
HAL Id: hal-01984872
https://centralesupelec.hal.science/hal-01984872

Submitted on 17 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Fault Detection and Isolation in a Zonotopic
Framework

Daniel Ioan, Florin Stoican, Karl Worthmann

To cite this version:
Daniel Ioan, Florin Stoican, Karl Worthmann. Active Fault Detection and Isolation in a Zonotopic
Framework. 2017 21st International Conference on System Theory, Control and Computing (IC-
STCC), Oct 2017, Sinaia, Romania. �hal-01984872�

https://centralesupelec.hal.science/hal-01984872
https://hal.archives-ouvertes.fr


Active Fault Detection and Isolation in a Zonotopic
Framework

Daniel-Mihail Ioan1, Florin Stoican
Department of Automatic Control

and Systems Engineering, UPB, Romania
Email: {daniel.ioan@aut, florin.stoican@acse}.pub.ro

Karl Worthmann
Dept. of Ordinary Differential Equations,

TU Ilmenau, Germany
Email: karl.worthmann@tu-ilmenau.de

Abstract—We consider a plant affected by multiple faults
(modeled through a piecewise affine formalism). Using a bank
of finite-window observers and an artificially-induced feedback
delay we provide an exact fault detection and isolation (FDI)
mechanism, integrated into the overall fault tolerant control
scheme. We use zonotopic characterizations for the sets of interest
in order to provide explicit conditions for FDI exactness (such
that a fault occurrence can be signaled unambiguously) and to
alleviate the numerical issues specific to set operations.
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I. INTRODUCTION
Fault tolerant control (FTC) is one of today’s main topics of

interest in the control community [1]. The recent proliferation
of large-scale, complex systems has raised the chances of fault
occurrences (either at actuator, sensor or plant dynamics level).
Thus, a reliable FTC scheme with an exact fault detection
and isolation (FDI) together with a robust reconfiguration
mechanism is becoming essential.

In what follows, we consider a set-based approach [2],
[3]. Having bounding sets for noises, disturbances and model
variations it is possible to bound the signals of interest and
thus, to characterize explicitly separation conditions which
ensure FDI. To this end we use the set-theoretic notions of
robust positive invariance and reachability. The former allows
offline computations and gives a priori stability guarantees
while the later allows to handle the transitional behavior
sparked by fault(s) occurrences [4]. There are several issues
in the literature which are not usually tackled:

i) The FDI separation condition may not be verified for the
current operation conditions.

ii) The FDI mechanism may need a non-zero observation
window to asses a fault occurrence. This means that the
closed-loop scheme may use faulty information.

iii) The computation of invariant / reachable sets is cumber-
some for large dimensions and/or for long intervals [5].

For issue i) the key is to observe that the sets involved are
parametrized after variables influenced by the control scheme
[6]. Therefore, choosing them such that the condition is always
respected avoids the issue of false alarms or missed faults.

To simplify the set computations and help with issue ii)
we induce a delay in the feedback generation. Assuming
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fault persistence and given reference dynamics, ‘steady’ and
transitional sets which bound the tracking error and estimation
error dynamics are computed. Residual sets (coming from the
output estimation sets) are used to check the FDI condition.
Since these sets are parametrized after the reference state and
input, we use these variables to guarantee exact FDI.

Lastly, to handle issue iii), we consider zonotopic sets. A
sub-class of the polyhedral sets, they are increasingly used due
to their resilience to the “dimensionality curse’ [7], e.g, for
reachability analysis [8], collision detection [9] or guaranteed
state estimation [9]. In contrast to polytopes, the operations
with zonotopic sets are significantly less computationally
demanding, and, also, do not raise numerical instabilities
[10], [11]. Toolboxes like CORA [11] handle zonotopic sets
representations and operations efficiently.

Combining all these elements we reach an explicit for-
mulation which ensures FDI and involves reference inputs
and states. Due to the nonlinear nature of the problem (a
bilevel formulation), we consider the mixed integer formalism
proposed in [12] but, instead of directly controlling the inputs
applied to the control scheme, we control the reference inputs
and assume the feedback law already given.
Notation: The Minkowski sum of two sets, A and B is denoted
as A⊕B = {x : x = a+ b, a ∈ A, b ∈ B}. conv(S) denotes
the convex hull of set S.

II. PRELIMINARIES

In the rest of the paper sets will be used to bound various
signals with the end goal of detecting and isolating unam-
biguously a fault occurrence. This implies the use of (robust)
invariance, set projection, set addition and all the other tools
used in set-theoretic methods.

While there are multiple choices for representing a system
(e.g., via polyhedral or ellipsoidal sets [5]), in this paper we
consider zonotopes as they provide an excellent compromise
between numerical complexity and fidelity of representation:

Definition 1 ([13]): A zonotope is a centrally symmetric
polytope, which can be described as a Minkowski sum of
line segments. In its generator representation a zonotope Z is
described by center c ∈ Rn and generators g1, . . . ,gng ∈ Rn:

Z = {c+
ng∑
i=1

ξigi : ∥ξ∥∞ ≤ 1} (1)



or, compactly with G = [g1, . . . ,gng ], as

Z = {Gξ + c|ξ ∈ Rng , ∥ξ∥∞ ≤ 1} (2)

In the next sections, we use notation Z(G, c) to denote (1).
Let us consider two zonotopes: Z1 = Z(G1, c1) ⊂ Rn,

Z1 = Z(G2, c2) ⊂ Rn and a matrix R ∈ Rm×n. Then the
following propeties hold [14]:

i) is closed under linear transformation:

RZ(G1, c1) = Z(RG1,Rc1); (3)

ii) is closed under Minkowski sum:

Z(G1, c1)⊕Z(G2, c2) = Z(
[
G1 G2

]
, c1+c2); (4)

iii) is symmetric, up to its center:

−Z1 = −Z{G1, c1} = Z{G1,−c1}. (5)

In particular, the Minkowski addition and projection operations
greatly simplify for zonotopic sets with respect to their polyhe-
dral counterparts and make large-scale computations feasible
and numerically robust [8].

For further use, we define the notion of robust positive
invariance (RPI).

Definition 2: For LTI dynamics xk+1 = Axk + δk with
δk ∈ ∆, the set Ω is called RPI iff the set inclusion

AΩ⊕∆ ⊆ λΩ, (6)

holds for 0 < λ ≤ 1.
When 0 < λ < 1 we call Ω contractive and convergence

inside it in a finite time is guaranteed. �
It is well-known [15] that the minimal RPI (mRPI) set Ω∞
can be obtained through the set recurrence:

Ω0 = {0}, Ωk+1 = AΩk ⊕∆. (7)

In general, the limit set of (7) cannot be obtained explicitly.
Instead, various methods exist for computing arbitrarily close
approximations [16]. The repeated additions in (7) are man-
ageable for zonotopic sets. In fact, due to (3) and (4), and
assuming that ∆ = Z(G, c) we have that

Ωk = Z(
[
G . . . Ak−1G

]
, c+ . . . Ak−1c) (8)

Using (8) for k 7→ k+1 and introducing it in (6) we have that,
for a desired λ, the minimal value of k for which (6) holds is

k∗ = argmin
k

AkZ(G, c) ⊆ λZ(G, c). (9)

III. PROBLEM DESCRIPTION

Let us consider the dynamics

xk+1 = A(ik)xk +B(ik)uk + r(ik) +Bw(ik)wk (10a)
yk = C(ik)xk + s(ik) +Dv(ik)vk (10b)

where xk,xk+1 ∈ Rn denote the current and successor states,
uk ∈ Rm the input, yk ∈ Rp the output, wk ∈ W ⊂ Rmw

the process noise and vk ∈ V ⊂ Rmv the measurement noise.
Matrices A, B, Bw, C, Dv and bias terms r ∈ Rn, s ∈ Rp

are of appropriate dimension and take values from pre-defined

collections of cardinality N , as indexed by ik (e.g., A(ik)
takes values from {A1,A2, . . . ,AN}).

Formulation (10) is both general enough to handle realistic
dynamics (subject to model variation, noises, faults, etc.)
and restrictive enough to provide, coupled with the tools
from Section II, numerically manageable constructions. In
particular, we use (10) to model dynamics which alternate
between a healthy mode (by convention, ik = 0) and various
pre-defined1 faulty modes (ik ̸= 0). What remains to be
assessed is the fault occurrence (via a FDI mechanism).

A. State estimation

Let us assume a bank of observers, one per mode of
functioning. That is, we define the j-th observer as a finite-
window Luenberger observer whose internal model is given
by the the j-th mode of dynamics (10):

x̂j
k−τ+1 = x̄k−τ+1 (11a)

x̂j
ℓ+1 = A(j)x̂j

ℓ +B(j)uℓ + r(j) + Lj(yℓ − ŷj
ℓ) (11b)

ŷj
ℓ = C(j)x̂j

ℓ + s(j), (11c)

for ℓ = k − τ + 1, . . . , k and x̄k−τ+1, the state reference at
time instant k − τ + 1, to be defined later.

Dynamics (11) can be interpreted as follows: at the current
moment ‘k’, all the available information of the last τ instants
of time (uk−τ+1, . . . ,uk,yk−τ+1, . . . ,yk), together with ini-
tialization x̂j

k−τ+1 = x̄k−τ+1 provide a state estimation x̂j
k

and output estimation ŷj
k. While arguably this construction

discards some information (i.e., older information from the
estimation), it will prove to be useful for the FDI mechanism.

Combining (10) and (11) we get the state and output
estimation error, x̃j

k , xk−x̂j
k and ỹj

k , yk−ŷj
k, respectively,

associated to the j-th observer:

x̃j
k−τ+1 = zk−τ+1 (12a)

x̃j
ℓ+1 =

[
A(j)− LjC(j)

]
x̃j
ℓ

+
[
(A(iℓ)−A(j))− Lj (C(iℓ)−C(j))

]
xℓ

+ [B(iℓ)−B(j)]uℓ + r(iℓ)− r(j) +Bw(iℓ)wℓ

− Lj [s(iℓ)− s(j)]− LjDv(iℓ)vℓ, (12b)

ỹj
ℓ =C(j)x̃j

ℓ + [C(iℓ)−C(j)]xℓ + s(iℓ)− s(j) +Dvvℓ,
(12c)

for ℓ = k − τ + 1, . . . , k and zk−τ+1, the tracking error at
time instant k − τ + 1, to be defined later.

Matrix Lj is taken such that the closed-loop state-matrix
ALj = A(j) − LjC(j) is stable (always possible if the pair
(A(j),C(j)) is observable).

Note that when the model used in the observer and the active
dynamics coincide (i.e., ik = j), (12) reduces to:

x̃j
k−τ+1 = zk−τ+1 (13a)

x̃j
ℓ+1 =ALj x̃j

ℓ +Bw(j)wℓ − LjDv(j)vℓ, (13b)

ỹj
ℓ =C(j)x̃j

ℓ +Dv(j)vℓ. (13c)

1Note that we assume both the fault models and their magnitudes known.



for ℓ = k − τ + 1, . . . , k and zk−τ+1, the tracking error at
time instant k − τ + 1, to be defined later.

B. Tracking error

Let us assume the reference dynamics (with ūj
k persistent

references a priori given):

x̄j
k+1 = A(j)x̄j

k +B(j)ūj
k + r(j), (14a)

ȳj
k = C(j)x̄j

k + s(j). (14b)

Remark 1: The reference models (14) are in fact the nominal
models (with noises wk and vk discarded) from (10). �
To close the loop we take

uk = ū
i′k
k +Ki′k(x̂

i′k
k−τ+1 − x̄

i′k
k−τ+1) (15)

where the selection of feedback matrix, state estimation and
reference values (Ki′k , x̂

i′k
k−τ+1, ū

i′k
k , x̄

i′k
k ) will be done by the

fault tolerant scheme described in Section IV-B. Note that the
use of an artificially delayed information (the state estimation
x̂
i′k
k−τ+1) is required by the FDI construction).
A typical measure of performance and stability is the

analysis and bounding of the state and output tracking errors
zjk , xk − x̄j

k and ξjk , yk − ȳj
k respectively. Gathering (10),

(14) and (15) we have:

zk+1 = A(ik)zk +B(ik)K
i′kzk−τ+1 + [r(ik)− r(i′k)]

+ [A(ik)−A(i′k)] x̄
i′k
k + [B(ik)−B(i′k)] ū

i′k
k

−B(ik)K
i′k x̃

i′k
k−τ+1 +Bw(ik)wk (16a)

ξk = C(ik)zk + [C(ik)−C(i′k)] x̄
i′k
k

+Dv(ik)vk + [s(ik)− s(i′k)] . (16b)

Matrices Ki′k are taken such that the closed-loop dynamics are
stable [17]. Assuming that the active dynamics (10) and the
selected gain and state estimation coincide (i.e., ik = i′k = j),
the tracking error dynamics (16) become

zk+1 =A(j)zk +B(j)Kjzk−τ+1

−B(j)Kjx̃j
k−τ+1 +Bw(j)wk (17a)

ξk =C(j)zk +Dv(j)vk. (17b)

With (15) we revisit (12) and highlight the reference state and
input:

x̃j
k−τ+1 =zk−τ+1 (18a)

x̃j
ℓ+1 =ALj x̃j

ℓ

+ [( A(i′ℓ)−A(j))− Lj (C(i′ℓ)−C(j))
]
(x̄

i′ℓ
ℓ + zℓ)

+ [B(i′ℓ)−B(j)] (ūℓ +Ki′ℓ(zℓ−τ+1 − x̃
i′ℓ
ℓ−τ+1))

+ r(i′ℓ)− r(j) +Bw(i
′
ℓ)wℓ

− Lj [s(i′ℓ)− s(j)]− LjDv(i
′
ℓ)vℓ, (18b)

ỹj
ℓ =C(j)x̃j

ℓ + [C(i′ℓ)−C(j)] (x̄
i′ℓ
ℓ + zℓ)

+ s(i′ℓ)− s(j) +Dv(i
′
ℓ)vℓ, (18c)

for ℓ = k− τ +1, . . . , k. We use index i′ℓ when rewriting uℓ:
for now we make no assumption on the selected index in (15).

C. Set characterizations
For further use we require the sets which characterize the

state estimation error (12) and tracking error (16) dynamics.
Recall that by construction, observers (11) have a finite

window (i.e., the k-th state and output estimations are de-
rived only from the information available in the interval
k − τ + 1, . . . , k). Hence, whatever happens outside of this
interval has no influence in the estimations and, implicitly, on
the sets which bound them.

First, several assumptions are necessary:
A1) any two consecutive switches are separated by at least

τ + τc instants of time;
A2) (15) uses correct information (the indices of the state es-

timation and of the dynamics are matched, ik = i′k = j);
Assuming that dynamics (10) have been under the j-th mode
for at least τ consecutive time instants (Assumption A1)), the
estimation error of the j-th observer follows (13), thus allowing
to compute the corresponding bounding sets:

X̃
j,j
k−τ+1 ={zk−τ+1}, (19a)

X̃
j,j
ℓ+1 =ALjX̃

j,j
ℓ ⊕Bw(j)W ⊕ {−LjDv(j)V}, (19b)

Ỹ
j,j
ℓ =C(j)X̃j,j

ℓ ⊕Dv(j)V. (19c)

for ℓ = k − τ + 1, . . . , k. Consequently, we have inclusions
x̃j
ℓ+1 ∈ X̃

j,j
ℓ+1 and ỹj

ℓ ∈ Ỹ
j,j
ℓ .

Assuming that the correct estimation is used in (15) – As-
sumption A2) the tracking error follows (17). Further assuming
that x̃j

k−τ+1 ∈ X̃j,j , wk ∈ W hold, an invariant set Zj,j is
computed as follows: using the extended tracking error state
zk =

[
z⊤k z⊤k−1 . . . z⊤k−τ

]⊤
, we obtain an invariant set

which guarantees zk ∈ Zj . Projecting along the subspace
associated with zk we obtain the set which bounds zk while
under the selected index j:

zk ∈ Zj,j . (20)

Up to now we have shown the sets bounding the ‘steady’
estimation and tracking error (when the observer and plant
model coincide). For further use, we have to consider the case
of model mismatch as well.

Assuming that dynamics (10) have been under the j’-
th mode for at least τ consecutive time instants (Assump-
tion A1)), the estimation error of the j-th observer follows (18)
with the additions iℓ = i′ℓ = j′ and x̃j′

ℓ−τ ∈ X̃j′,j′ . This leads
to bounding sets for the state/output estimation parametrized
after the tracking error and state/input references:

X̃
j,j′

k−τ+1 ={zk−τ+1} (21a)

X̃
j,j′

ℓ+1 =ALjX̃
j,j′

ℓ

⊕{[( A (j′)−A(j))− Lj (C(j′)−C(j))
]
(x̄j′

ℓ + zℓ)}

⊕ [ B(j′ )−B(j)] ({ūj′

ℓ } ⊕Kj′({zℓ−τ} ⊕ {−X̃j′,j′}))
⊕{r(j′)− r(j)} ⊕Bw(j

′)W

⊕{−Lj [s(j′)− s(j)]} ⊕ {−LjDv(j
′)V}, (21b)

Ỹ j,j′

ℓ =C(j)X̃j,j′

ℓ ⊕ {[C(j′)−C(j)] (x̄j′

ℓ + zℓ)}
⊕{s(j′)− s(j)} ⊕Dv(j

′)V, (21c)



for ℓ = k − τ + 1, . . . , k. As expected, (21) reduces to (19)
when j = j′. Lastly, we evaluate the behavior of the tracking
error in the interval after a fault and while the correct observer
is not yet correctly selected. Using (16) and with the notations
ik 7→ j, i′k 7→ j′ and assuming that the switch j → j′ happens
at k and that x̃j′

ℓ−τ ∈ X̃j′j′ we have the set recurrence:

Z
j,j′

k = {zk} (22a)

Z
j,j′

ℓ+1 = A(j)Zj,j′

ℓ ⊕ {B(j)Kj′zℓ−τ+1}
⊕ {−B(j)Kj′X̃j′j′} ⊕Bw(j)W

⊕ {[A(j)−A(j′)] x̄j′

ℓ−τ+1} ⊕ {[B(j)−B(j′)] ūj′

k }.
(22b)

for ℓ = k + 1, . . . , k + τ .
Remark 2: The sets defined here are parametrized after the

tracking error and after the reference state and input values2.
The tracking errors appearing in (19a), (21a)–(21b) and (22a)
will be replaced with bounding sets as resulted from the FTC
scheme. The reference state and input appearing in (21b)–(21c)
and (22b) will be used as decision variables to ensure FDI. �

IV. FAULT TOLERANT CONTROL SCHEME

The use of bounding sets allows an exact FDI implemen-
tation (without missed faults and false alarms) but it requires
that the set inclusions assumed in the construction of (19),
(21), (20) and (22) hold at all times.

First we discuss the set inclusions and their convergence to
‘steady’ values and second we show how to explicitly choose
the reference states and inputs such that FDI is guaranteed.

A. Fault tolerant control scheme implementation

As a first step we revisit the sets obtained earlier and
show the stability of the closed-loop scheme. To better clarify
these issues, let us consider the following fault scenario, also
illustrated in Fig. 1 where, at k = k1 + 1 the plant switches
from functioning mode j to mode j′’:

I) For k ≤ k1 the plant dynamics are in the j-th mode for
a sufficiently long time and the plant/control models are
matched (ik = i′k = j). Therefore, the tracking error and
the estimation errors are in their respective sets (zk ∈
Zj,j , x̃j

k ∈ X̃j,j(Zj,j), x̃j′

k ∈ X̃j′,j(Zj,j).
II) From k = k1 + 1 onwards the dynamics switch to

mode ik = j′ (i.e., a (different) fault occurs). Hence, the
tracking error is no longer guaranteed to use a matched
reference model (i′k ̸= j′) and thus zk is given by
dynamics (16) and its bounding set enlarges (zk ∈ Z

j′,j
k ).

The estimation errors are indefinite since they are based
on mixed information (the observation window contains
data from both the j and j′ modes of functioning).

III) From k = k1 + τ + 1 and until k = k1 + τ + τc the
j′-th observer retrieves the correct estimation and the

2To keep the notation simple we ignored this aspect but whenever necessary,
we will employ the full form. For example, Ỹk

j,j′
from (21) may be written

as Ỹk
j,j′

(zk−2τ+1 . . . zk, ūk−τ+1 . . . ūk, x̄k−τ+1 . . . x̄k).

closed-loop is guaranteed to use the correct information
(ik = i′k = j′). The tracking error is not yet in its
invariant set (Zj′,j′) but converges towards it (in τc time
instants, computed a priori). The estimation error for
the mismatched observers (for any j ̸= j′) is computed
iteratively via (21) but is cumbersome due to the terms
zk1+τ+1 . . . zk1+τ+τc which are bounded by transitional
sets. At k = k1 + τ + τc we have inclusion zk ∈ Zj′,j′

and hence the estimation errors (and associated output
errors) are again within their ‘steady’ sets.

Recalling Remark 2, note that in step I) we use X̃j,j(Zj,j),
X̃j′,j(Zj,j). By this, we mean that in (13) and (21) we replace
zk−τ+1 and, zk−2τ+1 . . . zk, respectively, with Zj,j .

B. Active fault detection and isolation

Recall that within our framework, the plant is called “under-
fault” whenever the active index in (10) is ik ̸= 0. Thus, we
require so-called residual signals which are sensible to specific
faults occurrences and whose behavior can unambiguously
state whether the system is under fault (detection) and, if
so, which is the active fault (isolation). In here we take the
observer outputs (11) as the residuals.

From (19) and (21) we have that the output (12b) can stay
in one of N possible output sets (in Ỹj,j whenever the plant
and observer models coincide and in one of the remaining N-
1 sets, Ỹj,j′ when j ̸= j′). Hence, a sufficient condition to
unambiguously decide whether the plant is in the j-th mode
of functioning is to have

Ỹj,j(Zj,j) ∩ Ỹj,j′(Zj,j) = ∅, ∀j ̸= j′, (23)

Then, the set inclusion ỹj
k ∈ Ỹj,j is unambiguous (in the sense

that ỹj
k ∈ Ỹj,j implies ỹj

k /∈ Ỹj,j′ , ∀j′ ̸= j). Repeating (23)
for each of the observers allows to uniquely identify the fault
(out of the N observers just the one where the internal model
and the dynamics model coincide will respect ỹj

k ∈ Ỹj,j):

i′k = arg min
j: ỹj

k∈Ỹj,j

||ỹj
k||2. (24)

Using the index from (24) into (15) closes the loop and guar-
antees that the tracking error dynamic remains in a predefined
domain. Several remarks are in order.

Remark 3: Any fault could be isolated from a single
observer as long as j′ ̸= j′′ ↔ Ỹj,j′ ∩ Ỹj,j′′ = ∅. However,
in general this is hard to check and since we already have a
bank of observers at our disposal, we prefer to check (23). �

Remark 4: Usually the problem of “closing the loop” is
ignored when devising the FDI mechanism, i.e., the effects
of the fault are ignored when analyzing the residuals. As it
can be clearly seen in (18) and (16) these effects cannot be
ignored since τ cannot be chosen arbitrarily large. �

Remark 5: Relation (23) assumes that zk ∈ Zj,j holds. This
corresponds to step I) from Fig. 1. Consequently, we avoid
checking the FDI condition during steps II) and III). Instead,
having detected the jump j → j′ at k = k1 + 1 we know
(via Assumption A1)) that no other switch will happen in this
interval. Hence, we let the estimation error and tracking error



k1 k1 + τ k1 + τ + τck1 − τ

k1 + 1 k1 + τ + 1

j j’

k′ k′′

I: zk ∈ Zj, x̃j
k ∈ X̃ j,j, x̃j′

k ∈ X̃ j′,j II: zk ∈ Zj,j′

k , x̃j
k, x̃

j′

k indefinite III: zk → Zj′ , x̃j′

k ∈ X̃ j′,j′ , x̃j
k ∈ X̃ j,j′

zk1+τ ∈ Zj,j′

k1+τ → zk1+τ+τc ∈ Zj′

Fig. 1: Timeline for a fault scenario with set inclusion illustration.

sets to settle and re-activate the FDI mechanism only after the
lapsing of τ + τc instants. Thus, we avoid the cumbersome
calculations of the interconnected transitional estimation and
tracking error sets resulting from (21) and (22). �
Up to now, we have only stated the constraints which ensure
FDI. The more interesting question is whether it is possible
(and if so, how) to force the validation of the FDI condition
(23). The key is to notice that Ỹj,j′ is parametrized after
reference variables3 x̄j

k−τ+1, ū
j
k−τ+1 . . . ū

j
k.

What remains is to extract the ‘variable’ part out of Ỹj,j′ .
To this end, let us define the following operators:

AN
A =


A
A2

...
AN

 , BN
A,B =


B . . . 0
AB . . . 0

...
. . .

...
AN−1B . . . B

 (25a)

CN
C,A,B =

[
CAN−1B . . . CB

]
. (25b)

Further denoting x̄
j
k =

[
x̄j,⊥
k−τ+1 . . . x̄j,⊥

k

]⊥
, ū

j
k =[

ūj,⊥
k−τ+1 . . . ūj,⊥

k

]⊥
and X(j′, j) = X(j′)−X(j) we have

that the variable part in Ỹj,j′ is given by

Cτ
C(j),ALj ,B(j′,j)ū

j
k + Cτ

C(j),ALj ,ALj,j′
x̄

j
k +C(j′, j)x̄j

k

(26)

with ALj,j′ = A(j′, j)− LjC(j′, j).
Using (14) we have that

x̄jk =Aτ
A(j)x

j
k−τ+1 + Bτ

A(j),B(j)ū
j
k + Bτ

A(j),Ir̄
j (27a)

x̄j
k =Aτ (j)xj

k−τ+1 + Cτ
I,A(j),B(j)ū

j
k (27b)

Introducing (27) in (26) we have[
Cτ

C(j),ALj ,ALj,j′
Aτ

A(j) +C(j′, j)Aτ (j)
]
x̄j
k−τ+1

+
[
Cτ

C(j),ALj ,B(j′,j) + Cτ
C(j),ALj ,ALj,j′

Bτ
A(j),B(j)

+C(j′, j)Cτ
I,A(j),B(j)

]
ū

j
k. (28)

Let us denote with Fj,j′ and Gj,j′ the matrices which multiply
vectors x̄j

k−τ+1 and ū
j
k respectively, in (28). Further, we

3Variables x̄j
k−τ+2 . . . x̄

j
k do not appear since they can be expressed, via

(14), through the former.

denote the fixed part of Ỹj,j′ by Ỹj,j′,∗. This includes the
fixed offset Bτ

A(j),Ir
j which was extracted from (28). All these

notations allow to reformulate (23) as follows:

Fj,j′ x̄
j
k−τ+1 +Gj,j′ū

j
k /∈ Ỹj,j(Zj,j)⊕ {−Ỹj,j′,∗(Zj,j)},

(29)
for all j′ ̸= j.

The resulting problem is non-convex: the vector of elements[
(x̄j

k−τ+1)
⊤ (ūj

k)
⊤]⊤ has to reside outside of a union

of convex sets. The solution proposed here is to use the
construction from [12] which exploits the zonotopic nature
of the sets for a compact representation of the problem. A
mixed integer formulation was employed to reformulate the
complementarity condition resulting from the rewriting of the
bilevel problem.

V. ILLUSTRATIVE EXAMPLE

We take the example from [12], where a second-order
piecewise affine system is considered:

A(1) =

[
0.6 0.2
−0.4 −0.2

]
, B(1) =

[
1 0
0 1

]
C(1) =

[
1 0

]
, s(1) =

[
1
]

Bw(1) =

[
1 0
0 0

]
, Dv(1) =

[
1
]
, r(1) =

[
0
0

]
with the next modifications for the four faulty models (i =
2, . . . , 5):

B(2) =

[
1 0
0 0

]
, B(3) =

[
0 0
0 1

]
A(4) =

[
1.2 0.2
−0.4 −0.2

]
, A(5) =

[
2.0 0.2
−0.4 −0.7

]
.

The necessary sets, in zonotopic notation, are: W =
Z(0.5I,0), V = Z(0.2,0), the disturbance noises and
Ū = Z(9I,0) and X̄ = Z(0.2I,0), the bounds for the
references.

We take the observation window τ = 5 and proceed
iteratively in order to reach the separation problem (29).

First, for each observer (11) we choose gain matrices Lj

via a discrete Riccati equation (with penalty matrices Q = I
and R = I). Next, using the set-recurrence (19), we obtain
the state and output estimation error bounds in the matched



case. Note that, in order to simplify the construction we over-
approximate the initialization value ({zk−τ+1} → X̄).

Next, to obtain bounding sets (20) we proceed as follows:
using the results from [17] we obtain the feedback matrices
Kj ; compute the invariant set associated to the lifted tracking
error zk as in4 (8) and lastly, we project to the zk subspace.

We illustrate in Fig. 2 the resulted sets for each mode of
functioning. The first figure shows the X̃jj sets obtained in
the case τ = 5. The second figure shows the sets Z̃jj which
incorporate the former sets into their description and show that
the closed-loop system is stable in closed-loop. We have now

−1.4 −1 −0.6 −0.2 0.2 0.6 1 1.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3
X̃1,1 = X̃2,2 = X̃3,3

X̃4,4

X̃5,5

(a) X̃j,j sets

−20 −15 −10 −5 0 5 10 15 20
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−0.5

0

0.5

1

1.5

2

2.5

Z̃1,1

Z̃2,2

Z̃3,3

Z̃4,4

Z̃5,5

(b) Z̃j,j sets

Fig. 2: Illustration of bounding sets for state estimation and
tracking errors (for τ = 5).

the tools to compute the transitional sets (21). Applying the
set-recurrence and taking the tracking error bounds obtained
earlier we construct the fixed part of the output sets, Ỹj,j′,∗,
as they appear in (29).

Computing matrices Fj,j′ ,Gj,j′ and putting (29) in the
mixed-integer formalism of [12] we obtain a non-convex opti-
mization problem whose solution is a feasible initial reference
state xj

k−τ+1 and sequence uj
k−τ+1 . . . u

j
k which ensures FDI

form the point of view of the j-th observer.

4We fix the value k∗ = 5 in (9) and obtain the corresponding scaling
factors λ.

VI. CONCLUSIONS

We have used here a bank of finite-window observers and
an artificially-induced feedback delay to simplify the set con-
struction and guarantee the exactness of an FDI mechanism.
Zonotopes have been used extensively due to their theoretical
and numerical properties. Further work will be done for the
implementation of a FDI-aware reference governor and for the
bounding of the transitional sets sparked by a fault occurrence.
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