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Abstract—In this paper, the problem of cell association is
studied in an Internet of things (IoT) system in which a set
of devices deployed in a given area report ground information
to a set of small base stations (SBSs) via uplink communication
links. In this model, the key goal is to prevent multiple devices
from reporting the same information to a given SBS by taking
into account the spatial correlation between the IoT devices. In
particular, the problem of correlation-aware cell association is
formulated as a popular matching game in which the IoT devices
are assigned to the SBSs to maximize the amount of information
that is reported to the SBSs. To this end, the number of matched
devices to every SBS must be maximized. For the formulated
problem, a distributed two-level matching algorithm is proposed
and the algorithm is proved to converge to a popular outcome. In
that state, all the SBSs and devices prefer the matching that results
from the proposed algorithm to any other possible matching.
Simulation results show the performance of the proposed model.

Index Terms—Matching games, Internet of thing, popularity.

I. INTRODUCTION

The number of Internet-connected devices has exponentially
increased during the last decade and is expected to reach
50 billion devices by 2025, giving rise to the Internet of
things (IoT) ecosystem [1]. In particular, IoT will be com-
posed of human type devices and machine types devices with
heterogeneous quality-of-service (QoS) requirements depend-
ing on the applications. In fact, IoT offers a wide range
of technologies that will revolutionize multiple sectors from
homes security, automation and wearables to health care and
automotive. To support all the traffic generated by the thousand
of smart devices, next-generation cellular networks will need
to accommodate the IoT and account for the new emerging
challenges driven by the plethora of IoT devices [2, 3]. Cellular
networks will need to support novel traffic types that will
typically consist of short files while also catering for new
performance metrics that are more suitable for IoT systems
such as reliability, latency and energy efficiency [4, 5].

One of the key challenges in IoT systems is cell asso-
ciation via which the IoT devices are assigned to SBSs to
report the data they collect. Although cell association is a
well investigated problem in traditional cellular networks, new
challenges emerge in the presence of IoT devices. For instance,
the classical objectives such as interference mitigation, traffic
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offloading, and capacity maximization must evolve to account
for the specific characteristics of IoT systems. In fact, in IoT
systems, it is more important to account for the high density of
the devices that are deployed, system reliability, and autonomy
of the devices. This is induced by the short data size that are
transmitted by the IoT devices which is different from classical
user devices’ traffic that consist mainly of streaming content,
transmitted via downlink communication links. Moreover, the
IoT systems must be designed to autonomously manage their
data transmission and optimize their energy consumption. To
cope with the energy and processing constraints at the IoT
devices, the SBSs collect information about the physical events
from multiple IoT devices. In addition to the collaborative
nature of IoT systems that brings significant advantages over
traditional transmission and sensing mechanisms, correlation
between the deployed IoT devices is another characteristic of
IoT systems that should be exploited to further improve the
performance of the networks. In fact, the correlation among
the observations of multiple IoT devices deployed in a same
area can be exploited to limit the number of devices that might
report the same information to a given small base station (SBS).
Thus, the allocation of network resources including energy and
spectrum can be designed more efficiently.

Several works were proposed in the literature to develop
novel self-organizing and energy-efficient mechanisms that are
more suitable for IoT systems. In [3], the authors provided a
survey on the technical challenges posed by IoT devices and in-
troduced different techniques for overcoming these challenges.
The economics of IoT systems are analyzed in [6] with a focus
on information pricing and its value. The work in [7] described
the importance of self-organization in the IoT including several
operations that should be performed by the IoT devices in
a distributed and autonomous manner such as neighbor dis-
covery, medium access control, energy management, and local
connectivity. The authors in [8] proposed a novel approach for
the deployment of unmanned aerial vehicles (UAVs) to collect
data from the IoT devices. To ensure energy-efficient uplink
communications, the IoT devices are clustered into multiple
sets and then each cluster is assigned a single UAV to which
the IoT devices can send their collected data. The work in [9]
addressed the problem of distributed uplink random access in
IoT systems. The problem was formulated as a noncooperative
game in which the devices are the players that aim to meet
their QoS requirements.

Remarkably, none of these works has accounted for the



association of IoT devices to the SBSs or captured the cor-
relation among the observations of the IoT devices as well
as the the impact of short data packets on the system model.
The main contribution of this paper is to analyze device-
cell association in an IoT system serviced by a wireless
cellular network while explicitly accounting for the correlation
between the data reported by the different IoT devices. In
this model, the key goal is to develop a new self-organizing
scheme that enables the IoT devices to select, in a distributed
manner, the SBSs to which they report the data they collect.
In particular, we formulate a popular two-sided matching game
with externalities between the IoT devices and SBSs [10–12].
The devices aim to ensure a given correlation level with the
other IoT devices that are assigned to the SBSs while the
SBSs are interested in the reliability level with which each
of the devices can report the sensed information. A two-level
matching algorithm is proposed based on the classical deferred
acceptance algorithm [10] to match the IoT devices to the
SBSs. Moreover, we prove that the proposed algorithm is
guaranteed to converge to a popular matching outcome. This
result shows that the number of assigned IoT devices to every
SBS is maximized and there does not exist another matching
that is preferred by a higher number of players.

The rest of the paper is organized as follows. In Section
II, we present the system model and formulate the problem. In
Section III, the optimization problem is formulated as a popular
matching game and a decentralized algorithm is proposed and
analyzed. Section IV presents the simulation results and....
Finally, Section V concludes the paper.

II. SYSTEM MODEL

Consider a wireless IoT system composed of a set I of I
IoT devices deployed within a geographical area. In this area,
a set S of S SBSs is deployed to collect the data from the IoT
devices via uplink communications.

For multiple access, the I devices adopt a random access
protocol in order to transmit to the SBSs. In particular, each
device i ∈ I sends ni bits to its assigned SBS. Each
packet should be delivered within a limited time period that
corresponds to ci channel uses. The devices use a CSMA/CA
protocol in which each device picks randomly one of the K
slots in the frame to send its packet. If two or more devices
transmit during the same slot, then a collision occurs and none
of the packets is received correctly by the SBSs. In classical
wireless networks, the achievable capacity is used as a metric
to assess the performance of the network. However, such a
metric is only valuable for devices that transmit packets of
large size, which is not the case in IoT systems in which
IoT devices are typically sensors or machine type devices that
must ensure a reliable transmission of small packets [5]. Thus,
every IoT device i seeks to transmit its small size packets
while maintaining its packet error probability lower than a
predefined threshold εi depending on the reliability level that is
required for transmitting the considered packet. The probability
of having an ε-outage capacity equal to ε for a device i that

transmits its traffic to an SBS s is given by:

Pr
{
cis(ε) > w log(1 +

|his|2pis
σ2

)
}

= ε, (1)

where w is the bandwidth, pis is the transmit power from
device i to SBS s, σ2 is the variance of the additive white
Gaussian noise, and his ≈ CN (0, 1) is the channel gain
between device i and SBS s. We assume the channels to be
independent block Rayleigh fading and for ε� 1, the ε-outage
capacity for a device i that transmits its traffic to an SBS s is
given by:

cis(ε) = w log
(

1 +
εpis
σ2

)
, (2)

Given a packet of size nis and a packet error threshold ε, the
required rate by device i when served by SBS s is given by
[4]:

ris(nis, ε) = cis(ε) +
log(nis)

2nis
. (3)

Thus, the maximal achievable rate ris(nis) should satisfy the
condition ris(nis, ε) ≤ ris(nis), where ris(nis) is given by:

ris = w log
(

1 +
|his|2pis
σ2

)
+

log(nis)

2nis
. (4)

Due to the high density of the devices deployed to report
information on the ground, multiple IoT devices might report
the same information to a given SBS s. For instance, typical
wireless sensor applications require a dense deployment of
sensors to achieve satisfactory coverage [13]. As a result,
multiple IoT devices record information about the same event
which increases the degree of correlation among the obser-
vations of the devices. Ignoring such correlation may lead to
an inefficient allocation of the frequency bands that might be
allocated to multiple IoT devices to send the same information
to a given SBS. Moreover, as the number of devices that the
SBSs can support simultaneously is limited, the transmission
of critical and urgent information to an SBS might be delayed
due to inefficient cell association policy. Next, we model
the correlation between the information reported by different
devices.

A. Data Correlation Model

Each device i is assumed to report an estimation D̂i of
a source information Di, which might be correlated to the
information reported by other devices that are deployed in
the same area. Once a device observes an information, it
encodes the information into a signal Yi and then transmits the
information to its assigned SBS. Each observed information D̂i

by a device i can be written as:

D̂i = Di +Ni, (5)

where Ni is the observation noise which is assumed to be a
Gaussian random variable. Thus, D̂i is also a Gaussian random
variable of mean µi and variance σ2

i . Moreover, the noise at
each device is independent from the noise at the other devices,
i.e., Ni and Nj are independent for all i 6= j ∈ I. Given the



observation D̂i, the encoded version that device i transmits to
the SBS can be written as:

Yi = fi(D̂i). (6)

When an SBS receives the information, it decodes the data and
reconstruct an estimate of the source information.

Assume that the observations D̂ = {D̂1, ..., D̂I} collected
by all the devices follow a multivariate Gaussian distribution.
To model the correlation between the observations reported
by two devices, we use the power exponential model as the
physical event information such as electromagnetic waves, is
modeled to have an exponential autocorrelation function [14].
Hence, the covariance φij between devices i and j separated
in distance by di,j is given by [15]:

φij = cov(D̂i, D̂j) = e

(−dij
κ

)δ
, (7)

where dij = ||zi − zj || is the distance between device i and
device j located at coordinates zi and zj , respectively. δ, κ > 0
are constant that show the impact of the distance variation
between two devices on the data correlation. We set δ = 2 and
adjust the correlation factor κ to account for systems with dif-
ferent levels of data correlation. The covariance is assumed to
be nonnegative and decreases monotonically with the distance
di,j . When the distance between the two devices increases, the
value of the covariance approaches 1 and approaches 0 when
the distance goes to ∞.

This model captures the spatial correlation between the
devices and will be used next to achieve an efficient allocation
of network resources and prevent the SBSs from receiving
redundant information.

B. Problem Formulation

In IoT systems, the density of connected IoT devices may not
be uniform. Thus, the usage of classical received signal strength
indication (RSSI)-based cell association methods might lead
some cells to serve a higher number of IoT devices compared
to other cells resulting in load imbalance between the SBSs.
Moreover, intuitively, receiving data from spatially separated
IoT devices is more useful for the SBSs than highly correlated
data from closely located devices. Hence, it may not be
necessary for every device to transmit its data to the same SBS,
instead, a smaller number of devices’ measurements might be
adequate to communicate an event feature to a single SBS. In
addition, such redundancy induces inefficient usage of energy
at both SBSs and IoT devices as well as network resources that
are allocated to the devices and SBSs to transmit redundant
information.

To develop efficient cell association schemes for IoT sys-
tems, one should account for the correlation between the
content that is reported by multiple devices. The device-cell
assignment problem can be represented by a decision policy
µ which for any device-SBS pair (i, s) ∈ I × S, it outputs
a binary variable αis ∈ {0, 1}, where αis = 1 indicates
that device i reports its collected information to SBS s and

αis = 0, otherwise. Moreover, we define the load of an SBS
s as follows:

ηs =

{ ∑I
i=1 αis

D̂i
ris(nis)

, if ris(nis, ε) ≤ ris(nis),
0, otherwise.

(8)

which represents the fraction of time that is required for all
the devices assigned to an SBS s to transmit their data to the
SBS with their required packet probability error.

The assignment of the devices to the SBSs as well as the
allocation of the network resources have an impact on the
performance of the IoT system. The goal of each SBS is to
get the information from the devices and be able to decode
it successfully. However, using conventional cell association
approaches such as max-SINR and max-RSSI schemes in
highly dense networks might result in ineffective reports of
information to the SBSs. In fact, in such schemes, the devices
report their data to the SBSs without accounting for the cor-
relation of their transmitted information with the data reported
by other devices to the same SBSs. Moreover, such metrics are
effective when devices transmit packets of large size which is
not the case in IoT systems. Instead, in an IoT system, the
key goal is to maximize the number of useful bits that are
received by each SBS. A data D̂i reported by a device i to an
SBS s is considered useful if the correlation level between the
considered device i and other devices that are assigned to the
same SBS s is below a given predefined threshold θs which
might differ from a given SBS to another. However, the SBSs
need to receive sufficient data on a given parameter from the
devices to ensure the correctness of the information reported
by the different devices.

Assume that there is a number of X parameters in the
set X = {x1, ..., xX} on which each SBS wants to get
information from the devices. We denote the set of devices
that are associated to an SBS s by Is ⊆ S. We introduce the
notion of set correlation factor for a given device i and a set
Is as the correlation factor between device i and device j ∈ Is
with which it achieve the highest correlation value given all the
devices in Is, which is given by:

ΦiIs(µ) = {φiĵ |maxĵ φij , ∀j ∈ Is(µ)}, (9)

where Is depends on the allocation µ as it represents the set
of devices assigned to each SBS given by the vector α. Thus,
we have αis = 1 for all i ∈ µ(s) ⊆ I.

The device-SBS assignment problem in an IoT system can
be formulated as follows:

minimize
α

∑
s∈S

∑
i∈I

αisΦiIs(µ),

subject to
∑
s∈S

αis ≤ 1, ∀i ∈ I,

ηs ≤ ηth
s , ∀s ∈ S,

pisαis ≤ pth, ∀(i, s) ∈ I × S,
Ixs ≤ sx, ∀s ∈ S and x ∈ X ,
αis ∈ {0, 1},

(10)



where ηth
s is the maximum traffic load that can be supported

by SBS s, pth is the probability threshold for receiving packets
successfully, and Ixs is the set of devices that report infor-
mation about parameter x to SBS s. The goal is to minimize
the sum of the correlation factors between the devices that are
assigned to the same SBS. The first constraint ensures that
one device is assigned to a single SBS. The second and third
constraints ensure that the devices assigned to an SBS have
the minimum required probability for successful transmission
allowing the SBSs to decode the transmitted data without
exceeding their capacity. The fourth condition ensures that the
number of devices that report the same information to the same
SBS should be limited.

III. GAME FORMULATION AND ANALYSIS

The uplink association problem in (10) is an NP-hard
problem which does not admit a closed-form solution and
has exponential complexity. In such problems, centralized cell
association schemes require the SBSs to send the network
information to radio network controller.

A. Cell Association as a Matching Game with Externalities:
Preliminaries

To solve the problem in (10), we propose a novel solution
based on matching theory, a mathematical framework that
provides decentralized solution with tractable complexity for
combinatorial problems such as the one in (10) [16]. A two-
sided matching game is an assignment problem between two
disjoint sets of players in which the players of each set have
preferences over the players of the other set. In our context,
the matching is between the two sets of devices I and SBSs
S. Each player ranks the players of the opposite set based on
a preference relation that allows every player to decide which
SBS/IoT device can enable it to maximize its own benefit in
the system.

To define the preference relations, we introduce individual
utility functions for each device and SBS, using which they can
rank one another. In the proposed cell association problem,
the preference relation of the SBSs will depend only on the
packet error probability while the devices will transmit their
information based on its set correlation factor with the devices
that are willing to be assigned to each of the SBSs. Thus, the
preferences of the devices not only depend on the SBSs but
also on the current matching which introduces externalities
in the matching problem. Such problem corresponds to the
problem of two-sided matching in which hospitals are matched
to residents who have strict preferences over the hospitals based
on the residents that are assigned to each hospital. In our model,
hospitals correspond to the SBSs while the residents are the
devices that determine their preferences over SBSs depending
on the devices assigned to each SBS.

For the game we consider G = (S ∪ I,�i,�s), the
preference relation � is defined as a complete, reflexive, and
transitive binary relation between the elements of a given
set. We denote the preference relation of each SBS s over

the set Υ(I) of subsets of I, by �s and use I �s I ′
when SBS s prefers to receive information from the subset
I of devices than receiving it from the subset I ′. An SBS
is assumed to be matched to i0 to represent the case in
which an SBS prefers not to receive any information from the
devices. Similarly, �i denotes that the preference relation of
a device i ∈ I over the sets (S × Υ(I)i) ∪ {(∅, ∅)}, where
Υ(I)i = {I ′ ∈ Υ(I) : i ∈ I ′}.

B. Cell Association as a Matching Game with Externalities

Each cell association policy µ determines the set of devices
that are assigned to each SBS. Thus, the problem can be defined
as a one-to-many matching game with externalities:

Definition 1. Given two disjoint sets of SBSs and devices S and
I, the cell association policy, µ, can be defined as a mapping,
µ : S ∪ I → I ∪ I × S that satisfies:

1) ∀s ∈ S, µ(s) ∈ Υ(I),
2) ∀i ∈ I, µ(i) ∈ (S ×Υ(I)i),
3) µ(i) = (s, µ(s)) whenever i ∈ µ(s), and
4) µ(s) = I ′ if and only if (s, I ′) = µ(i) from some i ∈ I.

µ(s) = I ′ implies that αis = 1,∀i ∈ I ′, otherwise, αis = 0.
Form Definition 1, we can deduce that the first and third
conditions in (10) are satisfied. Moreover, the matching is
feasible, if it satisfies the capacity constrains of the SBSs which
is defined as ηs ≤ ηth

s , ∀s ∈ S. In contrast to classical one-to-
many matching games in which the players of one side are only
matched to the players of the other set, in the defined matching
game, the devices are also matched to other devices in addition
to the SBSs. Next, we define suitable utility functions for the
two sets of players.

C. Utility and Preference Relations of the Devices and SBSs

The devices have preferences over both SBSs and devices.
The preference relation of a given device depends on both
SBS and devices that are assigned to the considered SBS. Such
preference relations called nonclassical preference relation, are
different from the preference relation in classical one-to-many
matching games in which the devices only have preferences
over the SBSs. The devices build their preferences based on
the achievable rate and its set correlation factor with the devices
matched to each SBS. Thus, we define the utility of device i
when matched to the tuple (s, µ(s)) as:

Ui(s, µ) = ωiris(nis, εi) + (1− ωi)ΦiIs(µ), (11)

where ωi is a weighting parameter that allows the device to
control the impact of the correlation factor on the overall
decision of the device. Thus, the device can balance between
the achievable rate and the correlation factor between device
i and the devices assigned to SBS s. In fact, the second term
in (11) enables a device i to report its information to an SBS
that cannot get the same information from its assigned devices.
Using the utility in (11), the preference relations of the devices
can be given by:

(s, µ(s)) �i (s′, µ(s′)) ⇐⇒ Ui(s, µ) > Ui(s
′, µ), (12)



for ∀i ∈ I, and ∀s, s′ ∈ S
To determine which devices will be assigned to each SBS,

the SBSs define a preference relation based on the ε-outage
capacity that can be ensured by each of the device. In other
words, the higher the ε-outage capacity of a device, the more
preferred is the device to the SBS. The preference relations of
the SBSs can be given as follows:

i �s i′ ⇐⇒ ris(nis, εi) > ri′s(nis, εi). (13)

Next, we propose a novel matching algorithm that matches
the devices to the SBSs while accounting for the correlation
between the data reported by the devices and the induced
externalities.

D. Proposed Correlation-Aware Cell Association Algorithm

The desirable outcome in a two-sided matching problem
is a stable matching state in which every two players that
prefer one another to any other player should be matched. To
reach the stable outcome in one-to-many matching games, the
deferred acceptance algorithm was proposed in [17]. However,
in [17], the rural hospital theorem states that using the deferred
acceptance algorithm, the SBSs are always matched to the same
number of devices under any stable matching.

Thus, even though stability of a matching guarantees that
every SBS and device that prefer one another over other players
are matched, it does not guarantee that the SBSs will reach their
capacity and be matched to a number of IoT devices that they
can support. This is important in IoT systems as the SBSs need
the receive the information from multiple devices to ensure the
reliability of the received data. Moreover, when the IoT devices
report information about multiple parameters, the SBSs must
receive the information quickly and about all these parameters.
These information is then used to take actions which might be
critical for delay-sensitive applications.

Thus, stability in the formulated game is not desirable by
the players as an SBS would prefer to be matched with the
maximum number of devices so that it can get all the required
information from the devices deployed in the area it covers.
To this end, we relax the condition of local stability of the
matching to the popularity of a matching which corresponds
to the global stability. Given two matchings µ and µ′, matching
µ is more popular than matching µ′ if the number of players
that prefer matching µ is higher than the number of players
that prefer matching µ′. In other words, a matching µ is the
most popular matching if there does not exist another matching
that is preferred by more players as compared to the matching
µ.

To define the most popular matching [11, 12], we introduce
the notion of a vote that allows every SBS and device to vote
for its preferred matching. For a device i, the vote function
vi(µ(s)∪{s}, µ(s′)∪{s′}) equals 1 if (s, µ(s)) �i (s′, µ(s′))
which means that device i prefers SBS s that is matched to a
set of devices µ(s) to SBS s′ that is matched to a set of devices
µ(s′). The vote function equals −1 if (s′, µ(s′)) �i (s, µ(s))
which means that device i prefers SBS s′ that is matched to

a set of devices µ(s′) to SBS s that is matched to a set of
devices µ(s), and it is 0 if device i is indifferent between the
two SBSs. Thus, for two matchings µ and µ′, the preference
of a device i can be redefined as follows:

∆i(µ, µ
′) = vi(µ(i), µ′(i)). (14)

In (13), we defined the preferences of the SBSs over
individual devices. Having two different sets of devices I1 ⊆ I
and I2 ⊆ I, the SBS should be able to determine its preference
while capturing its capacity and the required capacity for
serving the devices in a given set. To this end, we assume that
an SBS can determine the mean required capacity for serving
a packet based on its history. Thus, given a set I1 that contains
|I1| devices, we add to the set I1, qs−|I1| occurrences of the
element i0, where qs being the capacity of SBS s. This makes
the two sets I1 and I2 of capacity qs. Thus, we can define
the sets Î1 = I1 \ I2 and Î2 = I2 \ I1 as a vector given by
[Î1(1), ...Î1(k)] and [Î2(1), ...Î2(k)] for k = qs − |I1 ∩ I2|.
The preference of the SBS over the sets of devices can thus
be given by:

δs(I1, I2) = minσ∈Π|k|

k∑
j=1

vs(Î1(j), Î2(σ(j))), (15)

where Π[k] is the set of permutation on {1, ..., k}. Thus, we
can define ∆s(µ, µ

′) as δs(I1, I2). So ∆s(µ, µ
′) counts the

number of votes by SBS s for µ(s) compared to µ′(s) when
the set Î1 = µ(s) \ µ′(s) and Î2 = µ(s) \ µ′(s).

Finally, two matchings µ and µ′ can be compared based on
a function ∆(µ, µ′) defined as follows:

∆(µ, µ′) =
∑

j∈S∪I1

∆j(µ, µ
′). (16)

A matching µ is considered at least as popular as matching
µ′ if

∑
j∈S∪I1 ∆j(µ, µ

′) ≥ 0 and µ is more popular than µ′

if
∑
j∈S∪I1 ∆j(µ, µ

′) > 0. Thus, a popular matching can be
defined as follows.

Definition 2. A matching µ is a popular matching in the match-
ing problem G = (S ∪ I1,≺i,≺s) if

∑
j∈S∪I ∆j(µ, µ

′) ≥ 0
for every matching µ′ in G.

Now, we propose a distributed matching algorithm to reach
a popular matching which is based on the classical deferred
acceptance algorithm in [17]. In this regard, we consider a
graph G′ = (I ′∪S, E ′) defined as follows: I ′ consists in a set
of devices that contains two copies i0 and i1 of every device
i ∈ I. The set of SBSs S remains the same and the edge set
E ′ is defined by E ′ = {(i0, s), (i1, s) : (i, s) ∈ E}.

The preference list of i0 and i1 are the same preference list
of device i. The devices in the set {i0, i1 : i ∈ I} will be
called bottom level or level 0 for i0 and top level or level 1 for
i1. Every SBS s prefers any level 1 device to a level 0 device
within the set of devices. For instance, in a set composed of two
devices i1, i2 and the initial preference of SBS s given by i1 �s
i2, the new preference of SBS s in the set I ′ = {i01, i02, i11, i12}



Table I: Proposed Context-Aware Assignment Algorithm
Phase 1 - Network Discovery:

- Each device discovers its neighboring SBSs and collects the required
network parameters.

- Initialize the set Q = {i1 : i ∈ I}.
Phase 2 - Matching algorithm

Repeat
- Each device and SBS updates its preference list based on (12) and (13).
- Delete the first device from Q which we denote il.

If the preference list of devices il is not empty then
- Assign device il to its most preferred SBS s. We have µ(il) = s.
If SBS s is matched to more than its capacity then

- Remove the pair (s, i′l) from the matching µ where i′l is the least
preferred device of SBS s among its matched devices.

- Add device i′l to the set of active and unmatched devices Q.
end If
If SBS s has reached its capacity then

- Delete from the preference list of SBS s all the devices i that are
ranked worse than the least preferred device that is matched to SBS s.

end If
else if il = i1l then

- Activate i0l by adding device i0l to Q.
Until Q = ∅

is given by i11 �s i12 �s i01 �s i02. Initially, all level 0 devices
are assumed to be active while all level 1 devices are inactive.
The idea of the two-level players is to promote the devices
that are rejected by all the SBSs by removing these devices
from the bottom level and only keeping the top level version
of these devices which is more preferred by the SBSs given the
new preference list of the SBSs that accounts for the level of
the devices. Moreover, we introduce a queue Q that contains
all the active and unmatched devices and then the deferred
acceptance algorithm is applied as follows:
• Initially, the set of top level devices is empty and only the

devices in the bottom level set are active and can propose
to their most preferred SBSs.

• Every unmatched active device i1 or i0 proposes to its
most preferred SBSs to which it has not proposed yet.

• In case an active device i0 has been rejected by all the
SBSs, the device is removed from the queue Q and the
device i1 becomes active and joins the queue Q.

• When an SBS receives a request from a device i1 or i0,
the SBS accept the requests based on its preference list.
If the SBS is matched to more than its capacity, it reject
the least preferred device that we denote i′ and this device
joins the queue of unmatched devices Q.

For the algorithm we proposed, we can derive the following
result regarding its convergence and popularity.

Theorem 1. The proposed matching algorithm with prefer-
ences over devices is guaranteed to converge to a max-sized
popular matching.

Proof. The proof is provided in the Appendix.

IV. SIMULATION RESULTS

For our simulations, we consider that the IoT devices are
deployed in an area that is covered by 20 SBSs. The transmit
power of the IoT devices is 0.5 W, the bandwidth is set to 10

MHz, the noise to −50 dBm, and ε = 0.005. The correlation
model parameters are set as follows δ = 1 and κ > 0.

To show the performance of the proposed algorithm for the
assignment of IoT devices to the SBSs, we consider that there
are 10 different events that are observed by the IoT device
and every device can only observe one event. Then, we apply
the proposed algorithm for every event and the capacity of
the SBSs is considered as the minimum number of correlated
IoT devices that are required by the SBSs to approach the real
value of the sensed event. In our simulations, we assume that
two IoT devices are correlated when the correlation level that
exceeds 0.7.

In Fig 1a, we compare the mean number of events among
the 10 events that are reported successfully to the SBSs
as a function of the total number of IoT devices that are
deployed. The results of the proposed algorithm are compared
with classical deferred acceptance algorithm that converges
to a stable outcome. The mean number of events that are
successfully reported to the SBSs increases with the number
of IoT devices since the probability of correlation between the
IoT devices that are assigned to the same SBS increases. Fig 1a
shows that popularity of the cell association algorithm achieves
substantial performance gains allowing the SBSs to detect more
than 2 to 3 events over 10 events, compared to the classical
stable cell association algorithm.

Fig 1b shows the percentage of useful information that
is reported to the SBSs by the IoT devices. The proposed
correlation-based algorithm is compared with the maximum
sum-rate based deferred acceptance algorithm. In the later,
neither the devices nor the SBSs account for the correlation
between the information observed by the IoT devices and the
SBSs aim to maximize the sum-rate of their assigned IoT
devices. The results show that the amount of useful information
is up to 40% higher in the proposed algorithm since the
correlated devices are not assigned to the same SBSs after
a given threshold that ensures that SBSs can approach the real
statistics about the observed events.

In Fig 1c, we compare the proposed algorithm with the
maximum sum-rate algorithm by showing the amount of useful
information that is gathered by the SBSs as a function of the
correlation parameter κ. Fig 1c shows that the percentage of
useful information decreases by increasing the correlation level
between the IoT devices. In fact, increasing the correlation
level between the 250 IoT devices that are deployed increases
the number of devices that report the same information to the
same SBSs. However, we can see that the proposed algorithm
outperforms the maximum sum-rate algorithm in which the cell
association mechanism ignore the correlation level between the
IoT devices since the redundant information at a given SBS is
reduced by the proposed algorithm event though the number
of devices is large which increase the probability of reporting
the same observations to a given SBS.
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Figure 1: Numerical results for a) number of detected events successfully as a function of the number of IoT devices, b) useful gathered
information by the SBSs as a function of the number of IoT devices, and c) useful gathered information by the SBSs as a function of the
correlation parameter κ.

V. CONCLUSION

In this paper, we have proposed a novel framework of
cell association for IoT-driven SCNs. We have formulated the
problem of cell association as a two-sided matching problem
between the two sets of devices and SBSs. To maximize
the number of devices that are matched to each SBS, we
have relaxed the stability solution concept into popularity and
proposed a distributed matching algorithm that is guaranteed to
converge to a popular outcome. Moreover, we have considered
the correlation between the different IoT devices that are
deployed in a given area to improve the efficiency of the cell
association mechanism. Simulation results have shown that the
proposed algorithm outperforms the classical cell-association
mechanisms.
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APPENDIX

The convergence of the algorithm to the popular outcome
guarantees that the players can reach a popular matching in a
finite number of iterations. The convergence of the algorithm is
guaranteed as the number of players is finite and every device
i ∈ I applies at most twice from the same SBS. Next, we
show that once the algorithm converges, the resulting matching
between IoT devices and SBSs is popular.

Based on the popularity of a matching as defined in (16), it
is shown in [18] that a matching is popular if it is a complete
matching and it has weight at most 0. Thus, to proof the
popularity of the matching derived by Algorithm 1, we show
that the matching µ has weight zero.

First, we define the set S ′ as a set of SBSs in which for
every SBS s ∈ S of capacity qs, qs copies of s are created in
S ′. Thus, we have S ′ = {sk, 1 ≤ k ≤ qs,∀s ∈ S}. To each
copy of an SBS s, we assign one device i ∈ µ(s) from the set
of devices that are initially assigned to SBS s.

Moreover, a matching is said to be complete if every player
is matched in the graph. To make our matching problem
complete, every unmatched SBS s ∈ S ′ and device i is matched
to a virtual player l(s) and l(i), respectively. On the other hand,
we denote the SBSs in S ′ that are matched to devices in I0

as S ′0 and SBSs that are matched to devices in I1 as S ′1.
The weight of a matching is defined as follows:
• For an edge e = (i, sk) ∈ I×S ′: The weight of edge e =

(i, sk) is wµ(e) = vi(sk, µ(i)) + vsk(i, µ′(sk)). Note that
for every edge e ∈ I ×S ′, we have that wµ(e) ∈ {±2, 0}
and wµ(e) = 2 if and only if e blocks the matching µ.

• For any edge e = (x, l(x)): The weight of edge e is
wµ(e) = vx(l(x), µ′(x)). Thus, wµ(x, l(y)) = −1 if y



was matched in µ and wµ(y, h(y)) = 0 otherwise (in
which case µ′(y) = l(y)).

To show that max-weight of the matching µ is 0, we
formulate a primal linear programming (LP) and show that its
optimal value is 0. The primal LP can be defined as follows:

maximize
∑
e∈Gµ

wµ(e).xe,

subject to
∑
e∈E(y)

xe = 1 for all y ∈ S ∪ I,

xe ≥ 0 for all e ∈ Gµ,

(17)

where E(y) is the set of edges incident on y in Gµ and x =
[xe]{e∈E} ∈ [0, 1]E is the matching polytope and E is the
number of edges.

In [19], it is shown that the dual LP of (17) can be given as
follows by associating a variable κi for all device i ∈ I and
ϕs for all SBS s ∈ S ′.

minimize
∑
i∈I

κi +
∑
s∈S′

ϕs,

subject to κi + ϕs ≥ wµ(i, s) for all (i, s) ∈ Gµ,
κi ≥ wµ(i, l(i)) for all i ∈ I,
ϕi ≥ wµ(s, l(s)) for all s ∈ S ′,

(18)

where the values of κi and ϕs are assigned as follows. For all
device i ∈ I, we set κi = 0 if device i is unmatched in µ, and
for every matched device i, we have κi = 1 if device i ∈ I0

and κi = −1 if device i ∈ I1. The values of ϕs are defined
similarly. Thus, when SBS s is matched, we have ϕs = 1 if
SBS s ∈ S ′1, and ϕs = 0 if SBS s ∈ S ′0.

Observe that the second and third constraints of (18) hold
for all i ∈ I and s ∈ S ′. This is because κi = 0 = wµ(i, l(i))
for all unmatched devices and ϕs = 0 = wµ(s, l(s)) for all un-
matched SBSs. Similarly, for all matched devices and SBSs in
µ, we have κi ≥ −1 = wµ(i, l(i)) and ϕi ≥ −1 = wµ(s, l(s)).
In order to show that the first constraint holds, we have the
following remark.

Remark 1. Let (i, s) be an edge in Gµ.
• If e = (i, s) ∈ I1 × S ′0, then wµ(e) = −2.
• If e = (i, s) ∈ (I0 × S ′0) ∪ (I1 × S ′1), then wµ(e) ≤ 0.

This result states that given the matching outcome of the
algorithm, for every edge (i, s) ∈ I1 × S ′0, we have wµ(e) =
−2 which means that the two players s and i do not prefer to
be matched to one another. Since κi ≥ −1 and κs ≥ −1 for
all i ∈ I1 and s ∈ S ′0, the first constraint holds for all edges
of Gµ in I1 × S ′0.

Moreover, given that for every edge e = (i, s) ∈ (I0 ×
S ′0) ∪ (I1 × S ′1), we have wµ(e) ≤ 0 which means that at
the end of the algorithm, at least one of the two players i and
s do not prefer to be matched to the other player s and i,
respectively. Then, since κi + ϕs ≥ 0 for all (i, s) ∈ Ik × S ′k
for k ∈ {0, 1}, the first constraint holds for all edges of Gµ in
(I0 × S ′0) ∪ (I1 × S ′1)

Now, since wµ(e) ≤ 2 holds for all edges in Gµ and we set
κi = 1 and ϕs = 1 for all i ∈ I0 and s ∈ S ′1. Thus, the first
inequality holds for all edges in Gµ and thus, κi-values and
ϕs-values are dual feasible.

For every edge (i, s) ∈ µ, we have κi+ϕs = 0, κi = 0, and
ϕs = 0 for all unmatched devices and SBSs. Hence, it follows
that

∑
i∈I κi +

∑
s∈S′ ϕs = 0. So by weak duality, the primal

optimal is at most 0. In other words, the outcome matching of
Algorithm 1 that matches all the devices and SBSs has weight
at most 0.


