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Multi-Frequency TR-MUSIC Processing to Locate
Soft Faults in Cables Subject to Noise

Moussa Kafal,Member, IEEE Andrea Cozza,Senior Member, IEEE

Abstract—Time-Reversal multiple signal classification (TR-
MUSIC) has recently been shown to be an effective technique to
locate multiple soft faults in wire networks, thanks to its sub-
millimeter location accuracy. TR-MUSIC processes transmission
and reflection data measured at a single frequency into a function
of space, the pseudo spectrum, expected to present singularities
only at a fault position. At frequencies high enough, the spatial
periodicity that comes with the propagation of harmonic signals
leads to multiples such singularities, of which only one represents
the fault position, while the remaining are ghosts faults. TR-
MUSIC was therefore introduced using a single continuous-wave
excitation at frequencies low enough to avoid ghosts, an approach
suitable only to noiseless configurations. This paper explores the
effects of noise on TR-MUSIC fault location by first highlighting
its high sensitivity to noise at low frequency. A potentially lower
sensitivity is shown to exist at high frequencies, where ghosts
positions are found. A multi-frequency processing is introduced,
allowing at the same time to solve the ambiguity in the fault
position and to effectively control the impact of noise on its
location accuracy. The proposed processing is shown to reinstate
precise super-resolved estimates of fault locations even for signal-
to-noise ratios as low as 5 dB, without requiring to the use of
wide-band signals.

Index Terms—Fault detection, fault location, soft faults, com-
plex wire networks, additive noise.

I. I NTRODUCTION

CABLES in industrial settings are often exposed to poten-
tially harsh conditions, which may lead to the appearance

of either hard faults (open or short circuits), or soft faults,
which are usually minor alterations (e.g., chafing) that affect
a cable without impeding its nominal functions. Notably,
the latter kind of faults have earned attention [1]–[7] as
their evolution could be continuously monitored, in order to
ideally intervene before their developing into hard faults, thus
avoiding a sudden system collapse.

While most techniques rely on the use of wide-band exci-
tation signals [3], [8]–[15], it has recently been demonstrated
[16] that soft faults can be located by using single-frequency
continuous-wave tests, and still obtain sub-millimeter preci-
sion, thanks to the super-resolution properties of time reversal-
based multiple signal classification (TR-MUSIC) [17]. In par-
ticular, test signals below 10 MHz were shown in [16] to result
in estimates of fault locations within a few millimeters, i.e.,
about 1/20000 of wavelength of the test signal. Similar spatial
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resolutions would require test signals covering bandwidths
spanning several GHz when using reflectometry techniques.

Theory has it that MUSIC-based processing can potentially
achieve unlimited resolution with noiseless data. But real-
life NUTs and the associated testing equipment are routinely
affected by background noise, or signals during online tests,
which might be sufficiently high to degrade the quality of MU-
SIC processing. In investigations on open-media applications
of TR-MUSIC, [18], [19] have proven that in presence of noise
the super-resolution expected from TR-MUSIC processing can
not be reliably ensured.

This paper explores the impact of noise on the precision of
fault location estimated with TR-MUSIC, proving that the pre-
viously introduced choice of using single-frequency processing
at very low frequency is only suitable for negligible noise
levels. Experimental results show that TR-MUSIC sensitivity
to noise is inversely proportional to the frequency, suggesting
that the ghost region, even though affected by ambiguity about
the actual fault position, holds the potential for noise-robust
TR-MUSIC fault location. The proposed solution is based on
a multi-frequency processing that allows at the same time to
solve the spatial ambiguity caused by the presence of ghost po-
sitions, while giving access to a larger pool of single-frequency
estimators less affected by noise. The resulting processing
is expected to be more suitable for practical configurations,
where noise could potentially be sufficient to invalidate the
low-frequency approach previously introduced.

The paper’s structure is as follows: the basic aspects of
TR-MUSIC processing applied to locating soft faults in a
cable network are reviewed in Sec. II, while Sec. III presents
an empirical analysis of the impact of noise on the reso-
lution of TR-MUSIC for two topologies of networks under
test (NUT). The high sensitivity of low-frequency data to
noise is confirmed even for relatively good signal-to-noise
ratios (SNR), e.g., 15 dB. The multiple-frequency approach
is introduced in Sec. IV, exploiting the intrinsic coherence of
fault-position estimates computed across different frequencies
with TR-MUSIC. Design rules are derived enabling a robust
implementation, depending on the required level of precision,
in particular based on the number of tests required and the
bandwidth over which the NUT is tested. Experimental results
in Sec. V prove that this multi-frequency implementation can
still ensure a millimetric resolution even when dealing with
SNRs as low as 5 dB. Although in this case tests may need
to be carried out at higher frequencies, the spatial resolution
is shown to still be much higher than that achievable by
reflectometry techniques.
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Fig. 1: Typical structure of the pseudo spectrumΦ(x, ν)
generated by TR-MUSIC for a cable, as the locus of points
over the frequency-position plane where the pseudo-spectrum
presents singularities.

II. TR-MUSIC FOR FAULT LOCATION

The basic operations involved in the use of TR-MUSIC
technique in fault location, are here recalled; the interested
Reader should refer to [16] for more details. All quantitiesin
the following are functions of the frequencyν; it might be
dropped for the sake of brevity.

TR-MUSIC processing is intrinsically defined as a multi-
static approach and relies on the availability of an NUT
scattering matrixSf (ν), measured overN testing ports, e.g.,
by means of a vector network analyzer (VNA). It also requires
baselining information, i.e., the reference responseSh(ν) of
a healthy version of the network [20], [21], which is funda-
mental step in any diagnostic technique for the case of soft
faults. TR-based methods operate on the difference system
S = Sf − Sh, which can be shown to result in an equivalent
description where a fault acts as a secondary source [22]. It
also increases the maximum numberM of faults that TR-
MUSIC can detect, by removing the echoes generated by
impedance discontinuities like junctions in an NUT.

The TR operator is the key behind most TR applications and
is obtained from the difference scattering matrixSasK = S†S,
where the superscript† is the Hermitian transpose. TR-MUSIC
can locate up toM faults, under the condition thatN > M . In
particular, the eigenvalue expansion ofK forms the basis of the
TR-MUSIC method by identifying the noise subspaceN of
K . N is formed by the eigenvectors deemed to have negligible
eigenvalues, i.e.,N = span{ui : λi < λth}, with λi and ui

being the eigenvalues and their corresponding eigenvectors,
respectively;λth is usually set after analyzing the scree plot
of the eigenvalues ofK .

The numberM of faults is then given by the rank ofK ,
while their positions are inferred from local maxima in the
pseudo-spectrumΦ(x, ν), defined as [23]:

Φ(x, ν) =

(

∑

ui∈N

∣

∣

∣
u†
i (ν)g(x, ν)

∣

∣

∣

2

)−1

, (1)

with g(x, ν) = [g1(x, ν), . . . , gN(x, ν)]T a vector consist-
ing of the N Green functions of the healthy NUT, which
are defined as theN spatial distributions, in the coordinate
x, of voltages observed along the NUT, when separately
excited from each testing port. These distributions can be
estimated from a numerical model of the NUT, e.g., based
on transmission-line theory.

The typical structure ofΦ(x, ν) is shown in Fig. 1. The mul-
tiple traces are the loci of the peaks of the pseudo-spectrum,
generated by the multiple peaks observed at each testing
frequency. The fault positionp is marked by a vertical trace, or
fault trace, which is unique in its frequency invariance. Curved
traces, or ghost traces, are caused by the periodicity of Green
functions for harmonic signals propagating along transmission
lines, appearing in (1). These traces can be identified by their
coordinatespn(ν), wheren ∈ Z is their order, withn = 0
the fault trace. Transmission-line theory implies that (1)has a
periodicity of half a wavelength, with ghost traces thus found
at a distance

dn(ν) = pn(ν)− p =
nv

2ν
, (2)

with v the propagation speed along the cables.
As opposed to open-media applications of TR-MUSIC, a

fault can be located only if choosing a frequency within the
ghost-free bandwidth (see Fig. 1), where the pseudo-spectrum
presents a single peak. In [16], it was proved that TR-MUSIC
can still provide sub-millimeter resolution even when applied
to such relatively low test frequencies.

At higher frequencies, ghost traces represent irreducibleam-
biguities in the interpretation of TR-MUSIC pseudo-spectra.
This is not to say that high-frequency results have no prac-
tical use, as argued in Sec. IV. The possibility of taking
advantage of results outside the ghost-free bandwidth was not
acknowledged in [16], since it requires multi-frequency tests
which, in case of high SNRs, present virtually no benefit with
respect to the single-frequency results limited by the ghost-free
bandwidth.

III. E MPIRICAL ASSESSMENT OF NOISE IMPACT ON

TR-MUSIC

Theoretical analyses of the performance of MUSIC process-
ing in presence of noise are available in the literature [24], but
they apply to direction finding problems, for which MUSIC
was originally introduced. While this configuration sharesthe
same mathematical definition (1) of the pseudo-spectrum, it
does not consider phenomena proper to cable networks, e.g.,
multiple reflections. To the best of our knowledge, there exists
no theoretical framework for describing the effects of noise on
MUSIC for such settings.

For this reason, an empirical approach was adopted, by
using experimental data measured on two NUTs schematically
represented in Fig. 2, moving from a single cable to a network
structure with three branches connected through a junction.
Fig. 3(a) shows the implementation of the network tested. A
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Fig. 2: Topologies of the two networks used in studying the
effects of noise on locating faults with TR-MUSIC: (a) single
branch and (b) single junction. The star indicates the position
of the fault; each cable end, shown as black dots, was used as
a testing port. Bold numbers are later used to identify the path
along which TR-MUSIC location performance is evaluated.

(a)

(b) (c)

Fig. 3: The experimental setup (a) for the single-junction
network, for a soft fault implemented as a crushed portion
of line (b)-(c).

single soft fault was considered in both NUTs, introduced
by creating a partially crushed portion about 2 cm long in
a portion of semi-rigid cable, as visible in Figs. 3(b)-(c).This
kind of experimental tests was successfully used in previous
work; more details can be found in [16]. The scattering
matrices for each tested network were measured using a Rohde
& Schwarz ZVB8 vector network analyzer on a bandwidth
ranging from 1 MHz to 500 MHz, sampled in 0.6 MHz steps.

The analysis of the performance of TR-MUSIC is based on
the presence of an additive white Gaussian noise (AWGN),
which can be thought as either representing measurement
uncertainty, or alternatively reproducing the statistical behavior
of signals propagating along cable networks tested while inuse
(on-line testing). The AWGN was numerically added to each
measured scattering matrix, both for the NUT and its reference
(baseline) matrix, before proceeding to the data processing
stage resumed in Sec. II. The signal-to-noise ratio (SNR) was
defined as the ratio of the average power scattered by the NUT
(both in transmission and reflection) and the noise average
power. The SNR was set to be a constant, independent from
frequency, in order to simplify the comparison of the results
over the entire frequency range tested.

Fig. 4 shows the local maxima detected in the pseudo-
spectra obtained by applying the TR-MUSIC processing sum-
marized in Sec. II, computed independently for each fre-
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Fig. 4: Local maxima in the pseudo-spectra computed from
scattering matrices measured for the two configurations in Fig.
2: (a) single-branch case and (b) single-junction case. Two
noise levels are considered, a 15 dB SNR (dark gray dots)
and 5 dB SNR (light gray dots), with solid black lines the
theoretical results expected from (2).

quency, for two values of SNR, namely 5 and 15 dB. Reference
structures for the pseudo-spectra singularities, expected under
noiseless conditions, are shown as solid black lines, based
on (2). Measurement-based pseudo-spectra (dots) in Fig. 4
show how noise affects TR-MUSIC, by inducing a stochastic
dispersion in the pseudo-spectra peaks, with the original posi-
tionspn(ν) of the traces (black lines) perturbed into estimates
p̂n(ν). The errors in these estimates exceed the millimeter spa-
tial resolution demonstrated in [16], undercutting the benefits
of this super-resolution method.

Results for the single-junction network in Fig. 4 (bottom
graph) cover the results for positions along the two branches
connected ending into ports (1) and (2) in Fig. 2. They
are therefore interesting since they show how TR-MUSIC
identifies the branch containing the fault, with the ghost traces
abruptly stopping at the junction (1 m). Some peaks are still
visible between 0 and 1 m, again due to periodicity in the
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Fig. 5: Bin design for maximum contrast in pseudo spectra-
based histograms.

Green functions, but exist only at those frequencies where
ghost traces intersect the end of the cable, here at 1 m: peaks
are then observed only at distances that need to be a multiple
of half the wavelength at these frequencies.

The dispersion caused by noise in the pseudo-spectrum
structure appears to be inversely dependent on the frequency,
with the ghost-free bandwidth1, at the lower frequency end,
more prone to disruption. The sub-millimeter resolution ob-
served in [16] for a noiseless case gives way to a statistical
dispersion that can exceed one meter below 10 MHz for a 5 dB
SNR. On the contrary, much lower dispersions are observed
at higher frequencies: the reason for this frequency-dependent
behavior can be traced back to the fact that the spatial scale
of the pseudo-spectrum fundamentally responds according to
the wavelength associated to each frequency.

In order not to loose the super-resolved location property,
TR-MUSIC should therefore be applied to higher frequencies
in case of noisy data, eventually moving outside the ghost-free
bandwidth. The problem with such a proposal is: TR-MUSIC
treats each frequency data independently, and is therefore
unable to provide unambiguous estimates of the fault position,
since for each frequency outside the ghost-free bandwidth,
TR-MUSIC results into a set of multiple peaks{p̂n(ν)} of
which onlyp̂0(ν) is a meaningful estimate of the fault location.
A solution to this problem is discussed in Sec. IV, base
on sets of data obtained at multiple frequencies, together
with guidelines for designing a robust multiple-frequencyTR-
MUSIC processing.

IV. M ULTI -FREQUENCY LOCATION ESTIMATOR

The results discussed in the previous section highlighted the
need to control the statistical dispersion introduced by noise,
in order to counter the effects of noise and avoid wasting the
potential for super-resolved location. One way of doing this
is to use average-based estimators, by looking at the positions
yielded by TR-MUSIC pseudo-spectrum collectively, as popu-
lations of random samples sharing a common information, i.e.,

1
< 100 MHz for the single cable and< 125 MHz for the network

the fault position. To this end, the following meta-estimator is
introduced

p̂ =
1

NF

NF
∑

k=1

p̂0(fk), (3)

based on the results ofNF frequencies{fk} and the individual
fault-position estimates{p̂0(fk)} yielded by single-frequency
TR-MUSIC processing discussed in Secs. II and III. In the
following, it will be assumed that theNF frequencies are
used during TR-MUSIC tests, uniformly distributed between
frequencyf1 andf2, with a sampling step∆f .

In order to apply (3), two problems need to be addressed:
a) to automatically identify and isolate the estimates{p̂0(fk)}
belonging to the fault trace; b) to know how (3) performs,
depending on which, and how many, frequencies are tested.

One way of identifying the fault trace is to notice that the
number of occurrences of peaks in the pseudo-spectrum is
maximized when observing the positionsx close to the fault,
because of the expected frequency-invariance of the fault trace
(see Figs. 1 and 4). Elsewhere, contributions from ghost traces
would otherwise be spread over wider intervals, thus resulting
in a lower frequency of occurrence. An empirical probability
of identifying the fault trace can be obtained by subdividing
an NUT into short sections of lengthw, or bins, and counting
the occurrences of estimatesp̂n(ν) obtained from TR-MUSIC,
effectively producing an histogram. Examples are later shown
in Fig. 6.

With reference to Fig. 5, the bin widthw should be chosen
in such a way as to capture the maximum number of samples
belonging to the fault trace, thus requiring a largerw, while at
the same time minimizing the probability of including samples
from neighboring ghost traces, hence requiring a narrower bin.
The former requirement cannot be met at the same time for
low and high frequencies, because of the frequency-dependent
statistical dispersion, while the latter can be satisfied bysetting

w = αd1(f2), (4)

with α ∈ [0, 1] a scaling factor. The minimum distanced1(f2)
between a ghost and the fault trace is used as a reference, and
it also defines the ghost-free region shown in Fig. 1. For larger
values ofw the bin would capture both fault- and ghost-trace
samples.

The relative positions of bins and the fault will not be
known at this time, so that the worst case is considered in
Fig. 5, where one of the bins has one of its edges in close
proximity of a first-order ghost trace: here, the ghost tracehas
maximum slope, and will thus result in a smaller footprint
over the horizontal axis, thus yielding a maximum density of
occurrences of estimateŝp1(fk); higher-order ghost traces will
result in a lower density of occurrences. The numberNg of
occurrences for this bin can be computed by first finding the
frequencyfo associated to the right edge of the bin, such that
d1(f2) + w = d1(fo), hence

fo =
f2

1 + α
, (5)

from which

Ng =
f2 − fo
∆f

=
f2
∆f

α

1 + α
, (6)
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Fig. 6: Number of peaks per bin for the results in Fig. 4(a), for
the single-cable case and a 15 dB SNR. The four histograms
correspond to1/α = 5.5 and 10.5 (left and right columns),
for data collected on the frequency ranges 100-150 MHz and
100-300 MHz (top and bottom rows).

to be compared with theNF occurrences ideally observed for
another bin over the fault trace. The identification of the fault
region is therefore possible only ifNF /Ng ≥ M , with M > 1
the contrast required between the background and the peak of
the histogram. Recalling thatNF = (f2−f1)/∆f , the contrast
reads

N/Ng = (1− f1/f2)
α

1 + α
, (7)

and will be larger thanM if

α ≤
(

M

1− f1/f2
− 1

)−1

. (8)

In this simple deterministic model, the numberNF of tested
frequencies has no effect on the ability to identify the fault
region from a pseudo-spectrum, which is rather controlled by
the bandwidth spanned by the test frequencies. As an example,
for M = 2 and f2/f1 = 1.5, α < 1/6; for higher contrasts,
the bins will have to be a smaller fraction of the ghost-free
region.

Fig. 6 presents a few examples of histograms obtained with
different choices ofw andf2/f1. One bin stands out in each
histogram, and corresponds to the fault trace. The average
of the samples{p̂0(fk)} falling into this bin can be used
as an initial guesŝp of the fault position. From this point
onwards, it is possible to redistribute the bins in order to ensure
that one of them will be centered on̂d0, thus reducing the
probability of having the fault-trace sample population divided
over two adjacent bins, which would otherwise result into
a lower contrastM . Fig. 6 correspond to the case of a bin
already centered on the fault position.

The population of single-frequency estimators{p̂0(fk)}
needed in order to compute the meta-estimator (3) is selected
by extracting those peak positions in the pseudo spectrum that
fall in the regionp̂ ± d1(f2)/2, which sits halfway between

−50 0 50
0

5

10

15

20

25

−50 0 50
0

50

100

−200 −100 0 100 200
0

10

20

30

40

x (mm)
−200 −100 0 100 200

0

2

4

6

x (mm)

(b)(a)

(c) (d)

Fig. 7: Empirical probability density function of fault-trace
estimateŝp0 extracted from data for 100-150 MHz (left) and
100-300 MHz (right) for the single-cable case, for a 15 dB
SNR (top) and 5 dB (bottom).

the fault trace and the left and right first-order ghost traces.
The population thus isolated does not correspond exactly to
the entire set of fault-trace samples{p̂0(fk)}, but will only
capture samples falling within the ghost-free region (cf. Fig.
5). Fig. 7 shows the distribution of these samples around the
actual fault position.

The precision of the meta-estimator (3) can be estimated
by modeling theNF estimates{p̂0(fk)} as zero-average
independent Gaussian random variables, approximating their
standard deviationσ as

σ(ν) = σo/ν, (9)

for which the variance of̂p would be

σ2

p̂ =
1

N2

F

NF
∑

n=1

σ2(fn) =
σ2

o

∆f2N2

F

n2
∑

q=n1

q−2 ≃

≃ σ2

o

∆f2N2

F

∫ n2

n1

dq q−2 =
σ2

o

NFf1f2
,

(10)

which is equivalent to the variance of a population ofNF i.i.d.
samples measured at the frequencyfc =

√
f1f2.

It is worth recalling that the requirement of sweeping
the bandwidth[f1, f2] was driven by the need to isolate a
population of coherent estimates of the fault position apart
from ghost traces, and that the accuracy of the TR-MUSIC
estimators improves with the frequency. Eq. (10) explains the
trade-off between the increased number of samples associated
to a larger bandwidth and the fact that those at the higher
end will outperform those obtained at lower frequency, as
made clear by Fig.4. In other words, low-frequency samples
contribute mostly to the identification of the fault trace, but
limit the overall accuracy of the estimator̂p, which cannot
reach the accuracy expected for high-frequency samples.



6

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Location error (mm)

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1
C

um
ul

at
iv

e 
di

st
rib

ut
io

n 
fu

nc
tio

n

 

 

Experiments
Gaussian fit

50 MHz

50 MHz

100 MHz

200 MHz

400 MHz

400 MHz

200 MHz100 MHz

(a)

(b)

Fig. 8: Empirical distribution functions estimated from 500
random realizations of the multi-frequency estimator computed
from experimental results for a single-branch configuration, for
a 50 MHz bandwidth, with minimum frequencies shown near
each set of curves, for an SNR equal to: (a) 5 dB and (b) 15
dB.

The minimum bandwidth required in order to identify the
fault trace is found as a corollary of (7)

f2/f1 ≥
(

1− Mα

1 + α

)−1

, (11)

in order to ensure a given contrastM in the histograms in
Fig. 6 and thus the identification of the fault trace. Notice
that (11) is valid under the conditionMα/(1 + α) < 1. This
deterministic model can be accurate only ifw > 2σ(ν)2, ∀ ν ∈
[f1, f2], with f1 yielding the worst case, thus

α > 4
σo

v

f2
f1

, (12)

based on (4) and (9).
Therefore, small fractional bandwidthsf2/f1 are an un-

likely option for either very low SNR or at low frequencies,
whereσ(ν) might prove to be too large.

2i.e., for a 95 % confidence interval

V. ACCURACY OF THE MULTI-FREQUENCY ESTIMATOR

The precision of the proposed estimator, as predicted by
(10), was verified by generating 500 random realizations of
additive noise. Associated populations of single-frequency
estimators where derived, by first computing the pseudo spec-
tra for the two cable configurations in Fig. 2, covering the
frequencies from 1 to 500 MHz.

The multi-frequency estimator̂p in (3) can be expected
to approximatively follow a Gaussian probability distribution,
since it is based on the summation of random quantities,
namely the fault-trace positions{p̂0(fk)}. Therefore, only the
first two moments of̂p need to be studied, providing a direct
assessment of the presence of a bias inp̂ and its precision,
following its standard deviation. The validity of this choice
is demonstrated in Fig. 8, where the empirical distribution
function of p̂ is shown for results obtained for the single-
branch case, with a 5 and 15 dB SNR, for a fixed frequency
band equal to 50 MHz and a starting frequencyf1 moving
from 50 up to 400 MHz. Gaussian distributions were fitted to
the empirical ones, resulting in a close agreement spanning
at least two standard deviations, i.e., for at least 95 % of the
cases.

The average error̂p− p and the standard deviation ofp̂ are
shown in Figs. 9 and 10 for the two test configurations in Fig.
2, for a 15 dB SNR. Data were computed over two bandwidths,
namely 25 and 50 MHz, with the starting frequencyf1 moving
from 50 up to 400 MHz.

All sets of results present a residual bias way smaller
than the standard deviation, indicating an unbiased estimator,
with typical values below 1 mm even forf1 = 50 MHz.
Therefore the precision is limited by the standard deviation of
the estimator (3). The standard deviation decreases withf1,
while the number of frequency samples is kept constant, i.e.,
the same number of single-frequency estimates{p̂0(fk)} are
used. Therefore, the fact thatσp̂ decreases withf1 is explained
by the decreasing dispersion of{p̂0(ν)} at higher frequency,
as postulated in (9), rather than because of the averaging in(3).
The transition between results in the ghost-free region (50-100
MHz) and those at higher frequency is noteworthy, confirming
the effectiveness of the proposed data processing.

Comparisons of empirical results with (10) are presented,
obtained by estimatingσo by means of a least-square pro-
cedure; in practical settings, (10) provides the means for
estimatingσo from preliminary tests for a single configuration
[f1, f2]. The results in Figs. 9 and 10 confirm that (10)
can explain how choosing different test bandwidths[f1, f2]
impacts the accuracy of the multi-frequency estimator; this
also indirectly confirms the validity of (9) as a working
approximation. Therefore, (10) can be used in order to predict
how the precision of the proposed estimator would change by
passing from a test carried out over a frequency range[f1, f2]
for NF frequency samples, to another with[f ′

1
, f ′

2
] with N ′

F

samples. The standard deviation is expected to be reduced by
a factor

√

N ′
F f

′
1
f ′
2

NF f1f2
. (13)
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av. p̂− p
σp̂
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Fig. 9: Average location error and its standard deviation for
the multi-frequency estimator (3) for the single-cable case for
a 15 dB SNR, for a (a) 25 MHz and (b) 50 MHz bandwidth.
σo = 2.4× 106 m/s was estimated from these results.

With a standard deviation below 8 mm atf1 = 50 MHz, for
a 25 MHz bandwidth, these results confirm that super-resolved
location of faults is still possible even with data affectedby
noise. In fact, at this frequency the wavelength is expected
to be about 5 m in PTFE-based coaxial cables, and for a
bandwidth of 25 MHz, time-domain test signals could not be
shorter than about 40 ns, with a spatial footprint around 9 m.

The performance of (3)versus the SNR is presented in
Fig. 11, for an SNR going from 5 to 30 dB and a 50 MHz
bandwidth, starting at 50 and 200 MHz. These results prove
that even at very low SNR levels TR-MUSIC can be expected
to locate faults with high resolution; e.g., at 5 dB SNR, the
fault is identified with a standard deviation of about 25 mm,
using data measured on a[50 − 100] MHz bandwidth. The
standard deviation observed for the[200− 250] MHz data is
expected to be about

√
10 ≃ 3.2 lower than the one found for

[50−100] MHz data, according to (13), a prediction confirmed
accurate to better than 12 % in Fig. 11.

VI. CONCLUSION

This paper has investigated the performance of TR-MUSIC
in the presence of noise. In spite of its high resolution, noise
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(a)

Fig. 10: Same as in Fig. (10), but for the single-junction case.
σo = 2.2× 106 m/s was estimated from these results.

leads to stochastic dispersion, especially at the low frequencies
for which the method was first proposed for locating soft
faults. The opportunity of exploiting the lower dispersion
reported at higher frequencies is hindered by the appearance
of spurious locations, or ghost traces, from which the actual
fault position cannot be directly inferred.

An alternative multi-frequency estimator, based on inde-
pendent single-frequency results, was introduced, in order
to counter the loss of accuracy. The majority-based rule
introduced in order to isolate meaningful estimates of the
fault position is shown to be effective. Formal tools were
introduced in order to design robust estimators even though
working within the ghost region. The results presented confirm
the accuracy of these tools and the feasibility of preserving a
super-resolved location of soft faults even with SNR levelsas
low as 5 dB.

These results require an accurate description and modeling
of a network under test, in order to compute its Green
functions, which are needed in TR-MUSIC processing. Future
work will analyze how errors in the computation of the Green
functions, e.g., because of an inaccurate description, would
impact the accuracy of TR-MUSIC in locating faults.
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av. p̂− p, [50-100] MHz

av. p̂− p, [200-250] MHz

σp̂, [50-100] MHz
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(b)
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Fig. 11: Performance of the multi-frequency estimator (3)
versus SNR in locating a fault, for the two systems in Fig.
2, respectively.
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