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We consider a cell-free Massive multiple-input multiple-output (MIMO) system and investigate the system performance for the case when the quantized version of the estimated channel and the quantized received signal are available at the central processing unit (CPU), and the case when only the quantized version of the combined signal with maximum ratio combining (MRC) detector is available at the CPU. Next, we study the max-min optimization problem, where the minimum user uplink rate is maximized with backhaul capacity constraints.

To deal with the max-min non-convex problem, we propose to decompose the original problem into two sub-problems. Based on these sub-problems, we develop an iterative scheme which solves the original max-min user uplink rate. Moreover, we present a user assignment algorithm to further improve the performance of cell-free Massive MIMO with limited backhaul links.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a potential technique to achieve high data rate [START_REF] Zappone | Energy-efficient power control: a look at 5G wireless technologies[END_REF]- [START_REF] Lejosne | From MU Massive MISO to pathwise MU Massive MIMO[END_REF]. Cell-free Massive MIMO is a promising technology for 5th Generation (5G) systems, where large number of distributed access points (APs) serve much smaller number of distributed users [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF]. The effect of the limited capacity backhaul links from the APs to a central processing unit (CPU) has not however been addressed in the literature. The assumption of infinite backhaul in [START_REF] Burr | Cooperative access networks: Optimum fronthaul quantization in distributed Massive MIMO and cloud RAN[END_REF], [START_REF] Bashar | Enhanced max-min SINR for uplink cell-free Massive MIMO systems[END_REF], [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF], [START_REF] Bashar | Maxmin SINR of cell-free Massive MIMO uplink with optimal uniform quantization[END_REF] is not realistic in practice. The backhaul load is the main challenge in any distributed antenna systems [START_REF] Gao | MmWave Massive-MIMO-based wireless backhaul for the 5G ultradense network[END_REF]. First, we consider the case where all APs send back the quantized version of the minimum mean square error (MMSE) estimate of the channel from each user and the quantized version of the received signal to the CPU. We next study the case when each AP multiplies the received signal by the conjugate of the estimated channel from each user, and sends back a quantized version of this weighted signal to the CPU. We derive the total number of bits for both cases and show that given the same backhaul capacity for both cases, the relative performance of the aforementioned cases depends on the number of antennas at each AP, the total number of APs and the channel coherence time. We next investigate an uplink max-min signal-to-interference plus noise ratio (SINR) problem with limited backhaul links, where to handle the non-convexity of the max-min SINR problem, we propose to decouple the original problem into two sub-problems, namely, receiver filter coefficient design, and power allocation. We next show that the receiver filter coefficient design problem may be solved through a generalized eigenvalue problem [START_REF] Golub | Matrix Computations[END_REF] whereas the user power allocation problem is solved through a standard geometric programming (GP) [START_REF] Boyd | A tutorial on geometric programming[END_REF], and present an iterative algorithm to alternately solve the max-min SINR problem. Finally an efficient user assignment algorithm is presented, which results in significant performance improvement.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free Massive MIMO system with M APs and K single-antenna users randomly distributed in a large area. Moreover, we assume each AP has N antennas. The channel coefficient vector between the kth user and the mth AP, g mk ∈ C N ×1 , is modeled as g mk = √ β mk h mk , where β mk denotes the large-scale fading and h mk ∼ CN (0, I N ) represents the small-scale fading [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF]. All pilot sequences transmitted by the K users in the channel estimation phase are collected in a matrix Φ ∈ C τ ×K , where τ is the length of the pilot sequence for each user and the kth column, φ φ φ k , represents the pilot sequence used for the kth user. After performing a de-spreading operation, the MMSE estimate of the channel coefficient between the kth user and the mth AP is given by [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF] 

ĝmk = c mk   √ τ p p g mk + √ τ p p K k =k g mk φ φ φ H k φ φ φ k +W p,m φ φ φ k   , (1) 
where W p,m denotes the noise sequence at the mth antenna whose elements are i.i.d. CN (0, 1), p p represents the normalized signal-to-noise ratio (SNR) of each pilot sequence (which we define in Section VI), and c mk is given by

c mk = √ τ ppβ mk τ pp K k =1 β mk |φ φ φ H k φ φ φ k | 2 +1
. The estimated channels in (1) are used by the APs to design the receiver coefficients and determine power allocations. The transmitted signal from the kth user is represented by

x k = √ q k s k , where s k (E{|s k | 2 } = 1
) and q k denotes the transmitted symbol and the transmit power from the kth user, respectively. The N × 1 received signal at the mth AP from all users is given by

y m = √ ρ K k=1 g mk √ q k s k + n m , (2) 
where each element of n m ∈ C N ×1 , n n,m ∼ CN (0, 1) is the noise at the mth AP. The quantized signal can be obtained as: m ] n to the received signals [START_REF] Oppenheim | Discrete-time signal processing[END_REF]. In addition, the ADC quantizes the MMSE estimate of CSI as:

[ỹ m ] n = [y m ] n + [e y m ] n = [ζ m ] n + j[ν m ] n , ∀m, n, (3) 
[g mk ] n = [ĝ mk ] n +[e ĝ mk ] n = [ mk ] n + j[κ mk ] n , ∀k, n, (4 
) where [ mk ] n and [κ mk ] n denote the real and imaginary parts of [g mk ] n , respectively. The received signal for the kth user after using the low complexity maximum ratio combining (MRC) detector at the CPU is given by

r k = M m=1 gH mk ỹm = M m=1 ĝmk + e ĝ mk H (y m + e y m ) = √ ρE M m=1 ĝH mk g mk √ q k DS k s k + M m=1 ĝH mk n m TN k + √ ρ M m=1 ĝH mk g mk √ q k -E M m=1 ĝH mk g mk √ q k BU k s k + K k =k √ ρ M m=1 ĝH mk g mk √ q k IUI kk s k + K k =1 √ ρ M m=1 (e ĝ mk ) H g mk √ q k s k TQE kk + M m=1 (e ĝ mk ) H n m TQE g k + M m=1 ĝH mk e y m TQE y k + M m=1 (e ĝ mk ) H e y m TQE gy k , (5) 
where DS k and BU k denote the desired signal (DS) and beamforming uncertainty (BU) for the kth user, respectively, and IUI k represents the inter-user-interference (IUI) caused by the k th user. In addition, TN k accounts for the total noise (TN) following the MRC detection, and finally the terms TQE y k , TQE g k , TQE gy k and TQE kk refere to the total quantization error (TQE) at the kth user due to the quantization errors at the channel and signal.

Proposition 1. The terms DS k , BU k , IUI kk , TQN kk , TQN g k , TQN y k , TQN gy k are mutually uncorrelated. The proof uses the fact that the quantization error is signal independent, uniformly distributed white noise [START_REF] Oppenheim | Discrete-time signal processing[END_REF], and is omitted here due to space limitations.

Using Proposition 1 and the same scheme in [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF], the SINR of the received signal in (5) can be defined by considering the worst-case of the uncorrelated Gaussian noise as (6) (defined at the top of the next page).

Theorem 1. Having the quantized CSI and the quantized signal at the CPU and employing MRC detection at the CPU, the SINR of the kth user is given by ( 7) (defined at the top of the next page).

Proof: The distribution of the errors, e y m and e ĝ mk , are uniform over the range of the quantization errors [START_REF] Oppenheim | Discrete-time signal processing[END_REF] 

E |[e y m ] n | 2 = 2σ 2 Re([e y m ]n) = 2σ 2 Im([e y m ]n) = 2 ∆ 2 12 , (8) 
where σ 2

Re([e y m ]n) and σ 2

Im([e y m ]n) are the variance of real and imaginary parts of the quantization error, and ∆ is given by

∆ = R(Re([y m ]n)) Qm = R(Im([y m ]n)) Qm
, where Q m refers to the quantization level, R is the operator range and R (Re

([y m ] n )) is obtained as [12] R(Re ([y m ] n ))=w y σ Re([y m ]n -w y (-σ Re([y m ]n )=2w y σ Re([y m ]n .(9)
Note that the same equality holds for the term Im ([y m ] n ). Moreover, the same approach is used to find the relation between R(Re([ĝ mk ] n )) and the standard deviation of Re([ĝ mk ] n ), σ Re([ĝ mk ]n) . The proper values of w y and w g are numerically obtained. Using ( 9) and ( 8), the power of the quantization errors is given by

σ 2 [e y m ] n = ω 2 y σ 2 Re{[y m ]n} 3Q 2 m = ω 2 y σ 2 Im{[y m ]n} 3Q 2 m . (10) 
Next, the term σ 2 y m is obtained as

σ 2 y m = E y H m y m = N ρ K k =1 q k β mk + 1 . (11) 
Therefore, we have σ

2 [y m ]n = ρ K k =1 q k β mk + 1
, which enables us to find the variance of the real and imaginary parts of [y m ] n as follows:

σ 2 Re{[y m ]n} = σ 2 Im{[y m ]n} = ρ K k =1 q k β mk +1 2
. Finally, using the same method as [e y m ] n for [e ĝ m ] n , and the fact that σ

2 [ĝ mk ]n = E{[ĝ H mk ĝmk ] n } = γ mk , the variance of the real and imaginary parts of [ĝ mk ] n is obtained as follows: σ 2 Re{[ĝ m ]n} = σ 2 Im{[ĝ m ]n} = γ mk 2 .
Hence, the power of quantization errors can be obtained as

E |[e y m ] n | 2 = w 2 y 3Q 2 m (ρ K k =1 q k β mk + 1), (12a) E |[e g mk ] n | 2 = w 2 g 3Q 2 m γ mk . (12b) 
Using (12a) and (12b) and the fact that quantization error is indepnedent with the input of the quantizer, after some

SINR Case 1 k = |DS k | 2 E |BU k | 2 + K k =k E |IUI kk | 2 +E TQE y k 2 +E TQE g k 2 +E TQE gy k 2 + K k =1 E |TQE kk | 2 .(6) SINR Case 1 k = N 2 q k M m=1 γ mk 2 N 2 K k =k q k M m=1 γ mk β mk β mk 2 |φ φ φ H k φ φ φ k | 2 +N M m=1 (C tot,m +1) γ mk K k =1 q k β mk + N ρ M m=1 (C tot,m +1) γ mk .( 7 
)
SINR Case 2 k = N 2 q k M m=1 γ mk 2 N 2 K k =k q k M m=1 γ mk β mk β mk 2 | φ φ φ H k φ φ φ k | 2 +N M m=1 ω 2 z (2β mk -γ mk ) 3Q 2 m +γ mk K k =1 q k β mk + N ρ M m=1 ω 2 z 3Q 2 m +1 γ mk . ( 15 
)
mathematical manipulations (the proof is omitted here due to space limitations), we have:

E TQE y k 2 +E TQE g k 2 +E TQE gy k 2 + K k =1 E |TQE kk | 2 = N M m=1 C tot,m γ mk K k =1 q k β mk + N M m=1 C tot,m γ mk , (13) 
where

C tot,m = ω 2 y 3Q 2 m + ω 2 g 3Q 2 m + ω 2 y ω 2 g 9Q 4 m . The terms |DS k | 2 , E |BU k | 2 , and E |IUI kk | 2
are obtained as the similar method in [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF], which completes the proof of Theorem 1.

Case 2. Quantized Weighted Signal Available at the CPU: The mth AP quantizes the terms z m,k = ĝH mk y m , ∀k, and forwards the quantized signals in each symbol duration to the CPU as z mk = ĝH mk y m = a mk + jb mk , ∀k, where a mk and b mk represent the real and imaginary parts of z mk . An ADC quantizes the real and imaginary parts of z m,k with α bits each, which introduces quantization errors to the received signals [START_REF] Oppenheim | Discrete-time signal processing[END_REF]. Let us consider the term e z mk as the quantization error of the mth AP. Hence, the relation between z mk and its quantized version, zmk , can be written as zmk = z mk + e z mk . The aggregated received signal at the CPU can be written as

r k = M m=1   ĝH mk y m z mk +e z mk   . ( 14 
)
Theorem 2. Having the quantized weighted signal at the CPU and employing MRC detection at the CPU, the achievable uplink rate of the kth user in the cell-free Massive MIMO system is given by (15) (defined at the top of this page).

Proof: This can be derived by following the same approach for uplink transmission in Theorem 3.

A. Performance of Different Cases of Uplink Transmission

Let us assume the length of frame (which represents the length of the uplink data) is τ f = τ c -τ, where τ c denotes the number of samples for each coherence interval and τ represents the length of pilot sequence. Defining the number of the quantization levels as Q m,i = 2 αi , for i = 1, 2, corresponding to Cases 1 and 2, for Case 1, the required number of bits for each AP during each coherence interval is 2α 1 × (N K + N τ f ) whereas Case 2 requires 2α 2 × (Kτ f ) bits for each AP during each coherence interval. Hence, the total backhaul capacity required between the mth AP and the CPU for all schemes is defined as

Cm =      2 (N K + N τ f ) log 2 Qm,1 Tc , Case 1, 2 (Kτ f ) log 2 Qm,2 Tc , Case 2, (16) 
where T c (in sec.) refers to coherence time. In the following, we present a comparison between three cases of uplink transmission. To make a fair comparison between Case 1 and Case 2, we use the same total number of backhaul bits for both cases, that is:

2(N K + N τ f ) log 2 Q m,1 = 2(Kτ f ) log 2 Q m,2 .
In numerical results, we show that for the same backhaul capacity, the performances of Case 1 and Case 2 depend on the values of N , K and τ f . In this work, we study the max-min SINR problem for Case 2 of uplink transmission in cell-free Massive MIMO system.

III. PERFORMANCE ANALYSIS In this section, we derive the achievable rate for the considered system model in the previous section by following a similar approach to that in [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF]. In deriving the achievable rates of each user, it is assumed that the CPU exploits only the knowledge of channel statistics between the users and APs in detecting data from the received signal in (17). The aggregated received signal at the CPU can be written as

r k = M m=1 u mk   ĝH mk y m z mk +e z mk   = = √ ρE M m=1 u mk ĝH mk g mk √ q k DS k s k + M m=1 u mk ĝH mk n m TN k + √ ρ M m=1 u mk ĝH mk g mk √ q k -E M m=1 u mk ĝH mk g mk √ q k BU k s k R k = log 2     1 + u H k N 2 q k Γ k Γ H k u k u H k N 2 K k =k q k |φ φ φ H k φ φ φ k | 2 Λ kk Λ H kk + N K k =1 q k Υ kk + N ρ R k u k     . (19) 
+ K k =k √ ρ M m=1 u mk ĝH mk g mk √ q k IUI kk s k + M m=1 u mk e z mk TQE k , (17) 
where by collecting all the coefficients u mk , ∀ m, corresponding to the kth user, we define

u k = [u 1k , u 2k , • • • , u M k ]
T and without loss of generality, it is assumed that ||u k || = 1. The optimal solution of u k , q k , ∀ k for the considered max-min SINR approach is investigated in Section IV. The corresponding SINR of the received signal in (17) can be defined by considering the worst-case of the uncorrelated Gaussian noise as follows:

SINR k = (18) |DS k | 2 E |BU k | 2 + K k =k E |IUI kk | 2 +E |TN k | 2 +E |TQE k | 2 .
Based on the SINR definition in (18), the achievable uplink rate of the kth user is defined in the following theorem.

Theorem 3. Employing MRC weighting at APs, the achievable uplink rate of the kth user in the Cell-free Massive MIMO system is given by ( 19) (defined at the top of this page).

Note that u

k = [u 1k , u 2k , • • • , u M k ] T
, and the following equations hold:

Γ k = [γ 1k , γ 2k , • • • , γ M k ] T , Υ kk = diag β 1k ( ω 2 z (2β 1k -γ 1k ) 3Q 2 1 +γ 1k ),• • • , β M k ( ω 2 z (2β M k -γ M k ) 3Q 2 M +γ M k ) , Λ kk = [ γ 1k β 1k β 1k , γ 2k β 2k β 2k , • • • , γ M k β M k β M k ] T and R k = diag ( ω 2 z 3Q 2 1 + 1)γ 1k , • • • , ( ω 2 z 3Q 2 M + 1)γ M k .
Proof: Please refer to Appendix A.

IV. PROPOSED MAX-MIN SINR SCHEME

In this section, we formulate the max-min SINR problem in cell-free massive MIMO, where the minimum uplink rates of all users is maximized while satisfying the transmit power constraint at each user and the backhaul capacity constraint as follows:

P 1 : max q k ,u k ,Qm min k=1,••• ,K R UP k , (20a) 
s.t. ||u k || = 1, ∀k, (20b) 
0 ≤ q k ≤ p (k) max , ∀k, (20c) C m ≤ C bh , ∀m, (20d) 
where p

(k)

max and C bh refer to the maximum transmit power available at user k and the capacity of the backhaul link between the mth AP and the CPU, respectively. It is obvious that the achievable user rates monotonically increase with the capacity of the backhaul link between the mth AP and the CPU. Hence, the optimal solution is achieved when C m = C bh , ∀m, which leads to fixed values for the number of quantization levels, Q m , ∀m. As a result, the max-min SINR problem can be re-formulated as follows:

P 2 : max q k ,u k min k=1,••• ,K R UP k , (21a) 
s.t. ||u k || = 1, ∀k, 0 ≤ q k ≤ p (k) max , ∀k. (21b)
Problem P 2 is not jointly convex in terms of u k and power allocation q k , ∀k. Therefore, it cannot be directly solved through existing convex optimization software. To tackle this non-convexity issue, we decouple Problem P 2 into two subproblems: receiver coefficient design (i.e. u k ) and the power allocation problem. The optimal solution for Problem P 2 , is obtained through alternately solving these sub-problems, as explained in the following subsections.

A. Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver coefficient is considered. We solve the max-min SINR problem for a given set of allocated powers at all users, q k , ∀k, and fixed values for the number of quantization levels, Q m , ∀m. These coefficients (i.e., u k , ∀ k) are obtained by interdependently maximizing the uplink SINR of each user. Therefore, the optimal receiver filter coefficients can be determined by solving the following optimization problem:

P3 : max u k N 2 u H k q k Γ k Γ H k u k u H k N 2 K k =k q k |φ φ φ H k φ φ φ k | 2 Λ kk Λ H kk +N K k =1 q k Υ kk + N ρ R k u k (22a) s.t. ||u k || = 1, ∀k. (22b) 
Problem P 3 is a generalized eigenvalue problem [START_REF] Cumanan | SINR balancing technique for downlink beamforming in cognitive radio networks[END_REF],

where the optimal solutions can be obtained by determining the generalized eigenvalue [START_REF] Golub | Matrix Computations[END_REF] of the matrix pair

A k = N 2 q k Γ k Γ H k and B k = N 2 K k =k q k |φ φ φ H k φ φ φ k | 2 Λ kk Λ H kk + N K k =1 q k Υ kk + N
ρ R k corresponding to the maximum generalized eigenvalue.

B. Power Allocation

In this subsection, we solve the power allocation problem for a given set of fixed receiver filter coefficients, u k , ∀ k, and fixed values of quantization levels, Q m , ∀m. The optimal transmit power can be determined by solving the following max-min problem:

P 4 : max q k min k=1,••• ,K SINR UP k , (23a) 
s.t. 0 ≤ q k ≤ p (k) max . ( 23b 
)
Algorithm 1 Proposed algorithm to solve Problem P 2 1) and determine the optimal receiver coefficients U

1. Initialize q (0) = [q (0) 1 , q (0) 2 , • • • , q (0) K ], i = 1 2. Repeat steps 3-5 until SINR UP,(i+1) k -SINR UP,(i) k ≤ , ∀k 3. i = i + 1 4. Set q (i) = q (i-
(i) = [u (i) 1 , u (i) 2 , • • • , u (i)
K ] through solving the generalized eigenvalue Problem P 3 in (22) 5. Compute q (i+1) through solving Problem P 5 in (24) Without loss of generality, Problem P 3 can be rewritten by introducing a new slack variable as

P 5 : max t,q k t, (24a) 
s.t. 0 ≤ q k ≤ p (k) max , ∀k, SINR UP k ≥ t, ∀k. (24b 
) Proposition 2. Problem P 5 can be formulated into a GP.

Therefore, Problem P 5 is efficiently solved through existing convex optimization software. Based on these two sub-problems, an iterative algorithm has been developed as summarized in Algorithm 1. Note that in Step 2 of Algorithm 1 refers to a small predetermined value. In addition, numerical results will be presented in Section VI to validate the convergence of the proposed algorithm.

V. USER ASSIGNMENT

The total backhaul capacity required between the mth AP and the CPU increases linearly with the total number of users served by the mth AP, which motivates the need to pick a proper set of active users for each AP. Using (16), we have

log 2 Q m × K m ≤ C bh T s τ c 2Kτ f , (25) 
where K m denotes the size of the set of active users for the mth AP. From (25), it can be seen that decreasing the size of the set of active users allows for a larger number of quantization levels. Motivated by this fact, and to exploit the capacity of backhaul links more efficient, we investigate all possible combinations of log 2 Q m and K m . First, for a fixed value of log 2 Q m , we find an upper bound on the size of the set of active users for each AP. In the next step, we propose for all APs that the users are sorted according to β mk , ∀k, and find the K m users which have the highest values of β mk among all users. If a user is not selected by any AP, we propose to find the AP which has the best link to this user. Then, we add the user to the set of active users for this user and drop the user which has the lowest β mk , ∀k, among the set of active users for that AP which has links to other APs as well. We next solve the original max-min SINR problem with γmk ← γ mk .

VI. NUMERICAL RESULTS AND DISCUSSION

A cell-free Massive MIMO system with M APs and K single antenna users is considered in a D × D simulation area, where both APs and users are uniformly distributed at random. In the simulation, an uncorrelated shadowing model 2) Performance of the Proposed User Max-Min SINR Algorithm: Fig. 2 presents the cumulative distribution of the achievable uplink rates for the proposed Algorithm 1 and the scheme without considering the coefficients u k s similar to [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF] (we set u mk = 1, ∀m, k and solve Problem P 4 ) with random pilot assignment with length τ = 20 and orthogonal pilot sequences. As seen in Fig. 2, the median of the cumulative distribution function (CDF) of the minimum uplink rate of the users is increased by 2.3 times and 2.05 times respectively with random and orthogonal pilots compared to the scheme in [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF]. Moreover, Fig. 2 demonstrates that the rate of the proposed max-min SINR approach is more concentrated around the median value.

3) Convergence: Fig. 3 investigates the convergence of the proposed Algorithm 1 with M = 100 APs and K = 40 users and random pilot sequences with length τ = 20 and orthogonal pilot assignment. The figure confirms that the proposed algorithm converges in 2 iterations.

4) Performance of the Proposed User Assignment Scheme: In Fig. 4, the average per-user uplink rate is presented with M = 100, N = 2, K = 40, orthogonal pilot sequences and random pilot assignment and with D = 1 km and D = 2 km versus the total number of active users per AP. Here, we used inequality (25) and set log 2 Q m × K m = 200 for all curves in Fig. 4. The optimum value of K m , (K opt m ), depends on the system parameters and as Fig. 4 shows for the case of M = 100, N = 2, K = 40, the optimum value is achieved by K opt m = 20. As a result, the proposed user assignment scheme can improve the performance of cell-free Massive MIMO systems with limited backhaul capacity. For instance, using the proposed user assignment scheme for the case of τ = 30 and D = 2 in Fig. 4, one can achieve min-user uplink rate of 1.55 bits/s/Hz by setting K opt m = 20, instead of quantizing the signals of all K = 40 users and achieving min-user uplink rate of 1.37 bits/s/Hz, which indicates 15% improvement in the performance of cell-free Massive MIMO systems with limited backhaul capacity.

5) Performance of Different Cases of Uplink Transmission: Fig. 5 presents the average min-user uplink rate, where the per-user uplink rate is obtained by solving Problem P 4 , given by (23) for Cases 1 and 2. In addition, for K = 20, we set α 1 = 9 and α 2 = 2, for Case 1 and Case 2, respectively. The values of α 1 = 9 and α 2 = 2 correspond to a total number of 14,400 bits for each AP during each coherence time (or frame). In addition, similar to [START_REF] Oppenheim | Discrete-time signal processing[END_REF] we use a uniform quantzier with fixed stepsize. Simulation results show (ω g = 3, ω y = 80, ω z = 3) are the optimal values for the case of N = 4 and K = 20, and (ω g = 3.5, ω y = 70, ω z = 3) are the optimal values for the case of N = 20 and K = 40. As Fig 5 shows the performance of Case 2 is better than Case 1 for K = 20. Next, the performance of the cell-free Massive MIMO system is evaluated for a system with K = 40 in which each AP is equipped with N = 20 antennas. Fig. 5 shows the average rate of the cell-free Massive MIMO system, where for Case 1 and Case 2, we set α 1 = 3 and α 2 = 8, respectively which leads to a total number of 64,000 backhaul bits per AP per frame. Fig. 5 shows that the performances of Case 1 and Case 2 depend on the values of N , K and τ f . As in case 1, the CPU knows the quantized channel estimates, other signal processing techniques (e.g. zero-forcing processing) can be implemented to improve the system performance and can be considered in future work.

VII. CONCLUSIONS

We have studied the uplink max-min SINR problem in cellfree Massive MIMO systems with the realistic assumption of limited capacity backhaul links, and have proposed an optimal solution to maximize the minimum uplink user rate. The numerical results confirmed that the proposed max-min SINR algorithm can increase the median of the CDF of the minimum uplink rate of the users by more than two times, compared to existing algorithms. We finally showed that further improvement (15%) in minimum rate of the users is achieved by the proposed user assignment algorithm.
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 1 Quantized Estimate of the Channel and Quantized Signal Available at the CPU: The mth AP quantizes the terms ĝmk , ∀k, and y m , and forwards the quantized CSI and the quantized signals in each symbol duration to the CPU.

  where [x] n represents the nth element of vector x, [e y m ] n refers to the quantization error, and [ζ m ] n and [ν m ] n are the real and imaginary parts of [y m ] n , respectively. The analogto-digital converter (ADC) quantizes the real and imaginary parts of [y m ] n with α bits each, which introduces quantization errors [e y
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 1 Figure 1. Average per-user uplink rate versus the number of quantization bits, α, with limited and perfect backhaul link.
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 2 Figure 2. The cumulative distribution of the per-user uplink rate, for M = 100, N = 2, K = 40, α = 5 and D = 1 km.
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 3 Figure 3. The convergence of the proposed max-min SINR approach (Algorithm 1) for M = 70, N = 4, K = 40, τ = 30, α = 5 and D = 1 km.
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 4 Figure 4. Average per-user uplink rate versus the total number of active users for each AP with M = 100, N = 2, K = 40 and log 2 Qm × Km = 200.
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 5 Figure 5. The average per-user uplink rate for cases 1 and 2, with (N = 4, K = 20, τ = 20, , α 1 = 9, α 2 = 2, ωg = 3, ωy = 80, ωz = 3), and (N = 20, K = 40, τ = 40, α 1 = 8, α 2 = 5, ωg = 3.5, ωy = 70, ωz = 3) with D = 1 km and τc = 200.

  and the elements of [e y m ] n and [e ĝ mk ] n are i.i.d. random variables with variance E{|[e y m ] n | 2 } and E{|[e ĝ mk ] n | 2 }, respectively. To calculate E{|[e y m ] n | 2 }, we use the following property of the quantization error[START_REF] Oppenheim | Discrete-time signal processing[END_REF] 
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APPENDIX A: PROOF OF THEOREM 3 The desired signal for the user k is given by

The term E{|BU k | 2 } can be obtained as

where the last equality comes from the analysis in [START_REF] Ngo | Cell-free Massive MIMO versus small cells[END_REF], and using

where the third equality in ( 28) is due to the fact that for two independent random variables X and Y and E{X} = 0, we have

The term B in (28) can be obtained as

The first term in (29) is given by

where the last equality is derived based on the fact γ mk = √ τ p p β mk c mk . The second term in (29) can be obtained as

Finally by substituting (30) and ( 31) into (29), and substituting (29) into (28), we obtain

The total noise for the user k is given by

where the last equality is due to the fact that the terms ĝmk and n m are uncorrelated. The power of quantization error for the kth user is obtained as

where the proof uses a similar way to determine the power of quantziation error in Section II and is omitted here due to space limitations. Finally, SINR of the kth user is obtained by (19), which completes the proof of Theorem 3.