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Multi-Frequency TR-MUSIC Processing to Locate
Soft Faults in Cables Subject to Noise

Moussa KafalMember, IEEE Andrea CozzaSenior Member, |EEE

Abstract—Time-Reversal multiple signal classification (TR-
MUSIC) has recently been shown to be an effective techniquet
locate multiple soft faults in wire networks, thanks to its sib-
millimeter location accuracy. TR-MUSIC processes transnssion
and reflection data measured at a single frequency into a furion
of space, the pseudo spectrum, expected to present singutas
only at a fault position. At frequencies high enough, the spial
periodicity that comes with the propagation of harmonic sigals
leads to multiples such singularities, of which only one resents
the fault position, while the remaining are ghosts faults. R-
MUSIC was therefore introduced using a single continuous-ave
excitation at frequencies low enough to avoid ghosts, an appach
suitable only to noiseless configurations. This paper exples the
effects of noise on TR-MUSIC fault location by first highlighting
its high sensitivity to noise at low frequency. A potentialy lower
sensitivity is shown to exist at high frequencies, where glsts
positions are found. A multi-frequency processing is intraluced,
allowing at the same time to solve the ambiguity in the fault
position and to effectively control the impact of noise on i
location accuracy. The proposed processing is shown to reitate
precise super-resolved estimates of fault locations evearfsignal-
to-noise ratios as low as 5 dB, without requiring to the use of
wide-band signals.

Index Terms—Fault detection, fault location, soft faults, com-
plex wire networks, additive noise.

I. INTRODUCTION

C

of either hard faults (open or short circuits), or soft faul

ABLES in industrial settings are often exposed to pote

tially harsh conditions, which may lead to the appearan&® expected to be more suitable for practical configurations
: Where noise could potentially be sufficient to invalidate th

resolutions would require test signals covering bandveidth
spanning several GHz when using reflectometry techniques.

Theory has it that MUSIC-based processing can potentially
achieve unlimited resolution with noiseless data. But-real
life NUTs and the associated testing equipment are roytinel
affected by background noise, or signals during onlinestest
which might be sufficiently high to degrade the quality of MU-
SIC processing. In investigations on open-media apptioati
of TR-MUSIC, [18], [19] have proven that in presence of noise
the super-resolution expected from TR-MUSIC processimg ca
not be reliably ensured.

This paper explores the impact of noise on the precision of
fault location estimated with TR-MUSIC, proving that thespr
viously introduced choice of using single-frequency pssieg
at very low frequency is only suitable for negligible noise
levels. Experimental results show that TR-MUSIC sensitivi
to noise is inversely proportional to the frequency, sutggs
that the ghost region, even though affected by ambiguityiabo
the actual fault position, holds the potential for noisbust
TR-MUSIC fault location. The proposed solution is based on
a multi-frequency processing that allows at the same time to
solve the spatial ambiguity caused by the presence of gloest p
sitions, while giving access to a larger pool of single-treacy
gstimators less affected by noise. The resulting procgssin

which are usually minor alterations (e.g., chafing) thaeetff '0W-frequency approach previously introduced.

a cable without impeding its nominal functions. Notably,

The paper’s structure is as follows: the basic aspects of

the latter kind of faults have earned attention [1]-{7] a$r_pmusIC processing applied to locating soft faults in a

their evolution could be continuously monitored, in order t

ideally intervene before their developing into hard faullteis
avoiding a sudden system collapse.

cable network are reviewed in Sec. Il, while Sec. Il present
an empirical analysis of the impact of noise on the reso-
lution of TR-MUSIC for two topologies of networks under

While most techniques rely on the use of wide-band exgsst (NUT). The high sensitivity of low-frequency data to

tation signals [3], [8]-[15], it has recently been demoaitsd

noise is confirmed even for relatively good signal-to-noise

[16] that soft faults can be located by using single-frecwenratioS (SNR), e.g., 15 dB. The multiple-frequency approach

continuous-wave tests, and still obtain sub-millimeteeqgdr
sion, thanks to the super-resolution properties of timensal-

is introduced in Sec. IV, exploiting the intrinsic cohereraf
fault-position estimates computed across different fesmies

based multiple signal classification (TR-MUSIC) [17]. Inrpa \yith TR-MUSIC. Design rules are derived enabling a robust
ticular, test signals below 10 MHz were shown in [16] to resuimplementation, depending on the required level of preaisi

in estimates of fault locations within a few millimeterse.i.

in particular based on the number of tests required and the

about 1/20000 of wavelength of the test signal. Similarigpatpangwidth over which the NUT is tested. Experimental result
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in Sec. V prove that this multi-frequency implementatiom ca
still ensure a millimetric resolution even when dealinghwit
SNRs as low as 5 dB. Although in this case tests may need
to be carried out at higher frequencies, the spatial reisolut

is shown to still be much higher than that achievable by
reflectometry techniques.
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| with g(z,v) = [g1(z,v),...,gn(z,v)]T a vector consist-
4 /: ing of the N Green functions of the healthy NUT, which
| are defined as th&/ spatial distributions, in the coordinate

x, of voltages observed along the NUT, when separately
excited from each testing port. These distributions can be
estimated from a numerical model of the NUT, e.g., based
on transmission-line theory.

The typical structure ob(z, v) is shown in Fig. 1. The mul-
tiple traces are the loci of the peaks of the pseudo-spec¢trum
generated by the multiple peaks observed at each testing
frequency. The fault positionis marked by a vertical trace, or
fault trace, which is unique in its frequency invariancerveal
v (frequency) traces, or ghost traces, are caused by the periodicity ofrGre
) ) functions for harmonic signals propagating along transiors
Fig. 1: Typical structure of the pseudo spectrubiz,v) |ines, appearing in (1). These traces can be identified by the
generated by TR-MUSI.C.Z for a cable, as the locus of pomé%ordinateq;n(u), wheren € Z is their order, withn = 0
over the frequency-position plane where the pseudo-speCtrine fault trace. Transmission-line theory implies thatt{ay a
presents singularities. periodicity of half a wavelength, with ghost traces thusrfdu
at a distance

fault trace

nv
dn(y) - pn(y) p= 2]/’ (2)
with v the propagation speed along the cables.

The basic operations involved in the use of TR-MUSIC As opposed to open-media applications of TR-MUSIC, a
technique in fault location, are here recalled; the intexs fault can be located only if choosing a frequency within the
Reader should refer to [16] for more details. All quantities ghost-free bandwidth (see Fig. 1), where the pseudo-spactr
the following are functions of the frequeney it might be presents a single peak. In [16], it was proved that TR-MUSIC
dropped for the sake of brevity. can still provide sub-millimeter resolution even when agqbl

TR-MUSIC processing is intrinsically defined as a multito such relatively low test frequencies.
static approach and relies on the availability of an NUT At higher frequencies, ghost traces represent irredueitnle
scattering matrixS; (v), measured oveN testing ports, e.g., biguities in the interpretation of TR-MUSIC pseudo-spactr
by means of a vector network analyzer (VNA). It also requireBhis is not to say that high-frequency results have no prac-
baselining information, i.e., the reference respoBgé) of tical use, as argued in Sec. IV. The possibility of taking
a healthy version of the network [20], [21], which is fundaadvantage of results outside the ghost-free bandwidth was n
mental step in any diagnostic technique for the case of séftknowledged in [16], since it requires multi-frequencstse
faults. TR-based methods operate on the difference syste#ich, in case of high SNRs, present virtually no benefit with
S=S; — Sy, which can be shown to result in an equivaleriespect to the single-frequency results limited by the gfree
description where a fault acts as a secondary source [22]b&ndwidth.
also increases the maximum number of faults that TR-

MUSIC can detect, by removing the echoes generated by lll. EMPIRICAL ASSESSMENT OF NOISE IMPACT ON
impedance discontinuities like junctions in an NUT. TR-MUSIC

The TR operator is the key behind most TR applications andTheoretical analyses of the performance of MUSIC process-
is obtained from the difference scattering maBiask = S'S, ing in presence of noise are available in the literature, [
where the superscriptis the Hermitian transpose. TR-MUSICthey apply to direction finding problems, for which MUSIC
can locate up td/ faults, under the condition thaf > M. In  was originally introduced. While this configuration shaties
particular, the eigenvalue expansiorkoforms the basis of the same mathematical definition (1) of the pseudo-spectrum, it
TR-MUSIC method by identifying the noise subspateof does not consider phenomena proper to cable networks, e.g.,
K. A is formed by the eigenvectors deemed to have negligitiultiple reflections. To the best of our knowledge, therestsxi
eigenvalues, i.eN' = span{u; : A\; < A}, With \; andu;  no theoretical framework for describing the effects of rais
being the eigenvalues and their corresponding eigenctanuUsIC for such settings.
respectively;);;, is usually set after analyzing the scree plot For this reason, an empirical approach was adopted, by
of the eigenvalues oK. using experimental data measured on two NUTs schematically

The numberM of faults is then given by the rank df, represented in Fig. 2, moving from a single cable to a network
while their positions are inferred from local maxima in thetructure with three branches connected through a junction
pseudo-spectrun®(x, v), defined as [23]: Fig. 3(a) shows the implementation of the network tested. A

II. TR-MUSIC FOR FAULT LOCATION
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Fig. 2: Topologies of the two networks used in studying th~ 3004+
effects of noise on locating faults with TR-MUSIC: (a) siagl
branch and (b) single junction. The star indicates the jposit
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Fig. 3: The experimental setup (a) for the single-junctioc 450 i
network, for a soft fault implemented as a crushed portic 500[ |
of line (b)-(c). 0 0.5 1 15 2 25

single soft fault was considered in both NUTSs, introduceﬂig_ 4: Local maxima in the pseudo-spectra computed from
by creating a partially crushed portion about 2 cm long igcattering matrices measured for the two configurationsgn F

a portion of semi-rigid cable, as visible in Figs. 3(b)-(Ehis  2: (a) single-branch case and (b) single-junction case. Two
kind of experimental tests was successfully used in previogise levels are considered, a 15 dB SNR (dark gray dots)

work; more details can be found in [16]. The scatteringnd 5 dB SNR (light gray dots), with solid black lines the
matrices for each tested network were measured using a Rofii&retical results expected from (2).

& Schwarz ZVB8 vector network analyzer on a bandwidth
ranging from 1 MHz to 500 MHz, sampled in 0.6 MHz steps.

The analysis of the performance of TR-MUSIC is based ajuency, for two values of SNR, namely 5 and 15 dB. Reference
the presence of an additive white Gaussian noise (AWGNM}ructures for the pseudo-spectra singularities, expaateer
which can be thought as either representing measurempoiseless conditions, are shown as solid black lines, based
uncertainty, or alternatively reproducing the statidtizzhavior on (2). Measurement-based pseudo-spectra (dots) in Fig. 4
of signals propagating along cable networks tested whilsén show how noise affects TR-MUSIC, by inducing a stochastic
(on-line testing). The AWGN was numerically added to eadftispersion in the pseudo-spectra peaks, with the origiositp
measured scattering matrix, both for the NUT and its refegentions p,, () of the traces (black lines) perturbed into estimates
(baseline) matrix, before proceeding to the data procgssifi,(v). The errors in these estimates exceed the millimeter spa-
stage resumed in Sec. Il. The signal-to-noise ratio (SNR) wial resolution demonstrated in [16], undercutting the éfits
defined as the ratio of the average power scattered by the NbfTthis super-resolution method.

(both in transmission and reflection) and the noise averageResults for the single-junction network in Fig. 4 (bottom
power. The SNR was set to be a constant, independent frgraph) cover the results for positions along the two brasche
frequency, in order to simplify the comparison of the resuliconnected ending into ports (1) and (2) in Fig. 2. They
over the entire frequency range tested. are therefore interesting since they show how TR-MUSIC

Fig. 4 shows the local maxima detected in the pseudilentifies the branch containing the fault, with the ghostés
spectra obtained by applying the TR-MUSIC processing surabruptly stopping at the junction (1 m). Some peaks are still
marized in Sec. Il, computed independently for each freisible between 0 and 1 m, again due to periodicity in the



ghost-free region the fault position. To this end, the following meta-estioras

o (mostion) introduced N
) 1(J1 x (position A 1 FA
= 3
P= ;po(fk), ®3)
' 4 based on the results &f» frequencieq fi} and the individual
o " fault-position estimate$po(fx)} yielded by single-frequency

TR-MUSIC processing discussed in Secs. Il and Ill. In the
following, it will be assumed that théVgy frequencies are
‘ used during TR-MUSIC tests, uniformly distributed between
f e frequencyf; and f,, with a sampling step\ f.
v (frequency) In order to apply (3), two problems need to be addressed:
a) to automatically identify and isolate the estima§gs(fx)}
Fig. 5: Bin design for maximum contrast in pseudo spectraelonging to the fault trace; b) to know how (3) performs,
based histograms. depending on which, and how many, frequencies are tested.
One way of identifying the fault trace is to notice that the
number of occurrences of peaks in the pseudo-spectrum is
Green functions, but exist only at those frequencies whemgaximized when observing the positioasclose to the fault,
ghost traces intersect the end of the cable, here at 1 m: pel&sause of the expected frequency-invariance of the faadét
are then observed only at distances that need to be a multiislee Figs. 1 and 4). Elsewhere, contributions from ghosega
of half the wavelength at these frequencies. would otherwise be spread over wider intervals, thus riesult
The dispersion caused by noise in the pseudo-spectrifh2 lower frequency of occurrence. An empirical probapilit
structure appears to be inversely dependent on the freguet® identifying the fault trace can be obtained by subdividin
with the ghost-free bandwidthat the lower frequency end,an NUT into short sections of length, or bins, and counting
more prone to disruption. The sub-millimeter resolution ohe occurrences of estimatgs(v) obtained from TR-MUSIC,
served in [16] for a noiseless case gives way to a statisti€ifectively producing an histogram. Examples are latemsho
dispersion that can exceed one meter below 10 MHz for a 5 #BFig. 6.
SNR. On the contrary, much lower dispersions are observed/ith reference to Fig. 5, the bin widtl should be chosen
at higher frequencies: the reason for this frequency-dagen in such a way as to capture the maximum number of samples
behavior can be traced back to the fact that the spatial scBfionging to the fault trace, thus requiring a largewhile at
of the pseudo-spectrum fundamentally responds accordingtte€ same time minimizing the probability of including saewpl
the wavelength associated to each frequency. from neighboring ghost traces, hence requiring a narrovwver b
In order not to loose the super-resolved location property’€ former requirement cannot be met at the same time for
TR-MUSIC should therefore be applied to higher frequencié®V and high frequencies, because of the frequency-depende
in case of noisy data, eventually moving outside the ghesi-f statistical dispersion, while the latter can be satisfiedddting

bandwidth. The problem with such a proposal is: TR-MUSIC w = ady (f2), )
treats each frequency data independently, and is therefore ) o )
unable to provide unambiguous estimates of the fault positi With @ € [0, 1] & scaling factor. The minimum distande(f2)

since for each frequency outside the ghost-free bandwidfgtween a ghost and the fault trace is used as a reference, and
TR-MUSIC results into a set of multiple peaKsn(v)} of it also defines the ghost-free region shown in Fig. 1. Fordarg

which onlyj, (v) is @ meaningful estimate of the fault locationY2!ues ofw the bin would capture both fault- and ghost-trace

A solution to this problem is discussed in Sec. IV, basg®mples. . , .
on sets of data obtained at multiple frequencies, together! N€ relative positions of bins and the fault will not be

with guidelines for designing a robust multiple-frequefig- KnNown at this time, so that the worst case is considered in
MUSIC processing. Fig. 5, where one of the bins has one of its edges in close

proximity of a first-order ghost trace: here, the ghost tiaas
maximum slope, and will thus result in a smaller footprint
over the horizontal axis, thus yielding a maximum density of
occurrences of estimatgs( 1. ); higher-order ghost traces will
The results discussed in the previous section highliglited tesult in a lower density of occurrences. The numbgr of
need to control the statistical dispersion introduced bigayo occurrences for this bin can be computed by first finding the
in order to counter the effects of noise and avoid wasting tfi@guencyf, associated to the right edge of the bin, such that
potential for super-resolved location. One way of doing thi1(f2) +w = di(f,), hence
is to use average-based estimators, by looking at the positi fa
yielded by TR-MUSIC pseudo-spectrum collectively, as popu fo= 1+a ®)
lations of random samples sharing a common information, i.& 1, \which

IV. MULTI-FREQUENCY LOCATION ESTIMATOR

:fQ_fo fo «

1< 100 MHz for the single cable anet 125 MHz for the network Ny Af = A_f 1+a’ (6)
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Fig. 6: Number of peaks per bin for the results in Fig. 4(aj), fd=ig. 7: Empirical probability density function of faultace
the single-cable case and a 15 dB SNR. The four histogragsimatesj, extracted from data for 100-150 MHz (left) and
correspond tol /o = 5.5 and 10.5 (left and right columns), 100-300 MHz (right) for the single-cable case, for a 15 dB
for data collected on the frequency ranges 100-150 MHz ag&i\R (top) and 5 dB (bottom).

100-300 MHz (top and bottom rows).

) ) the fault trace and the left and right first-order ghost tsace
to be compared with thé/ occurrences ideally observed forrhe population thus isolated does not correspond exactly to
another bin over the fault trace. The identification of theltfa the entire set of fault-trace sampléso ()}, but will only
region is therefore possible only Ny /N, > M, with M > 1 capture samples falling within the ghost-free region (d§. F

the contrast required between the background and the pealspfrig. 7 shows the distribution of these samples around the
the histogram. Recalling thafr = (f2—f1)/Af, the contrast actyal fault position.

reads The precision of the meta-estimator (3) can be estimated

1+a’ () by modeling the Np estimates{p,(fx)} as zero-average
independent Gaussian random variables, approximatirig the
standard deviatioa as

N/Ng=(1- fi/f2)
and will be larger than\/ if

M -1
a< (m - 1) . (8) o(v) =0o,/v, 9)

In this simple deterministic model, the numb€f. of tested 5, \which the variance op would be
frequencies has no effect on the ability to identify the faul

region from a pseudo-spectrum, which is rather controlied b , 1 N , o2 n2 ,
the bandwidth spanned by the test frequencies. As an example 05 = 2 Z o°(fn) = m Z qg "~

for M =2 and f2/f1 = 1.5, a < 1/6; for higher contrasts, Fopn=1 g=n1 (10)
the bins will have to be a smaller fraction of the ghost-free o2 /"2 doa—2 — o2
region. T AfPNZ ), 9 T Nefif

Fig. 6 presents a few examples of histograms obtained with
different choices ofv and f»/f1. One bin stands out in eachwhich is equivalent to the variance of a populatiomf i.i.d.
histogram, and corresponds to the fault trace. The averagnples measured at the frequerfey= /f1 fa.
of the samples{po(fx)} falling into this bin can be used It is worth recalling that the requirement of sweeping
as an initial gues®$ of the fault position. From this point the bandwidth[f1, f2] was driven by the need to isolate a
onwards, it is possible to redistribute the bins in ordertsuge population of coherent estimates of the fault position &par
that one of them will be centered afy, thus reducing the from ghost traces, and that the accuracy of the TR-MUSIC
probability of having the fault-trace sample populatiovidiéd estimators improves with the frequency. Eq. (10) explalires t
over two adjacent bins, which would otherwise result intrade-off between the increased number of samples assdciat
a lower contrastM. Fig. 6 correspond to the case of a biro a larger bandwidth and the fact that those at the higher
already centered on the fault position. end will outperform those obtained at lower frequency, as

The population of single-frequency estimatoffy(fx)} made clear by Fig.4. In other words, low-frequency samples
needed in order to compute the meta-estimator (3) is selectantribute mostly to the identification of the fault tracest b
by extracting those peak positions in the pseudo spectramn thimit the overall accuracy of the estimatgs which cannot
fall in the regionp + d;(f2)/2, which sits halfway between reach the accuracy expected for high-frequency samples.



1 V. ACCURACY OF THE MULTI-FREQUENCY ESTIMATOR
400 MHz
.§ sl @ - The precision of the proposed estimator, as predicted by
(8] . I . . .
S (10), was verified by generating 500 random realizations of
g additive noise. Associated populations of single-freqyen
S 0.6f ] estimators where derived, by first computing the pseudo-spec
3 100 MHz 200 MHz - . I .
E tra for the two cable configurations in Fig. 2, covering the
S 0.4t 1 frequencies from 1 to 500 MHz.
-% The multi-frequency estimatop in (3) can be expected
E to approximatively follow a Gaussian probability distritmn,
3 021 50 Mhz Experiments | since it is based on the summation of random quantities,
- - - Gaussian fit namely the fault-trace positiod®o(fx)}. Therefore, only the
%o ” > 5 5 ” 20 first two moments of) need to be studied, providing a direct
h h 1 1 assessment of the presence of a biag iand its precision,
1 : following its standard deviation. The validity of this chei
400 MHz is demonstrated in Fig. 8, where the empirical distribution
5 function of p is shown for results obtained for the single-
5 08/ ‘ ®) 1 branch case, with a 5 and 15 dB SNR, for a fixed frequency
> - .
= 200 MHz band equal to 50 MHz and a _stam_ng _frequer;fqymov_lng
-% 06} ] from 50 up to 400 MHz. Gaussian distributions were fitted to
2 the empirical ones, resulting in a close agreement spanning
2 100 MH at least two standard deviations, i.e., for at least 95 % ef th
0.4f 2 1
2 / cases.
g The average errgé — p and the standard deviation pfare
Eoz2f 1 shown in Figs. 9 and 10 for the two test configurations in Fig.
© 50 MHz Z 2, for a 15 dB SNR. Data were computed over two bandwidths,
‘ namely 25 and 50 MHz, with the starting frequengymoving

-010 -5 -0 5 10 from 50 up to 400 MHz.
Location error (mm) All sets of results present a residual bias way smaller
than the standard deviation, indicating an unbiased eg&iima
Fig. 8: Empirical distribution functions estimated from@0 with typical values below 1 mm even fof; = 50 MHz.
random realizations of the multi-frequency estimator cated  Therefore the precision is limited by the standard deviatit
from experimental results for a single-branch configuratior  the estimator (3). The standard deviation decreases fyith
a 50 MHz bandwidth, with minimum frequencies shown neafhile the number of frequency samples is kept constant, i.e.
each set of curves, for an SNR equal to: (a) 5 dB and (b) #e same number of Sing|e-frequency estimdmfk)} are
dB. used. Therefore, the fact that decreases witlf; is explained
by the decreasing dispersion 6fy(~)} at higher frequency,
as postulated in (9), rather than because of the averagii®y.in
The minimum bandwidth required in order to identify therhe transition between results in the ghost-free regiorl(G

fault trace is found as a corollary of (7) MHz) and those at higher frequency is noteworthy, confirming
1 the effectiveness of the proposed data processing.
Mo . . .
fa/f1 > (1 — ) , (11) Comparisons of empirical results with (10) are presented,
l1+a obtained by estimating, by means of a least-square pro-

in order to ensure a given contradf in the histograms in cedure; in practical settings, (10) provides the means for
Fig. 6 and thus the identification of the fault trace. Notic&Stimatingo, from preliminary tests for a single configuration

that (11) is valid under the conditioh/a/(1 + o) < 1. This [f1, f2]. The results in Figs. 9 and 10 confirm that (10)
deterministic model can be accurate onlyif> 20(v)2, Vv €  an explain how choosing different test bandwidtlfis, /]

[f1, f2], with f, yielding the worst case, thus impacts the accuracy of the multi-frequency estimators thi
also indirectly confirms the validity of (9) as a working
a> 4@Q (12) approximation. Therefore, (10) can be used in order to ptedi

v fi how the precision of the proposed estimator would change by

passing from a test carried out over a frequency rdifigefs]

for Ny frequency samples, to another witfy, /4] with N7
samples. The standard deviation is expected to be reduced by
a factor

based on (4) and (9).

Therefore, small fractional bandwidth/f; are an un-
likely option for either very low SNR or at low frequencies
whereo(v) might prove to be too large.

Npfifs

%i.e., for a 95 % confidence interval Nrfifo ’

(13)
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Fig. 9: Average location error and its standard deviation férig. 10: Same as in Fig. (10), but for the single-junctiorecas
the multi-frequency estimator (3) for the single-cableeclis 0, = 2.2 x 105 m/s was estimated from these results.

a 15 dB SNR, for a (a) 25 MHz and (b) 50 MHz bandwidth.

o, = 2.4 x 10 m/s was estimated from these results.

leads to stochastic dispersion, especially at the low &aqies
With a standard deviation below 8 mm At= 50 MHz, for  for which the method was first proposed for locating soft
a 25 MHz bandwidth, these results confirm that super-resolvgyits. The opportunity of exploiting the lower dispersion
location of faults is still possible even with data affectefl reported at higher frequencies is hindered by the appearanc

noise. In fact, at this frequency the wavelength is expectgfl spurious locations, or ghost traces, from which the dctua
to be about 5 m in PTFE-based coaxial cables, and forfgt position cannot be directly inferred.

bandwidth of 25 MHz, time-domain test signals could not be ) ) . .
shorter than about 40 ns, with a spatial footprint around 9 m.An alternative multi-frequency estimator, based on inde-
The performance of (3yersus the SNR is presented in pendent single-frequency results, was introduced, in rorde
Fig. 11, for an SNR going from 5 to 30 dB and a 50 MHi0 counter the loss of accuracy. The majority-based rule
bandwidth, starting at 50 and 200 MHz. These results pro{firoduced in order to isolate meaningful estimates of the
that even at very low SNR levels TR-MUSIC can be expectéau“ p05|t|qn is shown to_ be effective. _Formal tools were
to locate faults with high resolution: e.g., at 5 dB SNR, thitroduced in order to design robust estimators even though

fault is identified with a standard deviation of about 25 mn¥Vorking within the ghost region. The results presented eonfi
using data measured on[&0 — 100] MHz bandwidth. The the accuracy of these tools and the feasibility of presgrein

standard deviation observed for tiE0 — 250] MHz data is super-resolved location of soft faults even with SNR lewds
expected to be about10 ~ 3.2 lower than the one found for 1OW @s 5 dB.
[560—100] MHz data, according to (13), a prediction confirmed These results require an accurate description and modeling

accurate to better than 12 % in Fig. 11. of a network under test, in order to compute its Green
functions, which are needed in TR-MUSIC processing. Future
VI. CONCLUSION work will analyze how errors in the computation of the Green

This paper has investigated the performance of TR-MUSI@nctions, e.g., because of an inaccurate description,dvou
in the presence of noise. In spite of its high resolutionseoiimpact the accuracy of TR-MUSIC in locating faults.
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