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Abstract—We consider a cell-free Massive multiple-input
multiple-output (MIMO) system and investigate the system
performance for the case when the quantized version of the
estimated channel and the quantized received signal are available
at the central processing unit (CPU), and the case when only the
quantized version of the combined signal with maximum ratio
combining (MRC) detector is available at the CPU. Next, we
study the max-min optimization problem, where the minimum
user uplink rate is maximized with backhaul capacity constraints.
To deal with the max-min non-convex problem, we propose to
decompose the original problem into two sub-problems. Based on
these sub-problems, we develop an iterative scheme which solves
the original max-min user uplink rate. Moreover, we present a
user assignment algorithm to further improve the performance
of cell-free Massive MIMO with limited backhaul links.
aaKeywords: Cell-free Massive MIMO, geometric programming,
generalized eigenvalue problem, limited backhaul.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a po-
tential technique to achieve high data rate [1]–[6]. Cell-free
Massive MIMO is a promising technology for 5th Generation
(5G) systems, where large number of distributed access points
(APs) serve much smaller number of distributed users [7].
The effect of the limited capacity backhaul links from the
APs to a central processing unit (CPU) has not however been
addressed in the literature. The assumption of infinite backhaul
in [3], [4], [7], [8] is not realistic in practice. The backhaul
load is the main challenge in any distributed antenna systems
[9]. First, we consider the case where all APs send back the
quantized version of the minimum mean square error (MMSE)
estimate of the channel from each user and the quantized
version of the received signal to the CPU. We next study
the case when each AP multiplies the received signal by
the conjugate of the estimated channel from each user, and
sends back a quantized version of this weighted signal to the
CPU. We derive the total number of bits for both cases and
show that given the same backhaul capacity for both cases,
the relative performance of the aforementioned cases depends
on the number of antennas at each AP, the total number of
APs and the channel coherence time. We next investigate an
uplink max-min signal-to-interference plus noise ratio (SINR)
problem with limited backhaul links, where to handle the
non-convexity of the max-min SINR problem, we propose to
decouple the original problem into two sub-problems, namely,
receiver filter coefficient design, and power allocation. We next
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show that the receiver filter coefficient design problem may be
solved through a generalized eigenvalue problem [10] whereas
the user power allocation problem is solved through a standard
geometric programming (GP) [11], and present an iterative
algorithm to alternately solve the max-min SINR problem.
Finally an efficient user assignment algorithm is presented,
which results in significant performance improvement.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free Massive
MIMO system with M APs and K single-antenna users ran-
domly distributed in a large area. Moreover, we assume each
AP has N antennas. The channel coefficient vector between
the kth user and the mth AP, gmk ∈ CN×1, is modeled as
gmk =

√
βmkhmk, where βmk denotes the large-scale fading

and hmk ∼ CN (0, IN) represents the small-scale fading [7].
All pilot sequences transmitted by the K users in the channel
estimation phase are collected in a matrix Φ ∈ Cτ×K , where
τ is the length of the pilot sequence for each user and the
kth column, φφφk, represents the pilot sequence used for the kth
user. After performing a de-spreading operation, the MMSE
estimate of the channel coefficient between the kth user and
the mth AP is given by [7]

ĝmk=cmk

√τppgmk+
√
τpp

K∑
k′ 6=k

gmk′φφφ
H
k φφφk′ +Wp,mφφφk

,(1)

where Wp,m denotes the noise sequence at the mth antenna
whose elements are i.i.d. CN (0, 1), pp represents the nor-
malized signal-to-noise ratio (SNR) of each pilot sequence
(which we define in Section VI), and cmk is given by
cmk =

√
τppβmk

τpp
∑K

k′=1
βmk′ |φφφH

k φφφk′ |2+1
. The estimated channels in

(1) are used by the APs to design the receiver coefficients
and determine power allocations. The transmitted signal from
the kth user is represented by xk =

√
qksk, where sk

(E{|sk|2} = 1) and qk denotes the transmitted symbol and
the transmit power from the kth user, respectively. The N × 1
received signal at the mth AP from all users is given by

ym =
√
ρ

K∑
k=1

gmk
√
qksk + nm, (2)

where each element of nm ∈ CN×1, nn,m ∼ CN (0, 1) is the
noise at the mth AP.

Case 1. Quantized Estimate of the Channel and Quantized



Signal Available at the CPU: The mth AP quantizes the
terms ĝmk, ∀k, and ym, and forwards the quantized CSI and
the quantized signals in each symbol duration to the CPU.
The quantized signal can be obtained as:

[ỹm]n = [ym]n + [eym]n = [ζm]n + j[νm]n, ∀m,n, (3)

where [x]n represents the nth element of vector x, [eym]n
refers to the quantization error, and [ζm]n and [νm]n are the
real and imaginary parts of [ym]n, respectively. The analog-
to-digital converter (ADC) quantizes the real and imaginary
parts of [ym]n with α bits each, which introduces quantization
errors [eym]n to the received signals [12]. In addition, the ADC
quantizes the MMSE estimate of CSI as:

[g̃mk]n=[ĝmk]n+[eĝmk]n=[%mk]n + j[κmk]n,∀k, n, (4)

where [%mk]n and [κmk]n denote the real and imaginary parts
of [g̃mk]n, respectively. The received signal for the kth user
after using the low complexity maximum ratio combining
(MRC) detector at the CPU is given by

rk =

M∑
m=1

g̃Hmkỹm =

M∑
m=1

(
ĝmk + eĝmk

)H
(ym + eym)

=
√
ρE

{
M∑
m=1

ĝHmkgmk
√
qk

}
︸ ︷︷ ︸

DSk

sk +

M∑
m=1

ĝHmknm︸ ︷︷ ︸
TNk

+
√
ρ

(
M∑
m=1

ĝHmkgmk
√
qk−E

{
M∑
m=1

ĝHmkgmk
√
qk

})
︸ ︷︷ ︸

BUk

sk

+

K∑
k′ 6=k

√
ρ

M∑
m=1

ĝHmkgmk′
√
qk′︸ ︷︷ ︸

IUIkk′

sk′

+

K∑
k′=1

√
ρ

M∑
m=1

(eĝmk)Hgmk′
√
qk′sk′︸ ︷︷ ︸

TQEkk′

+

M∑
m=1

(eĝmk)Hnm︸ ︷︷ ︸
TQEg

k

+

M∑
m=1

ĝHmkeym︸ ︷︷ ︸
TQEy

k

+

M∑
m=1

(eĝmk)Heym︸ ︷︷ ︸
TQEgy

k

, (5)

where DSk and BUk denote the desired signal (DS) and
beamforming uncertainty (BU) for the kth user, respectively,
and IUIk represents the inter-user-interference (IUI) caused by
the k′th user. In addition, TNk accounts for the total noise (TN)
following the MRC detection, and finally the terms TQEy

k,
TQEg

k, TQEgy
k and TQEkk′ refere to the total quantization error

(TQE) at the kth user due to the quantization errors at the
channel and signal.

Proposition 1. The terms DSk, BUk, IUIkk′ , TQNkk′ , TQNgk,
TQNyk, TQNgyk are mutually uncorrelated.

The proof uses the fact that the quantization error is signal
independent, uniformly distributed white noise [12], and is
omitted here due to space limitations. �

Using Proposition 1 and the same scheme in [7], the SINR of
the received signal in (5) can be defined by considering the
worst-case of the uncorrelated Gaussian noise as (6) (defined
at the top of the next page).

Theorem 1. Having the quantized CSI and the quantized
signal at the CPU and employing MRC detection at the CPU,
the SINR of the kth user is given by (7) (defined at the top of
the next page).

Proof: The distribution of the errors, eym and eĝmk, are
uniform over the range of the quantization errors [12] and
the elements of [eym]n and [eĝmk]n are i.i.d. random variables
with variance E{|[eym]n|2} and E{|[eĝmk]n|2}, respectively. To
calculate E{|[eym]n|2}, we use the following property of the
quantization error [12]

E
{
|[eym]n|

2
}

= 2σ2
Re([eym]n) = 2σ2

Im([eym]n) = 2

(
∆2

12

)
, (8)

where σ2
Re([eym]n)

and σ2
Im([eym]n)

are the variance of real and
imaginary parts of the quantization error, and ∆ is given by
∆ =

R(Re([ym]n))
Qm

=
R(Im([ym]n))

Qm
, where Qm refers to the

quantization level, R is the operator range and R (Re([ym]n))
is obtained as [12]

R(Re ([ym]n))=wyσRe([ym]n−wy(−σRe([ym]n)=2wyσRe([ym]n.(9)

Note that the same equality holds for the term Im ([ym]n).
Moreover, the same approach is used to find the rela-
tion between R(Re([ĝmk]n)) and the standard deviation of
Re([ĝmk]n), σRe([ĝmk]n). The proper values of wy and wg are
numerically obtained. Using (9) and (8), the power of the
quantization errors is given by

σ2
[eym]n

=
ω2
yσ

2
Re{[ym]n}

3Q2
m

=
ω2
yσ

2
Im{[ym]n}

3Q2
m

. (10)

Next, the term σ2
ym is obtained as

σ2
ym = E

{
yHmym

}
= N

(
ρ

K∑
k′=1

qk′βmk′ + 1

)
. (11)

Therefore, we have σ2
[ym]n

= ρ
∑K
k′=1 qk′βmk′ + 1, which

enables us to find the variance of the real and imaginary
parts of [ym]n as follows: σ2

Re{[ym]n} = σ2
Im{[ym]n} =

ρ
∑K

k′=1
qk′βmk′+1

2 . Finally, using the same method as [eym]n for
[eĝm]n, and the fact that σ2

[ĝmk]n
= E{[ĝHmkĝmk]n} = γmk, the

variance of the real and imaginary parts of [ĝmk]n is obtained
as follows: σ2

Re{[ĝm]n} = σ2
Im{[ĝm]n} = γmk

2 . Hence, the power
of quantization errors can be obtained as

E
{
|[eym]n|

2
}

=
w2
y

3Q2
m

(ρ
∑K
k′=1 qk′βmk′ + 1), (12a)

E
{
|[egmk]n|

2
}

=
w2
g

3Q2
m

γmk. (12b)

Using (12a) and (12b) and the fact that quantization error
is indepnedent with the input of the quantizer, after some



SINRCase 1
k =

|DSk|2

E
{
|BUk|2

}
+
∑K
k′ 6=k E

{
|IUIkk′|2

}
+E

{∣∣TQEy
k

∣∣2}+E
{∣∣TQEg

k

∣∣2}+E
{∣∣TQEgy

k

∣∣2}+
∑K
k′=1E

{
|TQEkk′|

2
}.(6)

SINRCase 1
k =

N2qk

(∑M
m=1γmk

)2

N2
∑K
k′ 6=kqk′

(∑M
m=1γmk

βmk′

βmk

)2

|φφφHk φφφk′ |2+N
∑M
m=1 (Ctot,m+1) γmk

∑K
k′=1qk′βmk′ +

N

ρ

∑M
m=1 (Ctot,m+1) γmk

.(7)

SINRCase 2
k =

N2qk

(∑M
m=1γmk

)2

N2
∑K
k′ 6=kqk′

(∑M
m=1γmk

βmk′

βmk

)2

|φφφHk φφφk′ |2+N
∑M
m=1

(
ω2

z(2βmk−γmk)
3Q2

m
+γmk

)∑K
k′=1qk′βmk′ +

N

ρ

∑M
m=1

(
ω2

z

3Q2
m

+1
)
γmk

.(15)

mathematical manipulations (the proof is omitted here due to
space limitations), we have:

E
{∣∣TQEy

k

∣∣2}+E
{∣∣TQEg

k

∣∣2}+E
{∣∣TQEgy

k

∣∣2}+
K∑
k′=1

E
{
|TQEkk′|

2
}

= N

M∑
m=1

Ctot,mγmk

K∑
k′=1

qk′βmk′ +N

M∑
m=1

Ctot,mγmk, (13)

where Ctot,m =
ω2

y

3Q2
m

+
ω2

g

3Q2
m

+
ω2

yω
2
g

9Q4
m

. The terms |DSk|2,

E
{
|BUk|2

}
, and E

{
|IUIkk′|2

}
are obtained as the similar

method in [7], which completes the proof of Theorem 1. �

Case 2. Quantized Weighted Signal Available at the
CPU: The mth AP quantizes the terms zm,k = ĝHmkym, ∀k,
and forwards the quantized signals in each symbol duration
to the CPU as zmk = ĝHmkym = amk + jbmk, ∀k, where amk
and bmk represent the real and imaginary parts of zmk. An
ADC quantizes the real and imaginary parts of zm,k with α
bits each, which introduces quantization errors to the received
signals [12]. Let us consider the term ezmk as the quantization
error of the mth AP. Hence, the relation between zmk and its
quantized version, z̃mk, can be written as z̃mk = zmk + ezmk.
The aggregated received signal at the CPU can be written as

rk =

M∑
m=1

ĝHmkym︸ ︷︷ ︸
zmk

+ezmk

 . (14)

Theorem 2. Having the quantized weighted signal at the CPU
and employing MRC detection at the CPU, the achievable
uplink rate of the kth user in the cell-free Massive MIMO
system is given by (15) (defined at the top of this page).

Proof: This can be derived by following the same approach
for uplink transmission in Theorem 3. �

A. Performance of Different Cases of Uplink Transmission

Let us assume the length of frame (which represents the
length of the uplink data) is τf = τc − τ, where τc denotes
the number of samples for each coherence interval and τ

represents the length of pilot sequence. Defining the number
of the quantization levels as Qm,i = 2αi , for i = 1, 2,
corresponding to Cases 1 and 2, for Case 1, the required
number of bits for each AP during each coherence interval
is 2α1× (NK +Nτf ) whereas Case 2 requires 2α2× (Kτf )
bits for each AP during each coherence interval. Hence, the
total backhaul capacity required between the mth AP and the
CPU for all schemes is defined as

Cm=


2 (NK +Nτf ) log2Qm,1

Tc
, Case 1,

2 (Kτf ) log2Qm,2

Tc
, Case 2,

(16)

where Tc (in sec.) refers to coherence time. In the following,
we present a comparison between three cases of uplink trans-
mission. To make a fair comparison between Case 1 and Case
2, we use the same total number of backhaul bits for both
cases, that is: 2(NK +Nτf ) log2Qm,1 = 2(Kτf ) log2Qm,2.
In numerical results, we show that for the same backhaul
capacity, the performances of Case 1 and Case 2 depend on the
values of N , K and τf . In this work, we study the max-min
SINR problem for Case 2 of uplink transmission in cell-free
Massive MIMO system.

III. PERFORMANCE ANALYSIS

In this section, we derive the achievable rate for the con-
sidered system model in the previous section by following
a similar approach to that in [7]. In deriving the achievable
rates of each user, it is assumed that the CPU exploits only the
knowledge of channel statistics between the users and APs in
detecting data from the received signal in (17). The aggregated
received signal at the CPU can be written as

rk =

M∑
m=1

umk

̂gHmkym︸ ︷︷ ︸
zmk

+ezmk

=

=
√
ρE

{
M∑
m=1

umkĝHmkgmk
√
qk

}
︸ ︷︷ ︸

DSk

sk +

M∑
m=1

umkĝHmknm︸ ︷︷ ︸
TNk

+
√
ρ

(
M∑
m=1

umkĝHmkgmk
√
qk−E

{
M∑
m=1

umkĝHmkgmk
√
qk

})
︸ ︷︷ ︸

BUk

sk



Rk = log2

1 +
uH
k

(
N2qkΓkΓ

H
k

)
uk

uH
k

(
N2
∑K

k′ 6=k qk′ |φφφH
k φφφk′ |2Λkk′ΛH

kk′ +N
∑K

k′=1 qk′Υkk′ +
N

ρ
Rk

)
uk

 . (19)

+

K∑
k′ 6=k

√
ρ

M∑
m=1

umkĝHmkgmk′
√
qk′︸ ︷︷ ︸

IUIkk′

sk′ +

M∑
m=1

umke
z
mk︸ ︷︷ ︸

TQEk

, (17)

where by collecting all the coefficients umk, ∀m, correspond-
ing to the kth user, we define uk = [u1k, u2k, · · · , uMk]T and
without loss of generality, it is assumed that ||uk|| = 1. The
optimal solution of uk, qk, ∀ k for the considered max-min
SINR approach is investigated in Section IV. The correspond-
ing SINR of the received signal in (17) can be defined by
considering the worst-case of the uncorrelated Gaussian noise
as follows:

SINRk = (18)
|DSk|2

E
{
|BUk|2

}
+
∑K
k′ 6=k E

{
|IUIkk′|2

}
+E

{
|TNk|2

}
+E

{
|TQEk|

2
}.

Based on the SINR definition in (18), the achievable uplink
rate of the kth user is defined in the following theorem.

Theorem 3. Employing MRC weighting at APs, the achievable
uplink rate of the kth user in the Cell-free Massive MIMO
system is given by (19) (defined at the top of this page).

Note that uk = [u1k, u2k, · · · , uMk]T , and the following
equations hold: Γk = [γ1k, γ2k, · · · , γMk]T , Υkk′ =

diag
[
β1k′(

ω2
z(2β1k−γ1k)

3Q2
1

+γ1k),· · · , βMk′(
ω2

z(2βMk−γMk)

3Q2
M

+γMk)
]
,

Λkk′ = [
γ1kβ1k′

β1k
,
γ2kβ2k′

β2k
, · · · , γMkβMk′

βMk
]T and

Rk = diag
[
(
ω2

z

3Q2
1

+ 1)γ1k, · · · , ( ω2
z

3Q2
M

+ 1)γMk

]
.

Proof: Please refer to Appendix A. �

IV. PROPOSED MAX-MIN SINR SCHEME

In this section, we formulate the max-min SINR problem
in cell-free massive MIMO, where the minimum uplink rates
of all users is maximized while satisfying the transmit power
constraint at each user and the backhaul capacity constraint as
follows:

P1 : max
qk,uk,Qm

min
k=1,··· ,K

RUP
k , (20a)

s.t. ||uk|| = 1, ∀k, (20b)

0 ≤ qk ≤ p(k)
max, ∀k, (20c)

Cm ≤ Cbh, ∀m, (20d)

where p
(k)
max and Cbh refer to the maximum transmit power

available at user k and the capacity of the backhaul link
between the mth AP and the CPU, respectively. It is ob-
vious that the achievable user rates monotonically increase
with the capacity of the backhaul link between the mth AP
and the CPU. Hence, the optimal solution is achieved when
Cm = Cbh, ∀m, which leads to fixed values for the number of

quantization levels, Qm,∀m. As a result, the max-min SINR
problem can be re-formulated as follows:

P2 : max
qk,uk

min
k=1,··· ,K

RUP
k , (21a)

s.t. ||uk|| = 1, ∀k, 0 ≤ qk ≤ p(k)
max, ∀k. (21b)

Problem P2 is not jointly convex in terms of uk and power
allocation qk, ∀k. Therefore, it cannot be directly solved
through existing convex optimization software. To tackle this
non-convexity issue, we decouple Problem P2 into two sub-
problems: receiver coefficient design (i.e. uk) and the power
allocation problem. The optimal solution for Problem P2, is
obtained through alternately solving these sub-problems, as
explained in the following subsections.

A. Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver
coefficient is considered. We solve the max-min SINR problem
for a given set of allocated powers at all users, qk,∀k, and
fixed values for the number of quantization levels, Qm, ∀m.
These coefficients (i.e., uk, ∀ k) are obtained by interdepen-
dently maximizing the uplink SINR of each user. Therefore,
the optimal receiver filter coefficients can be determined by
solving the following optimization problem:

P3 : max
uk

N2uH
k

(
qkΓkΓ

H
k

)
uk

uH
k

(
N2
∑K

k′ 6=kqk′|φφφH
k φφφk′ |2Λkk′ΛH

kk′+N
∑K

k′=1 qk′Υkk′+
N

ρ
Rk

)
uk

(22a)
s.t. ||uk|| = 1, ∀k. (22b)

Problem P3 is a generalized eigenvalue problem [13],
where the optimal solutions can be obtained by determining
the generalized eigenvalue [10] of the matrix pair Ak =
N2qkΓkΓ

H
k and Bk = N2

∑K
k′ 6=kqk′|φφφHk φφφk′ |2Λkk′Λ

H
kk′ +

N
∑K
k′=1 qk′Υkk′+

N
ρRk corresponding to the maximum gen-

eralized eigenvalue.

B. Power Allocation

In this subsection, we solve the power allocation problem
for a given set of fixed receiver filter coefficients, uk, ∀ k,
and fixed values of quantization levels, Qm, ∀m. The optimal
transmit power can be determined by solving the following
max-min problem:

P4 : max
qk

min
k=1,··· ,K

SINRUP
k , (23a)

s.t. 0 ≤ qk ≤ p(k)
max. (23b)



Algorithm 1 Proposed algorithm to solve Problem P2

1. Initialize q(0) = [q
(0)
1 , q

(0)
2 , · · · , q(0)

K ], i = 1

2. Repeat steps 3-5 until SINRUP,(i+1)
k − SINRUP,(i)

k ≤ ε,∀k
3. i = i+ 1
4. Set q(i) = q(i−1) and determine the optimal receiver
coefficients U(i) = [u(i)

1 ,u(i)
2 , · · · ,u(i)

K ] through solving the
generalized eigenvalue Problem P3 in (22)
5. Compute q(i+1) through solving Problem P5 in (24)

Without loss of generality, Problem P3 can be rewritten by
introducing a new slack variable as

P5 : max
t,qk

t, (24a)

s.t. 0 ≤ qk ≤ p(k)
max, ∀k, SINRUP

k ≥ t, ∀k. (24b)

Proposition 2. Problem P5 can be formulated into a GP.

Therefore, Problem P5 is efficiently solved through ex-
isting convex optimization software. Based on these two
sub-problems, an iterative algorithm has been developed as
summarized in Algorithm 1. Note that ε in Step 2 of Algo-
rithm 1 refers to a small predetermined value. In addition,
numerical results will be presented in Section VI to validate
the convergence of the proposed algorithm.

V. USER ASSIGNMENT

The total backhaul capacity required between the mth AP
and the CPU increases linearly with the total number of users
served by the mth AP, which motivates the need to pick a
proper set of active users for each AP. Using (16), we have

log2Qm ×Km ≤
CbhTsτc
2Kτf

, (25)

where Km denotes the size of the set of active users for
the mth AP. From (25), it can be seen that decreasing the
size of the set of active users allows for a larger number of
quantization levels. Motivated by this fact, and to exploit the
capacity of backhaul links more efficient, we investigate all
possible combinations of log2Qm and Km. First, for a fixed
value of log2Qm, we find an upper bound on the size of the set
of active users for each AP. In the next step, we propose for all
APs that the users are sorted according to βmk, ∀k, and find
the Km users which have the highest values of βmk among all
users. If a user is not selected by any AP, we propose to find
the AP which has the best link to this user. Then, we add the
user to the set of active users for this user and drop the user
which has the lowest βmk, ∀k, among the set of active users
for that AP which has links to other APs as well. We next
solve the original max-min SINR problem with γ̃mk ← γmk.

VI. NUMERICAL RESULTS AND DISCUSSION

A cell-free Massive MIMO system with M APs and K
single antenna users is considered in a D × D simulation
area, where both APs and users are uniformly distributed at
random. In the simulation, an uncorrelated shadowing model
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Figure 1. Average per-user uplink rate versus the number of quantization
bits, α, with limited and perfect backhaul link.

Figure 2. The cumulative distribution of the per-user uplink rate, for M =
100, N = 2, K = 40, α = 5 and D = 1 km.

and a three-slope model for the path loss similar to [7] are
considered. Moreover, for the noise power, we use similar
parameters as in [7]. It is assumed that that p̄p and ρ̄ denote the
power of the pilot sequence and the uplink data, respectively,
where pp =

p̄p
pn

and ρ = ρ̄
pn

. In simulations, we set p̄p = 200
mW and ρ̄ = 200 mW. In addition, simulation results show
ωz = 15 is a proper value. Unless otherwise indicated, we set
ωz = 15.

1) Effect of the Capacity of Backhaul Links: In Fig. 1, a
cell-free Massive MIMO system is considered with total num-
ber of service antennas MN = 280, i.e. (N = 2,M = 140),
(N = 4,M = 70) and (N = 10,M = 28), K = 40,
orthogonal pilot sequences and D = 1 km. As Fig. 1 shows,
for the case of (N = 2,M = 140) to achieve the performance
of perfect backhaul links, we need to set α ≥ 14, for the cases
of (N = 4,M = 70) and (N = 10,M = 28), we need to set
α ≥ 13 and α ≥ 12, respectively.

2) Performance of the Proposed User Max-Min SINR Al-
gorithm: Fig. 2 presents the cumulative distribution of the
achievable uplink rates for the proposed Algorithm 1 and the
scheme without considering the coefficients uks similar to [7]
(we set umk = 1, ∀m, k and solve Problem P4) with random
pilot assignment with length τ = 20 and orthogonal pilot
sequences. As seen in Fig. 2, the median of the cumulative
distribution function (CDF) of the minimum uplink rate of the
users is increased by 2.3 times and 2.05 times respectively
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Figure 5. The average per-user uplink rate for cases 1 and 2, with (N = 4,
K = 20, τ = 20, , α1 = 9, α2 = 2, ωg = 3, ωy = 80, ωz = 3), and
(N = 20, K = 40, τ = 40, α1 = 8, α2 = 5, ωg = 3.5, ωy = 70, ωz = 3)
with D = 1 km and τc = 200.

with random and orthogonal pilots compared to the scheme in
[7]. Moreover, Fig. 2 demonstrates that the rate of the proposed
max-min SINR approach is more concentrated around the
median value.

3) Convergence: Fig. 3 investigates the convergence of the
proposed Algorithm 1 with M = 100 APs and K = 40
users and random pilot sequences with length τ = 20 and
orthogonal pilot assignment. The figure confirms that the
proposed algorithm converges in 2 iterations.

4) Performance of the Proposed User Assignment Scheme:
In Fig. 4, the average per-user uplink rate is presented with

M = 100, N = 2, K = 40, orthogonal pilot sequences and
random pilot assignment and with D = 1 km and D = 2
km versus the total number of active users per AP. Here, we
used inequality (25) and set log2Qm × Km = 200 for all
curves in Fig. 4. The optimum value of Km, (Kopt

m ), depends
on the system parameters and as Fig. 4 shows for the case of
M = 100, N = 2, K = 40, the optimum value is achieved by
Kopt
m = 20. As a result, the proposed user assignment scheme

can improve the performance of cell-free Massive MIMO
systems with limited backhaul capacity. For instance, using
the proposed user assignment scheme for the case of τ = 30
and D = 2 in Fig. 4, one can achieve min-user uplink rate of
1.55 bits/s/Hz by setting Kopt

m = 20, instead of quantizing the
signals of all K = 40 users and achieving min-user uplink rate
of 1.37 bits/s/Hz, which indicates 15% improvement in the
performance of cell-free Massive MIMO systems with limited
backhaul capacity.

5) Performance of Different Cases of Uplink Transmission:
Fig. 5 presents the average min-user uplink rate, where the
per-user uplink rate is obtained by solving Problem P4, given
by (23) for Cases 1 and 2. In addition, for K = 20, we set
α1 = 9 and α2 = 2, for Case 1 and Case 2, respectively. The
values of α1 = 9 and α2 = 2 correspond to a total number of
14,400 bits for each AP during each coherence time (or frame).
In addition, similar to [12] we use a uniform quantzier with
fixed stepsize. Simulation results show (ωg = 3, ωy = 80,
ωz = 3) are the optimal values for the case of N = 4 and
K = 20, and (ωg = 3.5, ωy = 70, ωz = 3) are the optimal
values for the case of N = 20 and K = 40. As Fig 5 shows
the performance of Case 2 is better than Case 1 for K = 20.
Next, the performance of the cell-free Massive MIMO system
is evaluated for a system with K = 40 in which each AP is
equipped with N = 20 antennas. Fig. 5 shows the average
rate of the cell-free Massive MIMO system, where for Case
1 and Case 2, we set α1 = 3 and α2 = 8, respectively which
leads to a total number of 64,000 backhaul bits per AP per
frame. Fig. 5 shows that the performances of Case 1 and Case
2 depend on the values of N , K and τf . As in case 1, the CPU
knows the quantized channel estimates, other signal processing
techniques (e.g. zero-forcing processing) can be implemented
to improve the system performance and can be considered in
future work.

VII. CONCLUSIONS

We have studied the uplink max-min SINR problem in cell-
free Massive MIMO systems with the realistic assumption
of limited capacity backhaul links, and have proposed an
optimal solution to maximize the minimum uplink user rate.
The numerical results confirmed that the proposed max-min
SINR algorithm can increase the median of the CDF of
the minimum uplink rate of the users by more than two
times, compared to existing algorithms. We finally showed
that further improvement (15%) in minimum rate of the users
is achieved by the proposed user assignment algorithm.
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The desired signal for the user k is given by

DSk=
√
ρE

{
M∑

m=1

umkĝH
mkgmk

√
qk

}
= N
√
ρqk

M∑
m=1

umkγmk.(26)

The term E{|BUk|2} can be obtained as

E
{
|BUk|2

}
= ρE

{∣∣∣∣∣
M∑
m=1

umkĝHmkgmk
√
qk (27)

−ρE
{ M∑
m=1

umkĝHmkgmk
√
qk

}∣∣∣∣∣
2}

= ρN

M∑
m=1

qku
2
mkγmkβmk,

where the last equality comes from the analysis in [7], and us-
ing γmk =

√
τppβmkcmk. The term E{|IUIkk′ |2} is obtained

as

E{|IUIkk′ |2} = ρ qk′E


∣∣∣∣∣
M∑
m=1

cmkumkgHmk′w̃mk

∣∣∣∣∣
2
︸ ︷︷ ︸

A

+ρτppE

qk′
∣∣∣∣∣
M∑
m=1

cmkumk

( K∑
i=1

gmiφφφ
H
k φφφi

)H
gmk′

∣∣∣∣∣
2
︸ ︷︷ ︸

B

, (28)

where the third equality in (28) is due to the fact that for
two independent random variables X and Y and E{X} =
0, we have E{|X + Y |2} = E{|X|2} + E{|Y |2} [7]. Since
w̃mk = φφφHk Wp,m is independent from the term gmk′ similar
to [7, Appendix A], the term A in (28) immediately is given
by A = Nqk′

∑M
m=1 c

2
mku

2
mkβmk′ . The term B in (28) can

be obtained as

B = τppqk′E


∣∣∣∣∣
M∑
m=1

cmkumk||gmk′ ||2φφφHk φφφk′

∣∣∣∣∣
2
︸ ︷︷ ︸

C

(29)

+ τppqk′E


∣∣∣∣∣∣
M∑
m=1

cmkumk

( K∑
i 6=k′

gmiφφφ
H
k φφφi

)H
gmk′

∣∣∣∣∣∣
2
︸ ︷︷ ︸

D

.

The first term in (29) is given by

C = Nτppqk′
∣∣φφφHk φφφk′ ∣∣2 M∑

m=1

c2mku
2
mkβmk′

+ N2qk′
∣∣φφφHk φφφk′ ∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

, (30)

where the last equality is derived based on the fact γmk =√
τppβmkcmk. The second term in (29) can be obtained as

D =N
√
τppqk′

M∑
m=1

u2
mkcmkβmk′βmk−Nqk′

M∑
m=1

u2
mkc

2
mkβmk′

− Nτppqk′
M∑
m=1

u2
mkc

2
mkβ

2
mk′

∣∣φφφHk φφφk′ ∣∣2 . (31)

Finally by substituting (30) and (31) into (29), and substituting
(29) into (28), we obtain

E{|IUIkk′ |2} = Nρqk′

(
M∑
m=1

u2
mkβmk′γmk

)
(32)

+ N2ρqk′
∣∣φφφHk φφφk′ ∣∣2

(
M∑
m=1

umkγmk
βmk′

βmk

)2

.

The total noise for the user k is given by

E
{
|TNk|2

}
=E


∣∣∣∣∣
M∑
m=1

umkĝHmknm

∣∣∣∣∣
2
=N

M∑
m=1

u2
mkγmk, (33)

where the last equality is due to the fact that the terms ĝmk
and nm are uncorrelated. The power of quantization error for
the kth user is obtained as

E
{
|TQEk|

2}= Nω2
z

3Q2
m

M∑
m=1

u2
mk

[
(2βmk−γmk)ρ

K∑
k′=1

qk′βmk′+γmk

]
,(34)

where the proof uses a similar way to determine the power
of quantziation error in Section II and is omitted here due to
space limitations. Finally, SINR of the kth user is obtained by
(19), which completes the proof of Theorem 3. �
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