remark 2: In [4] conditions on φ(t) for global asymptotic
(but not exponential) stability of (5), which are strictly
weaker than PE, are given. It is not clear at this point how
these conditions are related with the input signal in the
present identification context.

B. Dynamic regressor extension and mixing estimator

To apply DREM in the identification problem the first step
is to introduce a linear, single-input 2n-output, L∞–stable
operator H : L∞ → L2n

∞ , and define the vector Y ∈ R2n

and the matrix Φ ∈ R2n×2n as

Y (t) := H[y(t)]

Φ(t) := H[φ>(t)].
(8)

Clearly, because of linearity and L∞ stability, these signals
satisfy

Y (t) = Φ(t)θ + εt. (9)

The elements of the operatorH may be simple, exponentially
stable LTI filters of the form2

Hi(p) =
αi

p+ βi
, i ∈ {1, 2, . . . , 2n}

with αi 6= 0, βi > 0. Another option of interest are delay
operators, that is

[Hi(·)](t) := (·)(t− di),

where di ∈ R+. See Section 4 of [13] for the case of general
LTV operators.

Pre-multiplying (9) by the adjunct matrix of Φ(t), denoted
adj{Φ(t)}, we get 2n scalar regressors of the form

Yi(t) = ∆(t)θi, (10)

where we defined the scalar function ∆(t) ∈ R

∆(t) := det{Φ(t)},

and the vector Y(t) ∈ R2n

Y(t) := adj{Φ(t)}Y (t).

The estimation of the parameters θi from the scalar
regression form (10) can be easily carried out via

˙̂
θi(t) = γi∆(t)(Yi(t)−∆(t)θ̂i(t)), (11)

with adaptation gains γi > 0. From (10) it is clear that the
latter equations are equivalent to

˙̃
θi(t) = −γi∆2(t)θ̃i(t). (12)

2In the sequel the clarification i ∈ {1, 2, . . . , 2n} is omitted for brevity.

A first important advantage of DREM is that the individual
parameter errors satisfy

|θ̃i(t)| ≤ |θ̃i(0)|, ∀ t ≥ 0, (13)

that is strictly stronger than the monotonicity property (6).
Moreover, solving the simple scalar differential equation (12)
as

θ̃i(t) = e−γi
∫ t
0

∆2(s)dsθ̃i(0).

shows that

lim
t→∞

θ̃i(t) = 0 ⇐⇒ ∆(t) /∈ L2,

that is, parameter convergence is established without the
restrictive PE assumption. Moreover, if ∆(t) ∈ PE, the
convergence of DREM is exponential.

The relationship between the condition ∆(t) /∈ L2 and
φ(t) ∈ PE is far from obvious for arbitrary regressor vectors
φ(t)—see [2] for examples that show that neither one of
the conditions is stronger than the other. However, for the
particular case of identification, when φ(t) is generated via
(3), the relation between these assumptions can be clarified,
which constitutes the main contribution of this paper.

Remark 3: The importance of having established scalar
regressor models for each of the unknown parameters can
hardly be overestimated. Besides the important element-
by-element monotonicity property of the parameter errors
captured by (13), this feature is instrumental to eliminate
the need to overparameterise nonlinear regressions to obtain
a linear one—a practice that, as is well-known [11], [12],
[16], entails a serious performance degradation. This, and
other advantages of DREM, have been discussed in a series
of publications including [2], [3], [5], [6], [7], [13], [15]

Remark 4: It is well-known that non-square integrability
and PE of a signal are not equivalent properties—even in
the scalar case. For instance, the signal 1√

1+t
is not in

L2 but it is not PE, on the other hand, all PE signals
are not in L2. Besides this issue, the comparison of the
convergence conditions of gradient and DREM estimators is
further complicated by the fact that ∆(t) and φ(t) are related
via, not just the action of the linear operator H, but also by
the nonlinear operation of the determinant computation.

III. DREM CANNOT RELAX THE PE CONDITION

In this section we give the answer, alas negative, to the
question (Q1) of Section I.

Proposition 2: Consider the vector φ(t) generated via (3)
with u(t) given by (7). Define the function ∆(t) as

∆(t) = det{H[φ>(t)]} (14)



where H is an arbitrary linear, single-input 2n-output, L∞–
stable operator. Then,

N < n ⇒ ∆(t) ∈ L2.

In other words, independently of the choice of the operator
H, a necessary condition for DREM to ensure global con-
vergence of the parameter error is φ(t) ∈ PE.

Proof: From (3) and (7) it is clear that

φi(t) = φssi (t) + φtri (t),

where the steady-state component is given by

φssi (t) :=

N∑
k=1

Ai,k sin (ωkt+ ψi,k),

with Ai,k and ψi,k constants and the transient component
φtri (t) tends to zero exponentially fast. Piling up all the
components we can write the steady-state vector in a compact
form as

φss(t) := col(φss1 (t), . . . , φss2n(t)) = X>ξ(t) (15)

where X ∈ R2N×2n is given by

X :=



A1,1 cos(ψ1,1) · · · A2n,1 cos(ψ2n,1)
...

. . .
...

A1,N cos(ψ1,N ) · · · A2n,N cos(ψ2n,N )

A1,1 sin(ψ1,1) · · · A2n,1 sin(ψ2n,1)
...

. . .
...

A1,N sin(ψ1,N ) · · · A2n,N cos(ψ2n,N )


(16)

and

ξ(t) :=



sin(ω1t)

· · ·
sin(ωN t)

cos(ω1t)

· · ·
cos(ωN t)


∈ R2N×1.

We make now the key observation that since N < n the
matrix X is flat hence there exists a nonzero vector C ∈ R2n

such that
XC = 0. (17)

Now, because of linearity of the operator H, the extended
regressor matrix Φ(t) can be written as

Φ(t) = H[φ>(t)] = H[φ>ss(t) + φ>tr(t)]

= H[φ>ss(t)] +H[φ>tr(t)],

where we defined the vector

φtr(t) := col(φtr1 (t), . . . , φtr2n(t)).

From stability of the operator H we have that H[φ>tr(t)]

converges to zero exponentially. Therefore, invoking Lemma

1 in Appendix A, we can concentrate our attention on the
steady-state term H[φ>ss(t)], which can be written as

H[φ>ss(t)] =


H1[φ>ss(t)]

...
H2n[φ>ss(t)]

 =


H1[ξ>(t)]

...
H2n[ξ>(t)]

X,
where we invoked (15) to get the last equation. From (17)
we then conclude that

H[φ>ss(t)]C = 0,

which implies that det{Φ(t)} converges to zero exponen-
tially and, consequently, ∆(t) ∈ L2.

Remark 5: Instrumental to establish the proof of Propo-
sition 2 is the assumption that the input signal consists of
a sum of sinusoids of different frequencies, i.e., given as
(7). As indicated in Remark 1 the fundamental result of
Proposition 1 is applicable to much wider class of input
signals. Current investigation is under way to see whether
the claim of Proposition 2 is still applicable in that case.

IV. PE (GENERICALLY) IMPLIES DREM IS

EXPONENTIALLY STABLE

In this section we address the question (Q2) of Section I
and present a condition, under which, the equivalence

φ(t) ∈ PE ⇔ ∆(t) ∈ PE (18)

holds true for a given choice of operators H—consisting of
LTI filters and delay operators. In other words, under suitable
excitation conditions, the asymptotic behaviour of DREM
will (generically) be as good as the one of standard gradient
estimators, with the additional advantage of an improved
transient performance due to the monotonicity property (13).
Moreover, we identify a class of operators H such that (18)
holds.

Proposition 3: Consider the vector φ(t) generated via (3)
with u(t) given by (7) with N = n and the function ∆(t)

defined in (14). Let the elements of H be L∞-stable LTI
operators, either rational minimum-phase transfer functions
or constant time delays, such that

Hi(iωk) = Mi,k exp (iαi,k) , (19)

where i is the imaginary unit. Define the 2N × 2n matrix

H :=



M1,1 cos(α1,1) · · · M2n,1 cos(α2n,1)
...

. . .
...

M1,N cos(α1,N ) · · · M2n,N cos(α2n,N )

M1,1 sin(α1,1) · · · M2n,1 sin(α2n,1)
...

. . .
...

M1,N sin(α1,N ) · · · M2n,N sin(α2n,N )


.

(20)



The following equivalence is true

rank {H} = 2n ⇔ ∆(t) ∈ PE.

From Claim (C1) of Proposition 3 we immediately obtain
the following corollary.

Corollary 1: Under the conditions of Proposition 3 if the
elements of H are delay operators of the form

Hi[x(t)] = x(t− di), di = dc + (i− 1) d0, (21)

where dc ≥ 0 and d0 > 0 is such that maxk ωk d0 < π, then
∆(t) ∈ PE and DREM is exponentially convergent.

The proofs of Proposition 3 and Corollary 1 are based
on complex-domain representation of the signals and linear
operators and are omitted due to space restrictions.

Remark 6: Corollary 1 shows that the simple choice (21)
will always ensure that the PE property of the regressor will
be preserved for ∆(t). Clearly, to design this operators it is
sufficient to know and upper bound on the bandwidth of the
systems input signal, which is a reasonable assumption in
most applications. However, increasing the size of the oper-
ators delays will adversely affect the transient performance
of the DREM estimator.

V. NUMERICAL EXAMPLE

Consider the following system

W (p) =
b1p+ b0

p2 + a1p+ a0

with a0 = 2, a1 = 1, b0 = 2, b1 = 1. The regression model
(2) is constructed following (2) with λ1 = 10, λ0 = 20. The
input signal is considered as u(t) = 3 sin(2t) + 10 sin(5t).
Initial conditions on the estimated parameters θ̂(0) and the
DREM filters were taken as zeros and initial conditions for
the parameters estimation errors are

θ̃(0) = −
[
λ0 − a0 λ1 − a1 b0 b1

]>
.

We consider two cases of the gains: Γ1 = 102 × I4 and
Γ2 = 103 × I4 for the gradient estimator (4), and Γ1 =

diag{γ11, γ12} = 103 × I4, Γ2 = diag{γ21, γ22} = 104 × I4
for the DREM estimator (11).

According to Corollary 1, we choose the filters H as (21)
with dc = 0 and d0 ∈ (0; π5 ). The value of d0 is chosen
sovling the following optimization problem:

find: max
d0∈(0;π5 )

det(H(d0)),

where
1 cos(ω1d0) cos(2ω1d0) cos(3ω1d0)

1 cos(ω2d0) cos(2ω2d0) cos(3ω2d0)

0 − sin(ω1d0) − sin(2ω1d0) − sin(3ω1d0)

0 − sin(ω2d0) − sin(2ω2d0) − sin(3ω2d0)


=: H(d0).
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Fig. 1: Parameters estimation errors with the gain Γ1.
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Fig. 2: Parameters estimation errors with the gain Γ2.

It can be shown that increase of det(H(d0)) yields faster
convergence of the DREM estimator. The optimal delay
value is d∗0 = 0.4647 sec.

The simulation results with gain Γ1 are given in Fig. 1
and show that both methods yield consistent estimations.
Notice, however, that the gradient method is slower and has
oscillating transients while DREM ensures the monotonicity.

To evaluate the effect on the transient performance of the
adaptation gains we provide simulation results with gain Γ2

shown in Fig. 2. As expected the transient performance of
the gradient estimator significantly degrades and, although
the parameters converge, the transient need more time to
decay. On the other hand, increasing Γ for the DREM-based
estimator leads to faster parameter convergence.



VI. CONCLUSIONS AND FUTURE WORK

We have addressed in this paper the critical question of
selection of the operators H introduced in DREM estimators
to generate the extended regressor matrix Φ(t). As it has
been widely documented in the publications [2], [3], [5],
[6], [7], [13], [15], a suitable choice of these operators is
essential to guarantee a good transient performance of the
DREM estimator. It has been shown that, for the particular
task of identification of LTI systems, the PE condition for
exponential convergence of the parameter errors of gradient
(or least-squares) estimators cannot be relaxed by DREM.
On the other hand, we have proven that this convergence
property is preserved in DREM for almost all choices of
the operators, and some simple selection rules for them have
been reported.

Within the context of identification we are currently ex-
ploring the use of DREM for some practical problems where
under-excitation is prevalent. For instance, for identification
of the Thevenin equivalent of the power network for synchro-
nisation [9] or adaptive active damping in power converters
[14], or for the estimation of a power system inertia and
active power imbalance [18]. In these kind of applications
it is not expected to achieve consistent estimation, being
sufficient to ensure fast convergence to a neighbourhood of
the true parameters, a feature that due to its monotonicity
property can be guaranteed by DREM.

A far reaching objective is the use of DREM in classical
model reference adaptive control problems. Unfortunately,
some preliminary results reveal that the fundamental self-
tuning property—required in these applications to ensure
global tracking of the reference model output without PE—is
lost with the use of DREM. On the other hand, some inter-
esting robustness properties, conspicuous by their absence in
gradient based schemes, have been established for DREM-
based controllers. In particular, the instability mechanisms
revealed by the widely known Rohrs’ counterexamples, do
not appear with DREM.
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APPENDIX

APPENDIX A: A PRELIMINARY LEMMA

Lemma 1: Consider matrix functions A,B : R+ → Rq×q

with A(t) bounded, and each entry of B(t) tending to zero
exponentially fast. The following implication is true:

det{A(t)} ≡ 0 ⇒ lim
t→∞
{det(A(t) +B(t))} = 0, (exp).

The proof is omitted due to space restrictions.


