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Abstract

This paper studies the ergodic sum rate performance of regularized zero-forcing (RZF) precoding

in the downlink (DL) of a multi-user multiple-input single-output (MISO) system, where the channel

between the base station (BS) and each user is modeled by the double scattering model. This non-

Gaussian channel model is a function of both the antenna correlation and the structure of scattering

in the propagation environment. This paper first makes the preliminary contribution of deriving the

minimum-mean-square-error (MMSE) channel estimate for this model. The system model accounts for

channel estimation errors and per-group channel correlation matrices for the users. The analysis assumes

that the number of BS antennas, the number of single-antenna users and the number of scatterers in each

group grow large while their ratio remains bounded. Under this setting, this paper derives deterministic

equivalents of the signal-to-interference plus noise ratio (SINR) and the sum rate which are almost

surely tight in the large system limit. The derived approximations are expressed in a closed-form for the

special case of multi-keyhole channel. We show that the performance of a massive MIMO system does

not scale linearly with the number of antennas under uncorrelated channel conditions and is actually

limited by the number of scatterers in the propagation environment. Simulation results confirm the close

match provided by the asymptotic analysis for moderate system dimensions.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is widely considered as a promising technol-

ogy for next generation wireless communication systems due to its potential to improve both
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energy efficiency and spectral efficiency [1]–[3]. However, most works on this subject share the

underlying assumption of rich scattering conditions and, thus, work with full rank Rayleigh or

Rician fading channel matrices. Although the use of full rank channel matrices facilitates the

derivation of closed-form capacity bounds and approximations, these models do not capture the

characteristics of realistic propagation environments, where the presence of spatial correlation

and poor scattering conditions significantly deteriorates the system performance [4]–[6].

Many works have already considered correlated Rayleigh fading channel models to study the

impact of antenna correlation on the performance of massive MIMO systems [3], [7]–[9]. One

popular correlation-based channel model utilized in several works is the Kronecker model [10],

[11]- the rank of which is determined by the spatial correlation in the transmit (Tx) and receive

(Rx) arrays. However, low rank channels have been observed in MIMO systems that have low

antenna correlation at both ends of the transmission link [12]. Gesbert et al showed in [4] that

the MIMO capacity is governed by both the spatial correlation at the communication ends and

the structure of scattering in the propagation environment. Motivated by this, the authors devised

a “double-scattering channel model” which utilized the geometry of the propagation environment

to model spatial correlation, rank deficiency and limited scattering. A special case of the double-

scattering model is the keyhole channel [5], [13], which exhibits null correlation between the

entries of the channel matrix but only a single degree of freedom.

A. Related Literature

The main literature related to the theoretical analysis of the double-scattering channel model

is represented by [14]–[21]. The authors in [14] studied its diversity order and showed that

a MIMO system with t Tx and r Rx antennas and s scatterers achieves a diversity of order

trs/max(t, r, s). The authors in [15] investigated the channel hardening property and showed

that unlike Rayleigh fading channels, keyhole channels do not harden, resulting in a degradation

of the spectral efficiency. The authors in [16] analyzed the ergodic MIMO capacity taking into

account the presence of spatial fading correlation, double scattering, and keyhole effects in the

propagation environment and showed that the use of multiple antennas in keyhole channels only

offers diversity gains, but no spatial multiplexing gain. The MIMO multiple access channel

(MAC) with double-scattering fading was studied in [19], where the authors obtained closed-

form upper-bounds on the sum-capacity and proved that signals sent along the eigenvectors of

the Tx correlation matrix maximize capacity.
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A few papers have analyzed the double scattering model in the asymptotic regime targeting

massive MIMO settings [12], [21]. The authors in [12] studied this model without Tx and

Rx correlation using tools from free probability theory and derived implicit expressions of

the asymptotic mutual information and signal-to-interference-plus-noise ratio (SINR) of the

minimum-mean-square-error (MMSE) detector. The authors in [21] studied a MIMO multiple

access system with double-scattering channels and derived almost surely tight deterministic

approximations of the mutual information and the SINR of the MMSE detector in the asymptotic

regime. However, none of these papers have considered practical massive MIMO systems with

linear signal processing schemes and channel estimation. The authors are only aware of [20]

which describes the behavior of the double scattering model with channel estimation and linear

signal detection using analytical and numerical examples instead of theoretical analysis.

B. Main Contributions

The focus of this work is on the downlink (DL) of a single-cell multi-user multiple-input

single-output (MISO) system. We consider double scattering fading between the BS and the

users in its most general form. The users are further divided into G groups, such that the users

in the same group experience similar propagation conditions and are therefore characterized by

common correlation matrices. We use a realistic system model where the BS obtains channel

state information (CSI) from uplink pilot transmissions and applies MMSE estimation technique.

Under the assumption that the number of BS antennas, scatterers and users grow large, we derive

asymptotically tight deterministic approximations of the SINR and the ergodic sum rate with

regularized zero-forcing (RZF) precoding. These approximations can be easily computed and

are shown to be accurate for realistic system dimensions through simulations. The deterministic

equivalents are expressed in a closed-form for the multi-keyhole channel under perfect CSI

assumption and some important insights into the impact of different system parameters on the

sum rate performance are drawn. Our results show that massive MIMO techniques are only

useful in rich scattering environments.

C. Outline and Notation

The rest of the paper is organized as follows. Section II presents the transmission model and

introduces the double scattering channel model along with its MMSE estimate. In section III, the

asymptotically tight deterministic equivalents of the SINR and user rates with RZF precoding are
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provided. A few case studies for the Rayleigh product channel are also considered. Simulation

results are provided in Section IV and section V concludes the paper. All technical proofs are

presented in the appendices.

The following notation is used throughout this work. Boldface lower-case and upper-case

characters denote vectors and matrices respectively. The superscript (·)H represents the conjugate

transpose, E[·] represents the expectation and log(·) represents the logarithm. The operator tr (X)

denotes the trace of a matrix X. The spectral norm of a matrix X is denoted by ||X||. The N×N

identity matrix is denoted by IN and the N ×N diagonal matrix of entries {xn} is denoted by

X = diag(x1, x2, . . . , xN). A random vector x ∼ CN (m,Φ) is complex Gaussian distributed with

mean vector m and covariance matrix Φ. The notation a.s.−−→ denotes almost sure convergence.

II. SYSTEM MODEL

Consider a single-cell multi-user MISO system where a BS equipped with N antennas serves

K single-antenna users. We assume transmissions over flat-fading double scattering channels

under a time-division duplexing (TDD) protocol. The K users are divided into G groups of

Kg, g = 1, . . . , G, users such that the users in the same group experience similar propagation

conditions. In this section, we outline the transmission model, discuss the double scattering

channel model and introduce its MMSE estimate.

A. Transmission Model

Under narrow-band transmission, the signal yk,g received by user k in group g is given as,

yk,g = hHk,gx + nk,g, k = 1, . . . , Kg, g = 1, . . . , G, (1)

where hHk,g ∈ C1×N is the channel vector from the BS to user k in group g, x ∈ CN×1 is the Tx

signal vector and nk,g ∼ CN (0, σ2) is the receiver noise.

The Tx signal vector x is given as,

x =
G∑
g=1

Kg∑
k=1

√
pk,ggk,gsk,g, (2)

where gk,g ∈ CN×1 is the precoding vector for user k in group g, and pk,g ≥ 0 and sk,g ∼

CN (0, 1) are the signal power and the data symbol for user k in group g respectively. The

precoding vectors satisfy the average total power constraint as,

E[||x||2] = E[tr (PGHG)] ≤ P̄ , (3)
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Fig. 1: Geometric model of the double scattering channel between the BS and the user k in group g.

where P̄ > 0 is the average total Tx power, P = diag(p1,1, p2,1, . . . , pK1,1, p1,2, . . . , pKG−1,G, pKG,G) ∈

RK×K and G = [G1,G2, . . . ,GG] ∈ CN×K is the precoding matrix, where Gg = [g1,g, . . . , gKg ,g] ∈

CN×Kg .

B. Double-Scattering Channel Model

A main contribution of this paper is to apply the double scattering channel model proposed in

[4] to a multi-user MISO system. This model provides non-Gaussian channels between the BS

and the users with ranks that are determined by both the spatial correlation between the antennas

at the BS and the structure of scattering in the propagation environment. The expression of the

channel vector hk,g described by the double scattering model in [4] is given as,

hk,g =
√
Sg

(
1√
Sg

R1/2
BSg

WgS̄
1/2
g

)
w̃k,g, (4)

where Sg is the number of scatterers at the Tx and the Rx sides in group g, RBSg ∈ CN×N is the

correlation matrix between the BS antennas and the Sg Tx scatterers in group g, S̄g ∈ CSg×Sg

is the correlation matrix between the Tx and Rx scatterers in group g, Wg ∼ i.i.d. CN (0, 1) ∈

CN×Sg describes the small-scale fading between the BS and the scattering cluster at the Tx side

in group g and w̃k,g ∼ i.i.d. CN (0, 1
Sg

) ∈ CSg×1 describes the small-scale fading between the

user k in group g and the scattering cluster at the Rx side. Since the distributions of Wg and

w̃k,g are unitarily invariant, we can assume S̄g to be diagonal, i.e. S̄g = diag(s̄1,g, s̄2,g, . . . , s̄Sg ,g)

without any loss of generality for the statistics of the received signal.
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Schematic of the double scatting channel from the BS to user k in group g has been illustrated

in Fig. 1, where σt,g and σs,g represent the angular spread of the radiated signal from the BS

array and the Tx scatterers respectively in group g, µt,g and µs,g determine the mean angle of

departure (AoD) of the radiated signal from the BS array and the Tx scatterers respectively in

group g, where µt,g = µs,g, and dt and ds,g determine the spacing between the adjacent antennas

at the BS and between the adjacent scatterers in group g respectively.

C. Channel Estimation

During a dedicated uplink training phase, the users transmit mutually orthogonal pilot se-

quences that allow the BS to compute the MMSE estimates ĥk,g of the channel vectors hk,g.

After correlating the received training signal with the pilot sequence of user k in group g, the

BS estimates the channel vector hk,g based on the received observation, ytrk,g ∈ CN×1, given as,

ytrk,g = hk,g +
1
√
ρtr

ntrk,g, (5)

where ntrk,g ∼ CN (0, IN) and ρtr > 0 is the effective training SNR, assumed to be given here.

Lemma 1: The MMSE estimate ĥk,g of the double scattering channel vector hk,g in (4) is

given as,

ĥk,g = dgRBSgQgytrk,g, (6)

where dg = 1
Sg

(tr S̄g) and Qg =
(
dgRBSg + 1

ρtr
IN
)−1

.

The proof of Lemma 1 is postponed to Appendix A.

We stress that the estimate in Lemma 1 has been derived for a non-Gaussian channel. In

fact, MMSE estimator is very general and is not specific for Gaussian channels, as commonly

used in most of the massive MIMO literature. Under the orthogonality property of the MMSE

estimate, we can decompose the channel vector hk,g as hk,g = ĥk,g + h̃k,g, where h̃k,g is the

uncorrelated channel estimation error. Note that ĥk,g and h̃k,g although uncorrelated are not

generally independent due to the non-Gaussian nature of the channel. However, we will show

that E[h̃
H

k,gAĥk,g] = 0, where A is a N ×N matrix with a bounded spectral norm, implying the

following lemma.

Lemma 2: Let A be a N ×N matrix independent of hk,g and ĥk,g, with a bounded spectral

norm; that is, there exists a CA <∞ such that ||A|| ≤ CA. Then,
1

N
h̃
H

k,gAĥk,g
a.s.−−−→

N→∞
0. (7)

The proof is postponed to Appendix A.
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D. Achievable Rates

Since the users do not have any channel estimate, we provide an ergodic achievable rate based

on the techniques utilized in [3], [22]. To this end, we decompose yk,g as,

yk,g =
√
pk,gE[hHk,ggk,g]sk,g +

√
pk,g(hHk,ggk,g − E[hHk,ggk,g])sk,g

+
∑

(k′,g′)6=(k,g)

√
pk′,g′hHk,ggk′,g′sk′,g′ + nk,g, (8)

and assume that the average effective channels E[hHk,ggk,g] can be perfectly learned at the users.

Then the SINR γk,g of user k in group g is defined as,

γk,g =
pk,g|E[hHk,ggk,g]|2

pk,gvar[hHk,ggk,g] +
∑

(k′,g′)6=(k,g) pk′,g′E[|hHk,ggk′,g′|2] + σ2
. (9)

The ergodic achievable downlink rate Rk,g of user k in group g is given as,

Rk,g = log(1 + γk,g), (10)

while the ergodic achievable sum rate is given as,

Rsum =
G∑
g=1

Kg∑
k=1

Rk,g. (11)

This paper considers RZF precoding, which is a state-of-the-art heuristic precoding scheme

with a simple closed-form expression given as [3], [7],

G = ζ(Ĥ
H

Ĥ +KαIN)−1Ĥ
H
, (12)

where Ĥ is the compound channel defined as [Ĥ
H

1 , Ĥ
H

2 , . . . , Ĥ
H

G ]H ∈ CK×N , where Ĥg =

[ĥ1,g, ĥ2,g, . . . , ĥKg ,g]H ∈ CKg×N , α is the regularization parameter and ζ is a normalization

factor to ensure that the power constraint in (3) is satisfied and is obtained as,

ζ2 =
P̄

E[trPĤ(Ĥ
H

Ĥ +KαIN)−2Ĥ
H

]
=
P̄

Θ
, (13)

where Θ = E[trPĤV̂
2
Ĥ
H

], where V̂ = (Ĥ
H

Ĥ +KαIN)−1. The SINR in (9) is now defined as,

γk,gRZF =
pk,g|E[hHk,gV̂ĥk,g]|2

E[hHk,gV̂Ĥ
H

[k,g]P[k,g]Ĥ[k,g]V̂hk,g] + pk,gvar [hHk,gV̂ĥk,g] + Θ
ρ

, (14)

where ρ = P̄
σ2 , hk,g is given by (4), ĥk,g is given by (6) and Ĥ[k,g] = [Ĥ

H

1 , . . . , Ĥ
H

g−1, ĥ1,g, . . . ,

ĥk−1,g, ĥk+1,g, . . . , ĥKg ,g, Ĥ
H

g+1, . . . , Ĥ
H

G ]H ∈ CK−1×N .
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III. MAIN RESULTS

As the ergodic rate with RZF precoding is very difficult to derive for finite system dimensions,

we consider the large system limit, where N,K, S grow infinitely large while keeping finite ratios.

Under this setting and the double scattering channel model in (4) and its estimate in (6), this

section presents the deterministic equivalents of the SINR and sum-rate with RZF precoding.

A. Preliminaries

The analysis in this work makes the following three assumptions.

A-1. For all g, N , Sg, Kg and K tend to infinity such that,

0 < lim inf
Sg
N
≤ lim sup

Sg
N

<∞, (15)

0 < lim inf
Kg

N
≤ lim sup

Kg

N
<∞, (16)

0 < lim inf
Kg

K
≤ lim sup

Kg

K
<∞. (17)

In the sequel, the notation N →∞ denotes Assumption A-1.

A-2. For all g, lim supN ||RBSg || <∞ and lim supSg ||S̄g|| <∞.

A-3. The random matrix 1
K

Ĥ
H

Ĥ has uniformly bounded spectral norm with probability 1, i.e.

lim supN || 1
K

Ĥ
H

Ĥ|| <∞, with probability 1.

The derivations in this work rely extensively on the Fubini Theorem. The complete statement

of this theorem can be found in [23] and its application to the study of a double-scattering

MIMO multiple access channel can be found in [21], [24]. In plain words this theorem implies

that if a deterministic equivalent gn exists for a function fn of a random series (H′′n)n≥1 and a

deterministic series (H′n)n≥1 of matrices and if it can be proved that this deterministic equivalent

holds true for almost every such (H′n)n≥1 generated by a space Ω, then the latter is also a

deterministic equivalent of the random series (H′n,H
′′
n)n≥1.

Using this mathematical idea, the derivation of the deterministic equivalents in this work

interprets the double-scattering channel model in (4) as,

hk,g =
√
SgZgw̃k,g, (18)

where,

Zg =
1√
Sg

R1/2
BSg

WgS̄
1/2
g . (19)
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Note that (18) is essentially a Rayleigh correlated channel model [7] but with a random Tx

correlation matrix Zg, which itself is a Kronecker model. The idea is to first assume Zg to be

deterministic and use RMT results for the Kronecker model to derive the deterministic equivalent

of the SINR. Under this setting, the estimate of the double scattering model in (6) can be

interpreted as,

ĥk,g = Φ1/2
g q̄k,g, (20)

where q̄k,g has entries distributed as ∼ CN (0, 1) and Φg is the covariance matrix of the channel

estimate given as,

Φg = d2
gRBSgQg

(
ZgZH

g +
1

ρtr
IN
)

QH
g RH

BSg . (21)

Once we obtain the deterministic equivalent of the SINR in terms of certain fixed point equations

that depend on the matrices Zg using RMT results for the Kronecker model from [25], we extend

the analysis by allowing Zg to be random based on the Fubini theorem. In this second step, we

derive the deterministic equivalents of the fixed point equations under the actual random Zgs.

Our first theorem will introduce a set of 3G implicit equations which uniquely determines

the quantities (mg, m̄g, δg), 1 ≤ g ≤ G. These will be needed later to provide the deterministic

equivalents of γk,g and corresponding rates.

Theorem 1: Consider the resolvent matrix Ĉ
−1

(α) =
(

1
K

Ĥ
H

Ĥ + αIN
)−1

, where the columns

of Ĥ
H

are distributed according to (6). Then the following system of 3G implicit equations in

mg, m̄g and δg, 1 ≤ g ≤ G,

mg(α) =
1

K
d2
g

(
Sg∑
j=1

s̄g,jδg(D̄g, α)

1 + Kg
K
d2
gs̄g,jm̄g(α)δg(D̄g, α)

+
Sg
ρtr
δg(D̃g, α)

)
,

m̄g(α) =
1

1 +mg(α)
, (22)

δg(Rg, α) =
1

Sg
tr RgT̄(α),

where,

T̄(α) =

(
G∑
i=1

D̄i

Si

(
Si∑
j=1

Ki
K
d2
i s̄i,jm̄i(α)

1 + Ki
K
d2
i s̄i,jm̄i(α)δi(D̄i, α)

)
+
Ki

K
d2
i

m̄i(α)

ρtr
D̃i + αIN

)−1

, (23)

has a unique solution satisfying mg, m̄g, δg > 0 for all g and α > 0, where Rg is an arbi-

trary matrix with a uniformly bounded spectral norm, D̄g = RBSgQgRBSgQ
H
g RH

BSg and D̃g =
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RBSgQgQH
g RH

BSg . Let U be any deterministic matrix with a uniformly bounded spectral norm.

Under assumptions A-1, A-2, A-3 and for α > 0, we have
1

K
tr(UĈ

−1
(α))− 1

K
tr(UT̄(α))

a.s.−−−→
N→∞

0. (24)

Proof: The proof of Theorem 1 is postponed to Appendix B.

B. Asymptotic Analysis

This section provides the major contributions of this work as it copes with the channel model

in (4) and its estimate in (6) and provides the large system SINR analysis of RZF precoding.

To begin with, we first present the deterministic equivalent of the quantity 1
K

tr ΦgĈ
−1

(α),

which will repeatedly appear in our analysis. The result is presented in the following lemma.

Lemma 3: Under the setting of assumptions A-1, A-2 and A-3 and for α > 0,
1

K
tr ΦgĈ

−1
(α)−mg(α)

a.s.−−−→
N→∞

0, (25)

where mg(α) is obtained as the unique solution of (22).

Proof: Utilizing the result in (74) for U = Φg under the assumption of deterministic Zgs

yields,
1

K
tr ΦgĈ

−1
(α)− eg(α)

a.s.−−−→
N→∞

0. (26)

The result can be extended to random Zgs using Fubini Theorem and the deterministic

equivalent of eg is obtained as mg as shown in Appendix B.

The next lemma introduces the deterministic equivalent of an important quantity that forms

the mathematical basis of the subsequent large system analysis of the SINR in (14).

Lemma 4: Define χ(α) = [χ1(α), χ2(α), . . . , χG(α)]T , where χg(α) = 1
K2 tr ΦgĈ

−1
(α)Ĥ

H
PĤĈ

−1
(α),

where Φg is given by (21). Under the setting of assumptions A-1, A-2 and A-3 and for α > 0,

χ(α)− χo(α)
a.s.−−−→

N→∞
0, (27)

where,

χo(α) = (IN − J̄(α))−1v̄(α), (28)

where,

[J̄(α)]g,i = d2
g

Ki

K

1

(1 +mi(α))2

(
β̄g,i(RBSgQg, α) +

1

ρtr
β̃i(RBSgQg, α)

)
, (29)

v̄g(α) = d2
g

1

K

G∑
i=1

Ki∑
l=1

pl,i
(1 +mi(α))2

(
β̄g,i(RBSgQg, α) +

1

ρtr
β̃i(RBSgQg, α)

)
, (30)
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where,

β̄g,i(A, α) = β̄1
g,i(A, α) + β̄2

g,i(A, α), (31)

where,

β̄
1
g,i(A, α) =


d2
i

SiK

∑Si
j=1

s̄i,j

(1+
Ki
K
d2
i
m̄i(α)s̄i,jδi(D̄i,α))2

∑Sg
n=1

s̄g,nM
′
g(ARBSg AH,D̄i,α)

(1+
Kg
K
d2
gm̄g(α)s̄g,nδg(D̄g,α))2

, if g 6= i,

d2
i
K

∑Si
j=1

s̄i,j

(1+
Ki
K
d2
i
m̄i(α)s̄i,jδi(D̄i,α))2

(∑Si
n=1
n 6=j

1
Si
s̄i,nM

′
i(ARBSi

AH,D̄i,α)

(1+
Ki
K
d2
i
m̄i(α)s̄i,nδi(D̄i,α))2

+ s̄i,jδi(RBSiQiRBSiAH , α)δi(ARBSiQHi RHBSi , α)

)
, if g = i,

β̄2
g,i(A, α) =

d2
i

Kρtr

Sg∑
j=1

s̄g,jM
′
g(ARBSgA

H , D̃i, α)

(1 + Kg
K
d2
gm̄g(α)s̄g,jδg(D̄g, α))2

, (32)

and,

β̃i(A, α) =
d2
i

K

(
Si∑
j=1

s̄i,jM
′
i(D̄i,AAH , α)

(1 + Ki
K
d2
i m̄i(α)s̄i,jδi(D̄i, α))2

+
Si
ρtr
M ′

i(D̃i,AAH , α)

)
, (33)

where,

M ′
g(Rg,L) =

1

Sg
tr Rg

[
T̄

(
G∑
z=1

D̄zm̄
2
z

Sz

(
Kz

K

)2

d4
ztr (S̄zW2

zS̄z)M
′
z(D̄z,L) + L

)
T̄

]
, (34)

where Rg and L are arbitrary matrices with uniformly bounded spectral norm,

Wi =

(
ISi +

Ki

K
d2
i m̄iδi(D̄i, α)S̄i

)−1

, (35)

and M′(D̄,L) = [M ′
1(D̄1,L),M ′

2(D̄2,L), . . . ,M ′
G(D̄G,L)]T , which can be expressed as a system

of linear equations as follows,

M′(D̄,L) = (IN − J(D̄))−1v(D̄,L), (36)

[J(D̄)]g,i =
1

Sg
tr (D̄gT̄D̄iT̄)

(
m̄2
i

Si

(
Ki

K

)2

d4
i tr (S̄iW2

iSi)

)
, (37)

[v(D̄,L)]g =
1

Sg
tr (D̄gT̄LT̄), (38)

for g, i = 1, . . . , G.

Proof: The proof of Lemma 4 is provided in Appendix C.

Based on the results in Theorem 1, Lemma 3 and Lemma 4, the deterministic equivalent of

the SINR in (14) can be derived and is presented in the next theorem.

Theorem 2: Under the setting of assumptions A-1, A-2 and A-3 and for α > 0, the downlink

SINR of user k in group g defined in (14) converges almost surely as,

γk,gRZF − γok,gRZF
a.s.−−−→

N→∞
0, (39)
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where,

γok,gRZF =
pk,g(mg(α))2

Υo
k,g(1 +mg(α))2 + ξo(IN ,α)(1+mg(α))2

ρ

, (40)

where,

Υo
k,g = κog(IN , α)− χog(α) +

(
1

1 +mg(α)

)2

χog(α), (41)

where,

κog(IN , α) =
1

K

G∑
i=1

Ki∑
l=1

1

(1 +mi(α))2
β̄g,i(IN , α)(pl,i + χoi (α)), (42)

ξo(IN , α) =
1

K

G∑
i=1

Ki∑
l=1

1

(1 +mi(α))2
β̃i(IN , α)(pl,i + χoi (α)). (43)

Proof: The proof of Theorem 2 is given in Appendix E.

Corollary 1: Assume that A-1, A-2 and A-3 hold true and α > 0. Then the individual downlink

rates Rk,g of users converge as,

Rk,g −Ro
k,g

a.s.−−−→
N→∞

0, (44)

where,

Ro
k,g = log(1 + γok,gRZF), (45)

where γok,gRZF is given by (40).

Proof: The proof follows from the application of the continuous mapping theorem [23] to the

logarithm function and the almost sure convergence of γk,gRZF in (39).

An approximation of the average system sum rate can be obtained by replacing Rk,g in (11)

with its asymptotic approximation as,

Ro
sum =

G∑
g=1

Kg∑
k=1

log(1 + γok,gRZF). (46)

The asymptotic expressions provided in Theorem 2 and Corollary 1 will be shown to be

tight by the means of simulations in Section IV, even for finite system dimensions. This means

they can be used for evaluating the performance of practical systems without relying on time-

consuming Monte-Carlo simulations. Despite being useful for this purpose, the expressions are

quite involved and do not provide direct insights into the interplay between different system

parameters. We therefore focus on the perfect CSI case and obtain some simplifications under

different operating conditions.
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C. Rayleigh Product Channel

A special case of the double-scattering channel is the Rayleigh product channel which does

not exhibit any form of correlation between the Tx and Rx antennas or the scatterers [18]. This

model is popularly known as the multi-keyhole channel. We study this model for perfect CSI

and find that Theorem 2 can be given in a closed-form as shown in the next corollary.

Corollary 2: For G = 1, let S1 = S, K1 = K, and assume S̄1 = IS and RBS1 = IN . Then

under perfect CSI, γokRZF can be given in a closed-form as,

γokRZF =

pk
P̄ /K

(1− m̄)2(1− m̄2a)

m̄4a+ m̄2b
ρ

, (47)

where,

a =
S(N −K +Km̄)2

K(Sα−Km̄+Nm̄+Km̄2)2
+

S3α2(S − 1)(N −K +Km̄)

K(Sα−Km̄+Nm̄+Km̄2)3(Sα− 2Km̄+Nm̄+ Sm̄+ 2Km̄2)
, (48)

b =
S2(N −K +Km̄)

K(Sα−Km̄+Nm̄+Km̄2)(Sα− 2Km̄+Nm̄+ Sm̄+ 2Km̄2)
, (49)

and m̄ is given as the unique root to,

m̄3 −
(

2− S

K
− N

K

)
m̄2 +

(
1− S

K
− N

K
+
SN

K2
+
Sα

K

)
m̄− Sα

K
= 0, (50)

such that m̄ ∈
(
1− S

K
, 1
)
.

Proof: The proof is postponed to Appendix F.

Corollary 3: Under the setting of Corollary 2, let S
N
, S
K
→∞. Then γokRZF defined in Theorem

2 can be given in a closed-form as,

γokRZF =

pk
P̄ /K

( 1
m̄
− 1)(1 + α

m̄2 )

1 + 1
ρm̄2

, (51)

where,

m̄ =
1− N

K
− α +

√
(α + N

K
− 1)2 + 4α

2
. (52)

Note that as S
N
, S
K
→ ∞, h behaves as a Rayleigh fading channel, whose SINR is given as

(51). A similar result has also been obtained in Corollary 2 of [7], where the authors derive the

deterministic equivalent of the SINR under RZF precoding, with the channel between each user

and the BS modeled as Rayleigh correlated.

Corollary 4: Under the setting of Corollary 2, let N
S
→ ∞ and N

K
→ ∞ with K > S. Then

γokRZF defined in Theorem 2 can be given in a closed-form as,

γokRZF =

pk
P̄ /K

S

K − S
. (53)
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Fig. 2: Sum rate versus SNR with α = 1/ρ.

It is commonly believed that the capacity of massive MIMO systems scales linearly as

min(N,K) under i.i.d. channel gains and perfect CSI. However, Corollary 4 refutes this as

it implies that the performance of a massive MIMO system is actually limited by the number

of scatterers in the environment. For a low number of scatterers, deploying more antennas will

yield no benefit. Massive MIMO techniques are therefore only useful in very rich scattering

environments. This result will be verified using simulations as well.

IV. SIMULATION RESULTS

Under the double scattering model, the correlation matrices RBSg and S̄g are given as RBSg =

G(µt,g, σt,g, dt, Sg) and S̄g = G(µs,g, σs,g, ds,g, Sg), where G(µ, φ, d, n) is defined as [20], [21],

[G(µ, σ, d, n)]k,l =
1

n

n−1
2∑

j= 1−n
2

exp

(
− i2πd(k − l) cos

(
π

2
+

jσ

n− 1
+ µ

))
. (54)

All parameters have already been defined in Fig. 1.

The parameters are set as G = 4, K = 80, N = 80, Sg={80, 90, 84, 94}, µt,g = µs,g={−π/3,

− π/9, π/9, π/3}, σt,g={π/5, π/6, π/5, π/7} and σs,g={π/6, π/6, π/6, π/6}. Also, dt = 0.5 and

ds,g = 2 for all g. We assume an equal number of users in each group, i.e. Kg = K/G, with

uniform power allocation, P = IK . Fig. 2 compares the downlink system sum-rate Rsum =∑G
g=1

∑Kg
k=1 log(1 + γk,gRZF

) obtained using 2000 Monte-Carlo realizations of the SINR in (14)

to the deterministic approximation provided in (46), where γok,gRZF is given by (40). It can be
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Fig. 3: Sum rate versus SNR for a multi-keyhole channel with α = 1/ρ.

seen that the asymptotic result derived in this paper yields a good approximation for moderate

system dimensions. The sum-rate is decreasing at high SNR values for ρtr = 2dB, because the

regularization parameter α does not account for ρtr and thus the matrix Ĥ
H

Ĥ + KαIN in the

RZF precoder becomes ill-conditioned as the quality of the estimate deteriorates. Furthermore,

note that the mismatch starts to increase for high SNR values due to the slower convergence

of γk,gRZF to its deterministic approximation as well documented in RMT literature [7], [26].

Therefore, higher system dimensions are needed for a better approximation at high SNR values.

Fig. 3 studies the effect of the number of scatterers on the system sum rate for a single

group with multi-keyhole channel, i.e. G = 1, RBS = IN , S̄ = IS , with N = 20, K = 20 and

perfect CSI. The downlink sum-rate in (46) plotted using the closed-form expression of γokRZF

in Corollary 2 is close to the Monte-Carlo result even for very low number of scatterers. The

spatial multiplexing gains are seen to increase linearly with S. However, for S > N , the gains

start to decrease since the degrees of freedom are limited by the number of antennas at the BS.

The limiting sum rate as S/N, S/K →∞ is also plotted using the SINR in (51). As the number

of scatterers increases, the performance approaches to that of a Rayleigh fading channel.

Finally, we study the downlink performance of the double scattering channel as the number

of BS antennas increases for a single group with S = 20, K = 40 and perfect CSI. The results

are shown in Fig. 4 for both the correlated and uncorrelated cases. It can be seen that as the

number of antennas increases, the performance of both cases saturates to a limiting sum-rate as
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N/S,N/K →∞. For the case where RBS = IN and S = IS , this limiting sum rate is given by

substituting (53) in (46), which is also plotted in blue on the figure. This result is in contrast

to the common belief that the performance of a massive MIMO system scales linearly with the

number of BS antennas if the antennas are uncorrelated and perfect CSI is available. In fact,

the performance is limited by the number of scatterers in the environment and the benefits of

massive MIMO can not be realized in poor scattering conditions.

V. CONCLUSION

In this paper, we studied a multi-user MISO system with double-scattering fading channels that

are more realistic than the commonly used Gaussian channel models. The system performance

of this non-Gaussian channel is extremely difficult to study for finite system dimensions so we

focused on the massive MISO setting. We first derived the MMSE estimate for this channel

model. Then under a user-grouping setting with per-group channel correlation matrices and

the assumption that the number of BS antennas, scatterers and users grow infinitely large, we

derived almost surely tight deterministic approximations of the SINR and the sum rate with RZF

precoding. Simulation results showed a close match between the asymptotic and the Monte-

Carlo simulated sum rate for relatively small system dimensions and provided insights into the

performance of multi-keyhole channels. The results highlighted that massive MIMO performance

is actually limited by the number of scatterers in the environment.



17

APPENDIX A

MMSE ESTIMATE

A. Proof of Lemma 1

The MMSE estimate ĥk,g of hk,g is computed as ĥk,g = Fgytrk,g where Fg is obtained as the

solution of min FgE[||hk,g − Fgytrk,g||2] resulting in,

Fg = Chk,gytrk,gC
−1
ytrk,gytrk,g

, (55)

where,

Chk,gytrk,g = E[hk,gytr
H

k,g ] = E[hk,ghHk,g], (56)

=
1

Sg
R1/2
BSg

E[WgS̄gWH
g ]R1/2H

BSg
, (57)

=
1

Sg
R1/2
BSg

(tr S̄g)INR1/2H

BSg
=

1

Sg
(tr S̄g)RBSg , (58)

and,

Cytrk,gytrk,g = E[ytrk,gy
trH

k,g ] = E
[

hk,ghHk,g +
1

ρtr
ntrk,gn

trH

k,g

]
, (59)

=
1

Sg
(tr S̄g)RBSg +

1

ρtr
IN . (60)

Therefore,

ĥk,g =
1

Sg
(tr S̄g)RBSgQg

(
hk,g +

1
√
ρtr

ntrk,g

)
. (61)

B. Proof of Lemma 2

We deal with E[hHk,gAĥk,g] and E[ĥ
H

k,gAĥk,g] separately.

E[hHk,gAĥk,g] = dgE[hHk,gARBSgQghk,g] +
dg√
ρtr

E[hHk,gARBSgQgntrk,g], (62)

= T1 + T2. (63)

Due to the independence of ntrk,g and hk,g we can show that T2 = 0. Now,

T1 =
dg
Sg

E[w̃H
k,gS̄

1/2
g E[WH

g R1/2
BSg

ARBSgQgR
1/2
BSg

Wg|w̃k,g]S̄
1/2
g w̃k,g], (64)

=
dg
Sg

E[w̃H
k,gS̄gw̃k,g]tr(RBSgARBSgQg), (65)

=
dg
Sg

tr(S̄g)tr(RBSgARBSgQg). (66)
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Similarly we deal with E[ĥ
H

k,gAĥk,g] as,

E[ĥ
H

k,gAĥk,g] = d2
gE[hHk,gQ

H
g RH

BSgARBSgQghk,g] +
d2
g

ρtr
E[ntrHk,g QH

g RH
BSgARBSgQgntrk,g], (67)

=
d2
g

Sg
tr (S̄g)tr(RBSgQ

H
g RH

BSgARBSgQg) +
d2
g

ρtr
tr(QH

g RH
BSgARBSgQg), (68)

=
dg
Sg

tr(S̄g)tr
((

dgRBSg +
1

ρtr
IN
)

QH
g RH

BSgARBSgQg

)
, (69)

=
dg
Sg

tr(S̄g)tr(RBSgARBSgQg). (70)

As a consequence E[(hk,g − ĥk,g)HAĥk,g] = 0. Using standard tools from RMT, we can show

that the E

[∣∣∣∣ 1
N

(hk,g − ĥk,g)HAĥk,g
∣∣∣∣4
]

is bounded and converges to zero, implying,

1

N
(hk,g − ĥk,g)HAĥk,g

a.s.−−−→
N→∞

0. (71)

APPENDIX B

PROOF OF THEOREM 1

As a starting point we assume Zg to be deterministic such that lim supN ||ZgZH
g || <∞, which

allows us to use the expression of ĥk,g in (20) to have,

Ĉ =
1

K

G∑
g=1

Kg∑
k=1

Φ1/2
g q̄k,gq̄

H
k,gΦ

1/2H

g + αIN , (72)

=
G∑
g=1

Φ̃
1/2

g Q̄gIKgQ̄
H
g Φ̃

1/2H

g + αIN , (73)

where Q̄g ∼ CN (0, 1
Kg

) ∈ CN×Kg and Φ̃g = Kg
K

Φg, where Φg is given by (21).

We now rely on the observation that Φ̃
1/2

g Q̄gIKgQ̄
H
g Φ̃

1/2H

g can be considered as a double

scattering channel model with deterministic correlation matrices Φ̃
1/2

g . Under this setting, the

deterministic equivalent of 1
K

tr UĈ
−1

can be obtained using Theorem 3 in Appendix G as,

1

K
tr UĈ

−1
− 1

K
tr U

(
G∑
i=1

ēiΦ̃i + αIN

)−1

a.s.−−−→
N→∞

0, (74)

where (eg, ēg) are given as a unique solution to the following set of implicit equations,

ēg =
1

1 + eg
, (75)

eg =
1

Kg

tr Φ̃g

(
G∑
i=1

ēiΦ̃i + αIN

)−1

. (76)
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Now for the actual double-scattering channel model, Zgs are random and modeled as 1√
Sg

R1/2
BSg

WgS̄
1/2
g .

Using the Fubini Theorem [24] we can extend the result in (74) to random Zgs. This does not

affect the expression of ēg, but eg are now random quantities and we need to find a deterministic

equivalent, denoted as mg for them, such that, eg −mg
a.s.−−−→

N→∞
0.

To do this, we first define quantities eg,i,j and ēg,i,j for i = 1, . . . , G, j = 1, . . . , Sg, which are

given as unique solution to following set of fixed point equations.

ēg,i,j =
1

1 + eg,i,j
, (77)

eg,i,j =
1

Kg

tr Φ̃g,i,j(
G∑
l=1

ēl,i,jΦ̃l,i,j + αIN)−1. (78)

where,

Φ̃g,i,j =
Kg

K
d2
gRBSgQg

(
Zg,i,jZH

g,i,j +
1

ρtr
IN
)

QH
g RH

BSg , (79)

where,

Zg,i,j =

Zg, if i 6= g,

[zg,1, . . . , zg,j−1, zg,j+1, . . . , zg,Sg ], if i = g.
(80)

It can be shown following the techniques used in Appendix E of [24] that for all g, i, j,

eg − eg,i,j
a.s.−−−→

K→∞
0, (81)

ēg − ēg,i,j
a.s.−−−→

K→∞
0. (82)

Now using the expression of Φg from (21) in eg we have,

eg =
d2
g

K
tr RBSgQg

(
ZgZH

g +
1

ρtr
IN
)

QH
g RH

BSg

( G∑
i=1

ēiΦ̃i + αIN
)−1

, (83)

=
d2
g

K

Sg∑
j=1

zHg,jQ
H
g RH

BSg

(
G∑
i=1

ēiΦ̃i + αIN

)−1

RBSgQgzg,j +
d2
g

K

1

ρtr
tr D̃g

(
G∑
i=1

ēiΦ̃i + αIN

)−1

,

= T1 + T2, (84)

where D̃g = RBSgQgQH
g RH

BSg . First we treat T1 using Lemma 11 in Appendix G to remove the

dependence of
(∑G

i=1 ēiΦ̃i + αIN
)−1

on the vector zg,j as,

T1 =
d2
g

K

Sg∑
j=1

zHg,jQHg RHBSg
(∑G

i=1
Ki
K
d2
i ēi,g,jRBSiQi

(
ZiZHi + 1

ρtr
IN
)

QHi RHBSi −
Kg
K
d2
g ēg,g,jRBSgQgzg,jzHg,jQHg RHBSg + αIN

)−1
RBSgQgzg,j

1 + ēg,g,j
Kg
K
d2
gzHg,jQHg RH

BSg

(∑G
i=1

Ki
K
d2
i ēi,g,jRBSiQi

(
ZiZHi + 1

ρtr
IN
)

QHi RH
BSi

− Kg
K
d2
g ēg,g,jRBSgQgzg,jzHg,jQHg RH

BSg
+ αIN

)−1
RBSgQgzg,j

.
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Then from Lemma 7 and Lemma 9 in Appendix G we have,

T1 −
d2
g

K

Sg∑
j=1

s̄g,j
Sg

tr D̄g

(∑G
i=1 ēiΦ̃i + αIN

)−1

1 + ēg
Kg
K
d2
g

s̄g,j
Sg

tr D̄g

(∑G
i=1 ēiΦ̃i + αIN

)−1

a.s.−−−→
N→∞

0, . (85)

where D̄g = RBSgQgRBSgQ
H
g RH

BSg .

Notice that Φ̃i is still a function of Zi which is random. To remove the dependence of T1 on

Zi, we need the deterministic equivalent of 1
Sg

tr D̄g

(∑G
i=1 ēiΦ̃i + αIN

)−1

. Using the expression

of Φ̃i in (21) and Theorem 3 in Appendix G we have the following convergence,

1

Sg
tr Rg

(
G∑
i=1

ēiΦ̃i + αIN

)−1

− 1

Sg
tr Rg(

G∑
i=1

f̄iD̄i +
Ki

K
d2
i

ēi
ρtr

D̃i + αIN)−1 a.s.−−−→
N→∞

0, (86)

where Rg is any deterministic matrix that satisfies lim supN ||Rg|| <∞ and,

f̄g =
1

Sg

Sg∑
j=1

Kg
K
d2
gēgs̄g,j

1 + Kg
K
d2
gfg(D̄g)ēgs̄g,j

, (87)

fg(Rg) =
1

Sg
tr Rg(

G∑
i=1

f̄iD̄i +
Ki

K
d2
i

ēi
ρtr

D̃i + αIN)−1, (88)

such that (fg(Rg), f̄g) ≥ 0. Substituting f̄g in fg(Rg), we have,

fg(Rg) =
1

Sg
tr Rg

(
G∑
i=1

D̄i

Si

(
Si∑
j=1

Ki
K
d2
i ēis̄i,j

1 + Ki
K
d2
i fi(D̄i)ēis̄i,j

)
+
Ki

K
d2
i

ēi
ρtr

D̃i + αIN

)−1

. (89)

Consequently,

T1 −
1

K
d2
g

Sg∑
j=1

s̄g,jfg(D̄g)

1 + Kg
K
ēgd2

gs̄g,jfg(D̄g)

a.s.−−−→
N→∞

0. (90)

Similarly T2 can be derived as,

T2 −
Sg
K
d2
g

1

ρtr
fg(D̃g)

a.s.−−−→
N→∞

0. (91)

Plugging T1 and T2 into the expression of eg in (84) yields,

eg =
1

K
d2
g

(
Sg∑
j=1

s̄g,jfg(D̄g)

1 + Kg
K
d2
gs̄g,j ēgfg(D̄g)

+
Sg
ρtr
fg(D̃g)

)
+ εg, (92)

where εg
a.s.−−−→

N→∞
0. Consider the deterministic counterpart of (eg(α), ēg(α), fg(Rg, α)) as,

mg(α) =
1

K
d2
g

(
Sg∑
j=1

s̄g,jδg(D̄g, α)

1 + Kg
K
d2
gs̄g,jm̄g(α)δg(D̄g, α)

+
Sg
ρtr
δg(D̃g, α)

)
,

m̄g(α) =
1

1 +mg(α)
, (93)

δg(Rg, α) =
1

Sg
tr RgT̄(α),
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where,

T̄(α) =

(
G∑
i=1

D̄i

Si

(
Si∑
j=1

Ki
K
d2
i s̄i,jm̄i(α)

1 + Ki
K
d2
i s̄i,jm̄i(α)δi(D̄i, α)

)
+
Ki

K
d2
i

m̄i(α)

ρtr
D̃i + αIN

)−1

. (94)

Define Υ1 = maxg|eg(α) − mg(α)|, Υ2 = max g|ēg(α) − m̄g(α)|, Υ3 = maxg|fg(Rg, α) −

δg(Rg, α)| and ε = maxg|εg|. It can be shown that,

Υ1,Υ2,Υ3
a.s.−−−→

N→∞
0, (95)

for α sufficiently large and ε a.s.−−−→
N→∞

0. The result can be extended to all α by Vitali convergence

theorem [27].

Now combining (74) with the result in (86) for Rg = U will yield,

1

K
UĈ

−1
(α)− 1

K
UT̄(α)

a.s.−−−→
N→∞

0, (96)

where T̄(α) is given by (94).

This completes the proof of Theorem 1. The uniqueness of the solution (mg, m̄g, δg) can be

proved by showing that the G-variate function in (93) is a standard interference function [see

Definition 2 and Theorem 8 in [28]]. The proof of uniqueness will follow similar steps as done

for Theorem 2 in [28] and has been omitted.

APPENDIX C

PROOF OF LEMMA 4

We are interested in finding the deterministic equivalent of:

χg =
1

K2
tr ΦgĈ

−1
Ĥ
H

PĤĈ
−1
. (97)

First we need to control the variance of χg and prove that var (χg) converges to zero. This

can be done using standard tools from RMT (see [8]) and will imply that,

χg − χog
a.s.−−−→

N→∞
0, (98)

where χog = E[χg]. This allows us to focus directly on E[χg].

Using the expression of Φg in (21) we have,

χog =
1

K2
d2
gE
[

tr RBSgQg

(
ZgZH

g +
1

ρtr
IN
)

QH
g RH

BSgĈ
−1

Ĥ
H

PĤĈ
−1
]
, (99)

= d2
g

(
κog(RBSgQg) +

1

ρtr
ξo(RBSgQg)

)
, (100)
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where,

κg(RBSgQg) =
1

K2
tr RBSgQgZgZH

g QH
g RH

BSgĈ
−1

Ĥ
H

PĤĈ
−1
, (101)

ξ(RBSgQg) =
1

K2
tr RBSgQgQH

g RH
BSgĈ

−1
Ĥ
H

PĤĈ
−1
, (102)

and κog and ξo denote their respective expectations. We therefore start the proof by deriving the

deterministic equivalents of κg(A) and ξ(A), where A is a deterministic matrix of uniformly

bounded spectral norm. Plugging these results in (100) will complete the proof of Lemma 4.

A. Deterministic equivalent of κg(A):

The aim of this section is to derive a deterministic equivalent for the random quantity,

κg(A) =
1

K2
tr AZgZH

g AHĈ
−1

Ĥ
H

PĤĈ
−1
. (103)

We can again control the variance of κg and show that it goes to zero implying that,

κg(A)− κog(A)
a.s.−−−→

N→∞
0, (104)

where κog(A) = E[κg(A)] This allows us to focus directly on E[κg(A)]. Using the result from

last section in (74) that 1
K

tr Ĉ
−1
− 1

K
tr T a.s.−−−→

N→∞
0, where T = (

∑G
i=1

Φ̃i
1+mi

+ αIN)−1 and the

resolvent identity given as,

Ĉ
−1
− T = T(T−1 − Ĉ)Ĉ

−1
= T

(
G∑
i=1

Φ̃i

1 +mi

− 1

K
Ĥ
H

i Ĥi

)
Ĉ
−1
, (105)

we decompose κg as,

κg(A) =
1

K2
tr AZgZH

g AHTĤ
H

PĤĈ
−1

+
1

K2

G∑
i=1

tr AZgZH
g AHT

Φ̃i

1 +mi

Ĉ
−1

Ĥ
H

PĤĈ
−1

− 1

K3

G∑
i=1

tr AZgZH
g AHTĤ

H

i ĤiĈ
−1

Ĥ
H

PĤĈ
−1

(106)

= Z1 + Z2 + Z3. (107)

We will only deal with the expectations of the terms Z1 and Z3, since Z2 will be compensated
by terms in Z3. We begin with applying Lemma 6 from Appendix G on Z1 as,

E[Z1] =
1

K2

G∑
i=1

Ki∑
l=1

pl,iE

 ĥ
H

l,iĈ
−1
[l,i]AZgZH

g AHTĥl,i

1 + 1
K ĥ

H

l,iĈ
−1
[l,i]ĥl,i

 , (108)

=
1

K2

G∑
i=1

Ki∑
l=1

pl,i

(
E

 ĥ
H

l,iĈ
−1
[l,i]AZgZH

g AHTĥl,i

(
1
K tr ΦiĈ

−1
[l,i] − 1

K ĥ
H

l,iĈ
−1
[l,i]ĥl,i

)
(1 + 1

K ĥ
H

l,iĈ
−1
[l,i]ĥl,i)(1 + 1

K tr ΦiĈ
−1
[l,i])

+ E

 ĥ
H

l,iĈ
−1
[l,i]AZgZH

g AHTĥl,i

1 + 1
K tr ΦiĈ

−1
[l,i]

).
(109)



23

Assuming Zg to be deterministic and using the fact that lim supN ||ZgZH
g || < ∞ almost surely

(proved in [24]), we can use the expression of ĥk,g in (20) and show with the help of Lemma 7

from Appendix G that the first term on the right side of the above equation is negligible. Now

using the Lemma 9 and Lemma 3 on the denominator of the second term will yield,

E[Z1] =
1

K2

G∑
i=1

Ki∑
l=1

pl,i
E
[
ĥ
H

l,iĈ
−1

[l,i]AZgZH
g AHTĥl,i

]
1 +mi

+ o(1), (110)

Using Lemma 7 with the expression of ĥk,g in (20) we have,

E[Z1] =
1

K

G∑
i=1

Ki∑
l=1

pl,i
Ki

E
[
tr Φ̃iĈ

−1

[l,i]AZgZH
g AHT

]
1 +mi

+ o(1). (111)

Now using Lemma 9 and Theorem 3 from Appendix G we have,

E[Z1] =
1

K

G∑
i=1

Ki∑
l=1

pl,i
Ki

E
[
tr Φ̃iTAZgZH

g AHT
]

1 +mi

+ o(1). (112)

Note that the analysis in the last two steps can be extended to random Zgs using Fubini

Theorem and we need the deterministic equivalent of β̄g,i(A) = 1
Ki
E[tr Φ̃iTAZgZH

g AHT] under

the actual random Zgs. Using the expression of Φi from (21) results in,

β̄g,i(A) =
d2
i

K
E
[

tr RBSiQi

(
ZiZH

i +
1

ρtr
IN
)

QH
i RH

BSi
TAZgZH

g AHT
]
, (113)

= E

[
d2
i

K

Si∑
j=1

zHi,jQ
H
i RH

BSi
TAZgZH

g AHTRBSiQizi,j

]
+ E

[
d2
i

Kρtr
tr RBSiQiQH

i RH
BSi

TAZgZH
g AHT

]
,

= T4 + T5. (114)

We analyze the two terms separately. First we use Lemma 11 from Appendix G on T4 to remove

the dependence of T on zi,j as follows,

T4 =


d2
i

K

∑Si
j=1 E

[
zHi,jQHi RHBSi T̃iAZgZHg AH T̃iRBSiQizi,j

(1+m̄i
Ki
K
d2
i zHi,jQHi RHBSi T̃iRBSiQizi,j)

2

]
if g 6= i,

d2
i

K

∑Si
j=1 E

[
zHi,jQHi RHBSi T̃iA(ZgZHg −zi,jzHi,j)AH T̃iRBSiQizi,j+zHi,jAH T̃iRBSiQizi,jzHi,jQHi RHBSi T̃iAzi,j

(1+m̄i
Ki
K
d2
i zHi,jQHi RHBSi T̃iRBSiQizi,j)

2

]
if g = i,

where T̃i =
(∑G

l=1
Kl
K
d2
l m̄lRBSlQl

(
ZlZH

l + 1
ρtr

IN
)

QH
l RH

BSl
− Ki

K
d2
i m̄iRBSiQizi,jzHi,jQ

H
i RH

BSi
+ αIN

)−1

.

Next we use Lemma 7 and Lemma 9 from Appendix G to get the following,

T4 =


d2
i

K

∑Si
j=1 E

[ s̄i,j
Si

tr RBSiQ
H
i RHBSiTAZgZHg AHTRBSiQi

(1+m̄i
Ki
K
d2
i

s̄i,j
Si

tr RBSiQ
H
i RHBSiTRBSiQi)

2

]
+ o(1) if g 6= i,

d2
i

K

∑Si
j=1 E

[ s̄i,j
Si

tr RBSiQ
H
i RHBSiTA(ZgZHg −zi,jzHi,j)AHTRBSiQi+(

s̄i,j
Si

tr RBSiA
HTRBSiQi)(

s̄i,j
Si

tr RBSiQ
H
i RHBSiTA)

(1+m̄i
Ki
K
d2
i

s̄i,j
Si

tr RBSiQ
H
i RHBSiTRBSiQi)

2

]
+ o(1) if g = i,
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Using the Lemma 11 to remove the dependence of T on zg,j and using the deterministic equiv-

alent of fi(D̄i) = 1
Si

tr D̄iT derived in Appendix B as δi(D̄i), where D̄i = RBSiQiRBSiQ
H
i RH

BSi
,

yields,

T4 =



d2
i

K

∑Si
j=1 E

[
s̄i,j
Si

∑Sg
n=1

zHg,nAH T̃gRBSiQiRBSiQ
H
i RHBSi T̃gAzg,n

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2(1+m̄g

Kg
K
d2
gzHg,nQHg RHBSg T̃gRBSgQgzg,n)2

]
if g 6= i,

d2
i

K

∑Si
j=1 E

[
s̄i,j
Si

∑Sg
n=1

n6=j

zHg,nAH T̃gRBSiQiRBSiQ
H
i RHBSi T̃gAzg,n

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2(1+m̄g

Kg
K
d2
gzHg,nQHg RHBSg T̃gRBSgQgzg,n)2

]
+
d2
i

K

∑Si
j=1 E

[
s̄2i,jδi(RBSiQiRBSiA

H)δi(ARBSiQ
H
i RHBSi )

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2

]
if g = i.

Finally we use Lemma 7 and 9 from Appendix G to get the following approximation for T4,

T4 =



d2
i

K

∑Si
j=1

s̄i,j
Si

∑Sg
n=1

s̄g,nE[ 1
Sg

tr RBSgAHTD̄iTA]

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2(1+

Kg
K
d2
gm̄g s̄g,nδg(D̄g))2

+ o(1) if g 6= i,

d2
i

K

∑Si
j=1

s̄i,j
Si

∑Sg
n=1

n6=j

s̄g,nE[ 1
Sg

tr RBSgAHTD̄iTA]

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2(1+

Kg
K
d2
gm̄g s̄g,nδg(D̄g))2

+
d2
i

K

∑Si
j=1

s̄2i,jδi(RBSiQiRBSiA
H)δi(ARBSiQ

H
i RHBSi )

(1+
Ki
K
d2
i m̄is̄i,jδi(D̄i))2

+ o(1) if g = i.

Similar steps would yield the following deterministic equivalent for T5,

T5 =
d2
i

Kρtr

Sg∑
j=1

s̄g,jE[ 1
Sg

tr RBSgA
HTD̃iTA]

(1 + Kg
K
m̄gd2

gs̄g,nδg(D̄g))2
+ o(1). (115)

where D̃i = RBSiQiQH
i RH

BSi
.

In order to complete the calculation of the deterministic equivalent of β̄g,i, we need the

deterministic equivalent of M ′
g(Rg,L) = E[ 1

Sg
tr RgTLT] which is stated in the following Lemma.

Lemma 5: Define M ′
g(Rg,L) = E[ 1

Sg
tr RgTLT] where Rg and L, g = 1, . . . , G are deter-

ministic matrices with uniformly bounded spectral norm. Then under the setting of assumptions
A-1, A-2 and A-3 and for α > 0,

M ′g(Rg,L) =
1

Sg
tr Rg

[
T̄

(
G∑

z=1

D̄zm̄
2
z

Sz

(
Kz

K

)2

d4ztr (S̄zW2
zS̄z)M ′z(D̄z,L) + L

)
T̄

]
+ o(1), (116)

where,

Wi =

(
ISi +

Ki

K
d2
i m̄iδi(D̄i)S̄i

)−1

, (117)

and M′(D̄,L) = [M ′
1(D̄1,L),M ′

2(D̄2,L), . . . ,M ′
G(D̄G,L)]T , which can be expressed as a system

of linear equations as follows:

M′(D̄,L) = (IN − J(D̄))−1v(D̄,L), (118)

[J(D̄)]g,i =
1

Sg
tr (D̄gT̄D̄iT̄)

(
m̄2
i

Si

(
Ki

K

)2

d4
i tr (S̄iW2

iSi)

)
, (119)

[v(D̄,L)]g =
1

Sg
tr (D̄gT̄LT̄), (120)
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for g, i = 1, . . . , G. The proof of Lemma 5 can be found in Appendix D.

Using Lemma 5, we have the deterministic equivalent of terms T4 and T5 and hence β̄g,i(A).

This yields the expression of E[Z1] as,

E[Z1] =
1

K

G∑
i=1

Ki∑
l=1

pl,i
β̄g,i(A)

1 +mi

+ o(1). (121)

We now study Z3. Using Lemma 6 from Appendix G we have,

Z3 = − 1

K3

G∑
i=1

Ki∑
l=1

tr AZgZH
g AHTĥl,iĥ

H

l,iĈ
−1
[l,i]Ĥ

H
PĤĈ

−1

1 + 1
K ĥ

H

l,iĈ
−1
[l,i]ĥl,i

, (122)

= − 1

K3

G∑
i=1

Ki∑
l=1

tr AZgZH
g AHTĥl,iĥ

H

l,iĈ
−1
[l,i]Ĥ

H
PĤĈ

−1
[l,i]

1 + 1
K ĥ

H

l,iĈ
−1
[l,i]ĥl,i

+
1

K4

G∑
i=1

Ki∑
l=1

tr AZgZH
g AHTĥl,iĥ

H

l,iĈ
−1
[l,i]Ĥ

H
PĤĈ

−1
[l,i]ĥl,iĥ

H

l,iĈ
−1
[l,i]

(1 + 1
K ĥ

H

l,iĈ
−1
[l,i]ĥl,i)2

,

= Z31 + Z32. (123)

We sequentially deal with terms Z31 and Z32. Note that 1
K

ĥ
H

l,iĈ
−1

[l,i]ĥl,i converges to mi using
Lemma 7 and Lemma 3. This yields,

E[Z31] = −
1

K3

G∑
i=1

Ki∑
l=1

E
[

tr AZgZHg AHTĥl,iĥ
H
l,iĈ
−1
[l,i]Ĥ

HPĤĈ−1
[l,i]

]
1 +mi

+ o(1), (124)

= −
1

K3

G∑
i=1

Ki∑
l=1

E
[

ĥHl,iĈ
−1
[l,i]Ĥ

H
[l,i]P[l,i]Ĥ[l,i]Ĉ

−1
[l,i]AZgZHg AHTĥl,i

]
1 +mi

−
1

K3

G∑
i=1

Ki∑
l=1

pl,i
E
[

ĥHl,iĈ
−1
[l,i]ĥl,iĥ

H
l,iĈ
−1
[l,i]AZgZHg AHTĥl,i

]
1 +mi

+ o(1),

= Ψ1 + Ψ2. (125)

The quadratic forms in Ψ2 can be shown to have variance O(K−2). Assuming Zg to be determin-

istic, we can use Lemma 10, Lemma 7, Lemma 9 and Theorem 3 from Appendix G sequentially

to obtain,

Ψ2 = − 1

K

G∑
i=1

Ki∑
l=1

pl,i
E
[

1
Ki

tr
(
Φ̃iĈ

−1

[l,i]

)]
E[ 1

Ki
tr
(
Φ̃iĈ

−1

[l,i]AZgZH
g AHT

)
]

1 +mi

+ o(1). (126)

Extending the analysis to random Zg based on the Fubini Theorem and using Lemma 3 we have,

Ψ2 = − 1

K

G∑
i=1

Ki∑
l=1

pl,i
miβ̄g,i(A)

1 +mi

+ o(1). (127)

The term Ψ1 is compensated by Z2. To see this, observe that the first order of the term does

not change if we substitute Ĥ[l,i] by Ĥ and P[l,i] by P. Then using Fubini theorem, Lemma 7

and Lemma 9 from Appendix G we have,

Ψ1 = − 1

K3

G∑
i=1

Ki∑
l=1

E

[
tr ΦiĈ

−1
Ĥ
H

PĤĈ
−1

AZgZH
g AHT

1 +mi

]
+ o(1), (128)

= −E[Z2] + o(1). (129)
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Finally, it remains to deal with Z32. Substituting 1
K

ĥ
H

l,iĈ
−1

[l,i]ĥl,i by its deterministic equivalent

from Lemma 3, we get,

E[Z32] =
1

K4

G∑
i=1

Ki∑
l=1

E
[
ĥ
H

l,iĈ
−1

[l,i]AZgZH
g AHTĥl,iĥ

H

l,iĈ
−1

[l,i]Ĥ
H

[l,i]P[l,i]Ĥ[l,i]Ĉ
−1

[l,i]ĥl,i
]

(1 +mi)2

+
1

K4

G∑
i=1

Ki∑
l=1

pl,i
E
[
ĥ
H

l,iĈ
−1

[l,i]AZgZH
g AHTĥl,iĥ

H

l,iĈ
−1

[l,i]ĥl,iĥ
H

l,iĈ
−1

[l,i]ĥl,i
]

(1 +mi)2
+ o(1). (130)

Analogously to before, E[Z32] can be simplified as,

E[Z32] =
1

K

G∑
i=1

Ki∑
l=1

E
[

1
Ki

tr
(
Φ̃iĈ

−1
AZgZH

g AHT
)]

E
[

1
K2 tr

(
ΦiĈ

−1
Ĥ
H

PĤĈ
−1
)]

(1 +mi)2

+
1

K

G∑
i=1

Ki∑
l=1

pl,i
E
[

1
Ki

tr
(
Φ̃iĈ

−1
AZgZH

g AHT
)]

E
[

1
Ki

tr
(
Φ̃iĈ

−1
)]

E
[

1
Ki

tr
(
Φ̃iĈ

−1
)]

(1 +mi)2
+ o(1),

(131)

=
1

K

G∑
i=1

Ki∑
l=1

β̄g,i(A)χoi
(1 +mi)2

+
1

K

G∑
i=1

Ki∑
l=1

pl,i
m2
i β̄g,i(A)

(1 +mi)2
+ o(1), (132)

where χoi is defined in (100).

Combining (121), (127) and (132), we obtain,

κog(A) =
1

K

G∑
i=1

Ki∑
l=1

β̄g,i(A)

(1 +mi)2
(pl,i + χoi ) + o(1). (133)

B. Deterministic equivalents of ξ(A) and χg:

Using similar argument for ξ(A) = 1
K2 tr AAHĈ

−1
Ĥ
H

PĤĈ
−1

as done for κg(A) in (104), we

have ξ(A)− ξo(A)
a.s.−−−→

N→∞
0, where ξo(A) = E[ξ(A)].

Repeating the same steps as done for κog(A), we obtain,

ξo(A) =
1

K

G∑
i=1

Ki∑
l=1

β̃i(A)

(1 +mi)2
(pl,i + χoi ) + o(1), (134)

where,

β̃i(A) =
d2
i

K

(
Si∑
j=1

s̄i,jM
′
i(D̄i,AAH)

(1 + Ki
K
d2
i m̄is̄i,jδi(D̄i))2

+
Si
ρtr
M ′

i(D̃i,AAH)

)
, (135)

where M ′
i(Ri,L) has been defined in Lemma 5.
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Plugging (133) and (134) into (100) yields the deterministic equivalent of χog as,

χog =
d2
g

K

G∑
i=1

Ki∑
l=1

(pl,i + χoi )

(
β̄g,i(RBSgQg)

(1 +mi)2
+

1

ρtr

β̃i(RBSgQg)

(1 +mi)2

)
+ o(1). (136)

Now χo = [χo1, χ
o
2, . . . , χ

o
g]
T can be expressed as a system of linear equations as,

χo = (IN − J̄)−1v̄, (137)

where,

[J̄]g,i = d2
g

Ki

K

1

(1 +mi)2

(
β̄g,i(RBSgQg) +

1

ρtr
β̃i(RBSgQg)

)
, (138)

v̄g = d2
g

1

K

G∑
i=1

Ki∑
l=1

pl,i
(1 +mi)2

(
β̄g,i(RBSgQg) +

1

ρtr
β̃i(RBSgQg)

)
. (139)

Also, plugging (136) into (133) and (134) completes the deterministic equivalents of κog(A)

and ξo(A) respectively. These terms will later be needed in the proof of Theorem 2.

APPENDIX D

PROOF OF LEMMA 5

To derive the deterministic equivalent of M ′
g(Rg,L) = E[ 1

Sg
tr RgTLT], where Rg and L,

g = 1, . . . , G are deterministic matrices, we use the results from Appendix B in (86) and (89)

along with ||fg(Rg)− δg(Rg)||
a.s.−−−→

N→∞
to have,

1

Sg
tr RgT− δg(Rg)

a.s.−−−→
N→∞

, (140)

where δg(Rg) = 1
Sg

RgT̄, where T̄ is given by (94). To this end note that,

M ′
g(Rg,L) = E

[
d

dl

1

Sg
tr Rg(T−1 − lL)−1|l=0

]
. (141)

The deterministic equivalent of 1
Sg

tr Rg(T−1 − lL)−1 is obtained using Theorem 3 as,

1

Sg
tr Rg

(
G∑
z=1

m̄zΦ̃z − lL + αIN

)−1

− 1

Sg
tr Rg(

G∑
z=1

F̄zD̄z +
Kz

K
d2
z

m̄z

ρtr
D̃z − lL + αIN)−1 a.s.−−−→

N→∞
0,

(142)

where Fg(Rg,L), F̄g are defined as the unique solution to,

F̄g =
1

Sg

Sg∑
j=1

Kg
K
d2
gm̄gs̄g,j

1 + Kg
K
d2
gFg(D̄g,L)m̄gs̄g,j

, (143)

Fg(Rg,L) =
1

Sg
tr Rg(

G∑
z=1

F̄zD̄z +
Kz

K
d2
z

m̄z

ρtr
D̃z − lL + αIN)−1, (144)
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such that (Fg(Rg,L), F̄g) ≥ 0. Substituting F̄g in Fg(Rg,L), we have,

Fg(Rg,L) =
1

Sg
tr Rg

(
G∑
z=1

1

Sz

Sz∑
j=1

Kz
K
d2
zm̄z s̄z,j

1 + Kz
K
d2
zFz(D̄z,L)m̄z s̄z,j

D̄z +
Kz

K
d2
z

m̄z

ρtr
D̃z − lL + αIN

)−1

.

(145)

Note that Fg(Rg,L) reduces to δg(Rg) for l = 0.

The expression of M ′
g(Rg,L) can be obtained by using (141) and (142) to get M ′

g(Rg,L) =

d
dl
Fg(Rg,L)|l=0 + o(1) resulting in,

M ′
g(Rg,L) =

1

Sg
tr Rg

[
T̄

(
G∑
z=1

D̄zm̄
2
z

Sz

(
Kz

K

)2

d4
ztr (S̄zW2

zS̄z)M
′
z(D̄z,L) + L

)
T̄

]
+ o(1),

(146)

where Wi =
(
ISi + Ki

K
d2
i m̄iδi(D̄i)S̄i

)−1
.

Note that M ′
g(Rg,L) depends on the values of M ′

z(D̄z,L). The latter can be expressed as a

system of linear equations by solving (146) for Rg = D̄g. This system is represented by (118).

APPENDIX E

PROOF OF THEOREM 2

The deterministic equivalents of the energy term |E[hHk,gV̂ĥk,g]|2, the term Θ of the power nor-

malization, the interference term E[hHk,gV̂Ĥ
H

[k,g]P[k,g]Ĥ[k,g]V̂hk,g] and the variance term var (hHk,gV̂ĥk,g)

are worked out separately to yield the deterministic equivalent of the SINR.

A. Deterministic equivalent of |E[hHk,gV̂ĥk,g]|2:

Note that hHk,gV̂ĥk,g can be written as 1
K

hHk,gĈ
−1

ĥk,g, where Ĉ = 1
K

Ĥ
H

Ĥ + αIN . In order to

remove the dependency of Ĉ on ĥk,g, we use Lemma 6 from Appendix G to get,

hHk,gV̂ĥk,g =
1

K
hHk,gĈ

−1

[k,g]ĥk,g −
1

K2

hHk,gĈ
−1

[k,g]ĥk,gĥ
H

k,gĈ
−1

[k,g]ĥk,g

1 + 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g
. (147)

We know from Lemma 2 that 1
K

hHk,gĈ
−1

[k,g]ĥk,g − 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g
a.s.−−−→

N→∞
0. Therefore we are only

interested in the deterministic equivalent of 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g which can be treated using Fubini

Theorem and Lemma 7 and Lemma 9 as 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g− 1
K

ΦgĈ
−1 a.s.−−−→

N→∞
0. The deterministic

equivalent of 1
K

ΦgĈ
−1

been derived in Lemma 3 as mg. Note that Lemma 3 not only implies
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almost sure convergence but also convergence in mean. Therefore by dominated convergence

theorem and continuous mapping theorem we have,

|E[hHk,gV̂ĥk,g]|2 −
m2
g

(1 +mg)2

a.s.−−−→
N→∞

0. (148)

B. Deterministic equivalent of Θ:

Θ = E[tr PĤ
H

V̂
2
Ĥ] = E

[
1

K2
tr PĤĈ

−1
Ĉ
−1

Ĥ
H
]
, (149)

= E
[

1

K2
tr Ĉ

−1
Ĥ
H

PĤĈ
−1
]

= ξo(IN), (150)

where ξo(A) was derived in the last section and is given by (134).

C. Deterministic equivalent of E[hHk,gV̂Ĥ
H

[k,g]P[k,g]Ĥ[k,g]V̂hk,g]:

Denote hHk,gV̂Ĥ
H

[k,g]P[k,g]Ĥ[k,g]V̂hk,g as Υk,g. Using Lemma 6 from Appendix G we decompose
Υk,g as,

Υk,g =
1

K2
hHk,gĈ−1

[k,g]Ĥ
H
[k,g]P[k,g]Ĥ[k,g]Ĉ

−1
[k,g]hk,g −

1

K3

hHk,gĈ−1
[k,g]Ĥ

H
[k,g]P[k,g]Ĥ[k,g]Ĉ

−1
[k,g]ĥk,g ĥHk,gĈ−1

[k,g]hk,g

1 + 1
K

ĥHk,gĈ−1
[k,g]ĥk,g

,

−
1

K3

hHk,gĈ−1
[k,g]ĥk,g ĥHk,gĈ−1

[k,g]Ĥ
H
[k,g]P[k,g]Ĥ[k,g]Ĉ

−1
[k,g]hk,g

1 + 1
K

ĥHk,gĈ−1
[k,g]ĥk,g

+
1

K4

hHk,gĈ−1
[k,g]ĥk,g ĥHk,gĈ−1

[k,g]Ĥ
H
[k,g]P[k,g]Ĥ[k,g]Ĉ

−1
[k,g]ĥk,g ĥHk,gĈ−1

[k,g]hk,g

(1 + 1
K

ĥHk,gĈ−1
[k,g]ĥk,g)2

,

= X1 +X2 +X3 +X4. (151)

Let us begin by treating X1. Using hk,g = ĥk,g + h̃k,g and Lemma 2 we get,

X1 −
(

1

K2
ĥ
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]ĥk,g +
1

K2
h̃
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]h̃k,g
)

a.s.−−−→
N→∞

0.

(152)

Let X1
1 = 1

K2 ĥ
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]ĥk,g. Using the expression of ĥk,g in (20), Fubini

Theorem and Lemma 7 we have,

X1
1 −

1

K2
tr ΦgĈ

−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]
a.s.−−−→

N→∞
0. (153)

To this end note that,

1

K2
tr ΦgĈ

−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g] = χg + o(1). (154)

Therefore,

X1
1 − χog

a.s.−−−→
N→∞

0, (155)
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where χog was derived in the last section and is given by (136).

Now let X2
1 = 1

K2 h̃
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]h̃k,g. Under deterministic Zg, h̃k,g ∼ CN (0,ZgZH
g −

Φg). Using this along with Lemma 7 we have,

X2
1 −

1

K2
tr (ZgZH

g −Φg)Ĉ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]
a.s.−−−→

N→∞
0. (156)

The analysis can be extended to random Zgs using Fubini Theorem. In fact, we know from

Appendix C that,

1

K2
tr ZgZH

g Ĉ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g] = κg(IN) + o(1), (157)

1

K2
tr ΦgĈ

−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g] = χg + o(1). (158)

Therefore,

X2
1 − (κog(IN)− χog)

a.s.−−−→
N→∞

0, (159)

where κog(A) and χog were derived in the last section and are given by (133) and (136) respectively.

Consequently,

X1 −
(
κog(IN)− χog + χog

) a.s.−−−→
N→∞

0. (160)

Next note that,

X2 = −Y2

1
K

ĥ
H

k,gĈ
−1

[k,g]hk,g

1 + 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g
, (161)

where,

Y2 =
1

K2
hHk,gĈ

−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]ĥk,g, (162)

Using Lemma 2, we have

Y2 −
1

K2
ĥ
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]ĥk,g
a.s.−−−→

N→∞
0. (163)

Note that Y2 = X1
1 , which has already been worked out in (155). Also using Lemma 2, we have

1
K

ĥ
H

k,gĈ
−1

[k,g]hk,g − 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g
a.s.−−−→

N→∞
0. Now using Lemma 3 and (155) on X2 yields,

X2 +
mg

1 +mg

χog
a.s.−−−→

N→∞
0. (164)

Similar analysis yields the deterministic equivalent of X3 as,

X3 +
mg

1 +mg

χog
a.s.−−−→

N→∞
0 (165)
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Next note that,

X4 = Y4

1
K

ĥ
H

k,gĈ
−1

[k,g]hk,g 1
K

hHk,gĈ
−1

[k,g]ĥk,g

(1 + 1
K

ĥ
H

k,gĈ
−1

[k,g]ĥk,g)2
, (166)

where,

Y4 =
1

K2
ĥ
H

k,gĈ
−1

[k,g]Ĥ
H

[k,g]P[k,g]Ĥ[k,g]Ĉ
−1

[k,g]ĥk,g. (167)

Y4 = X1
1 , which has already been worked in (155). This yields the deterministic equivalent of

X4 as,

X4 −
m2
g

(1 +mg)2
χog

a.s.−−−→
N→∞

0. (168)

Combining (160), (164), (165) and (168) yields the deterministic equivalent of Υk,g. Note that

the lemmas utilized in this section not only imply almost sure convergence but also convergence

in mean. Therefore,

E[hHk,gV̂Ĥ
H

[k,g]P[k,g]Ĥ[k,g]V̂hk,g]−
(
κog(IN)− χog +

1

(1 +mg)2
χog

)
a.s.−−−→

N→∞
0. (169)

D. Deterministic Equivalent of var (hHk,gV̂ĥk,g)

Define the following quantities,

a = ĥ
H

k,gV̂ĥk,g, (170)

ā = E[hHk,gV̂ĥk,g], (171)

b = E[h̃
H

k,gV̂ĥk,g]. (172)

By matrix inversion lemma we have 0 ≤ a, ā ≤ 1. Moreover E[b] = 0 and E[ab] = E[ab∗] = 0.

Thus,

var (hHk,gV̂ĥk,g) = E[|a+ b− ā|2], (173)

= E[(a− ā)(a+ ā)] + E[|b|2], (174)

≤ 2E[|a− ā|] + E[|b|2]. (175)

We have already shown that a− mg
1+mg

a.s.−−−→
N→∞

0. Since a and ā are bounded, so by dominated

convergence theorem we have E|a − ā| a.s.−−−→
N→∞

0. Moreover one can show that E[|b|2] ≤
N

K2α2d
2
g||RBSg ||2

a.s.−−−→
N→∞

0. Therefore,

var (hHk,gV̂ĥk,g)
a.s.−−−→

N→∞
0. (176)

Combining the results of the five subsections completes the proof of Theorem 2.
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APPENDIX F

PROOF OF COROLLARY 2

Note that this corollary deals with the perfect CSI case for which Theorem 1 and Theorem 2

will be reformulated by setting ρtr =∞. Under the assumptions of the corollary, the fundamental

equations in Theorem 1 can be reduced to,

m̄ =
1

1 +m
, (177)

m =
Sδ

K(1 + m̄δ)
, (178)

δ =
1

m̄mK
Nδ

+ Sα
N

. (179)

From (177), we have,

m =
1− m̄
m̄

. (180)

Solving (178) for δ and replacing m with (180) yields,

δ =
1− m̄

m̄
(
S
K
− 1 + m̄

) . (181)

Solving (179) for δ and replacing m with (180) yields,

δ =
N

Sα
− K

Sα
+
Km̄

Sα
. (182)

Equating (181) and (182) and re-arranging the terms as a polynomial in m̄ yields,

m̄3 −
(

2− S

K
− N

K

)
m̄2 +

(
1− S

K
− N

K
+
SN

K2
+
Sα

K

)
m̄− Sα

K
= 0, (183)

By Theorem 1, only one of the roots of this polynomial satisfies (m, m̄, δ) > 0. From (180),

we have m̄ < 1. From (181) we have m̄ >
(
1− S

K

)
. Hence m̄ ∈

(
1− S

K
, 1
)
.

The SINR in Theorem 2 can be simplified similarly under the assumptions of Corollary 2

by setting ρtr = ∞ and expressing everything in terms of m̄. Note that for perfect CSI, the

interference term will only depend on κo(IN). Also note that the expression of M ′(R,L) in

Lemma 5 can be obtained by expressing (145), simplified for the setting of Corollary 2, as a

polynomial in F (R,L) and applying implicit function theorem with respect to l.
APPENDIX G

RELATED RESULTS AND LEMMAS

Theorem 3 [[25], Corollary 1]: For k ∈ {1, . . . , K}, let (nk)N≥1 = (nk(N))N≥1 be a

sequence of positive integers and let (Rk,N)N≥1,Rk,N ∈ CN×N , (Tk,N)N≥1,Tk,N ∈ Cnk×nk and
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(DN)N≥1,DN ∈ CN×N , be three sequences of non-negative definite Hermitian matrices, satisfy-

ing lim supN ||Rk,N || <∞, lim supN ||Tk,N || <∞ and lim supN ||DN || <∞. Let (Xk,N)N≥1,Xk,N ∈

CN×nk be a sequence of random matrices with i.i.d. complex Gaussian entries with zero mean

and variance 1/nk. Denote BN =
∑

k R1/2
k,NXk,NTk,NXH

k,NR1/2
k,N . Let ck = nk/N and assume that

0 < lim infNck ≤ lim supNck <∞ for all k. Then,

1

N
tr DN

(
BN +

1

x
IN
)
− 1

N
tr DN

(
K∑
i=1

ēiRi,N +
1

x
IN

)
a.s.−−−→

N→∞
0, (184)

where,

ēk,N =
1

nk
tr Tk,N(ek,NTk,N + Ink)

−1, (185)

ek,N =
1

nk
tr Rk,N

(
K∑
i=1

ēiRi,N +
1

x
IN

)−1

, (186)

such that ēk,N , ek,N > 0 for all k.

Lemma 6 (Common inverses of resolvents:) Given any matrix H ∈ CN×K . Let hk denote its

kth column and H[k] denote the matrix obtained after removing the kth column from H. The

resolvent matrices of H and H[k] are denoted by C−1(α) =
(

1
K

HHH + αIN
)−1

and C−1
[k] (α) =(

1
K

H[k]HH
[k] + αIN

)−1
. Then,

C−1(α) = C−1
[k] (α)− 1

K

C−1
[k] (α)hkhHk C−1

[k] (α)

1 + 1
K

hHk C−1
[k] (α)hk

, (187)

and also,

C−1(α)hk =
C−1

[k] (α)hk
1 + 1

K
hHk C−1

[k] (α)hk
, (188)

Lemma 7 (Convergence of quadratic forms): Let xN = [x1, x2, . . . , xN ]T be a N × 1 vector

with i.i.d. complex Gaussian random variables with unit variance. Let AN be an N ×N matrix

independent of xN , whose spectral norm is bounded; that is, there exists CA < ∞ such that

||A|| ≤ CA. Then, for any p ≥ 1, there exists a constant Cp depending only on p, such that,

ExN

[∣∣∣∣ 1

N
xHNANxN −

1

N
tr (AN)

∣∣∣∣p] ≤ CpC
p
A

Np/2
, (189)

where the expectation is taken over the distribution of xN . By choosing p ≥ 2, we thus have,

1

N
xHNANxN −

1

N
tr (AN)

a.s.−−−→
N→∞

0. (190)
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Lemma 8: Let AN be as in Lemma 6 and xN , yN be random, mutually independent with

complex Gaussian entries of zero mean and variance 1. Then,

1

N
xHNANyN

a.s.−−−→
N→∞

0. (191)

Lemma 9 (Rank-one perturbation lemma): Let C−1(α) and C−1
[k] (α) be the resolvent matrices

as defined in Lemma 5. Then for any matrix A we have,

1

N
tr(A(C−1(α)− C−1

[k] (α))) ≤ ||A||. (192)

Lemma 10: Let XN , YN be two scalar random variables, with variances var(XN) = O(N−2)

and var(YN) = O(N−2). Then,

E[XNYN ] = E[XN ]E[YN ] + o(1). (193)

Lemma 11 (Matrix Inversion Lemma): Let A be N ×N Hermitian invertible matrix. Then for

any vector x ∈ CN×1 and any scalar τ ∈ C such that A + τxxH is invertible,

xH(A + τxxH) =
xHA−1

1 + τxHA−1x
. (194)
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