
�>���G �A�/�, �?���H�@�y�R�N�3�e�j�y�N

�?�i�i�T�b�,�f�f�+�2�M�i�`���H�2�b�m�T�2�H�2�+�X�?���H�X�b�+�B�2�M�+�2�f�?���H�@�y�R�N�3�e�j�y�N�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �j�R �C���M �k�y�R�N �U�p�k�V�- �H���b�i �`�2�p�B�b�2�/ �j �.�2�+ �k�y�R�N �U�p�j�V

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�h�?�2 �*�Q�`�2 �.�2�+�Q�K�T�Q�b�B�i�B�Q�M �Q�7 �L�2�i�r�Q�`�F�b�, �h�?�2�Q�`�v�-
���H�;�Q�`�B�i�?�K�b ���M�/ ���T�T�H�B�+���i�B�Q�M�b

�6�`���;�F�B�b�F�Q�b �J���H�H�B���`�Q�b�- �*�?�`�B�b�i�Q�b �:�B���i�b�B�/�B�b�- ���T�Q�b�i�Q�H�Q�b �L �S���T���/�Q�T�Q�m�H�Q�b�- �J�B�+�?���H�B�b

�o���x�B�`�;�B���M�M�B�b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�6�`���;�F�B�b�F�Q�b �J���H�H�B���`�Q�b�- �*�?�`�B�b�i�Q�b �:�B���i�b�B�/�B�b�- ���T�Q�b�i�Q�H�Q�b �L �S���T���/�Q�T�Q�m�H�Q�b�- �J�B�+�?���H�B�b �o���x�B�`�;�B���M�M�B�b�X �h�?�2 �*�Q�`�2
�.�2�+�Q�K�T�Q�b�B�i�B�Q�M �Q�7 �L�2�i�r�Q�`�F�b�, �h�?�2�Q�`�v�- ���H�;�Q�`�B�i�?�K�b ���M�/ ���T�T�H�B�+���i�B�Q�M�b�X �h�?�2 �o�G�.�" �C�Q�m�`�M���H�- �A�M �T�`�2�b�b�X
���?���H�@�y�R�N�3�e�j�y�N�p�k��

https://centralesupelec.hal.science/hal-01986309v2
https://hal.archives-ouvertes.fr

The Core Decomposition of Networks:
Theory, Algorithms and Applications

Fragkiskos D. Malliaros� , Christos Giatsidisy, Apostolos N. Papadopoulosz,
and Michalis Vazirgiannisx

Abstract

The core decomposition of networks has attracted signi�cant attention due to its numerous appli-
cations in real-life problems. Simply stated, the core decomposition of a network (graph) assigns to
each graph nodev, an integer number c(v) (the core number), capturing how well v is connected with
respect to its neighbors. This concept is strongly related to the concept of graph degeneracy, which has
a long history in Graph Theory. Although the core decomposition concept is extremely simple, there
is an enormous interest in the topic from diverse application domains, mainly because it can be used
to analyze a network in a simple and concise manner by quantifying the signi�cance of graph nodes.
Therefore, there exists a respectable number of research works that either propose e�cient algorithmic
techniques under di�erent settings and graph types or apply the concept to another problem or scienti�c
area. Based on this large interest in the topic, in this survey, we perform an in-depth discussion of core
decomposition, focusing mainly on: i) the basic theory and fundamental concepts, ii) the algorithmic
techniques proposed for computing it e�ciently under di�erent settings, and iii) the applications that
can bene�t signi�cantly from it.

Keywords: Core decomposition, graph mining, graph degeneracy, graph theory, algorithms

� Center for Visual Computing, CentraleSup�elec, University of Paris-Saclay and Inria Saclay, France. Email: fragkiskos.
malliaros@centralesupelec.fr

yComputer Science Laboratory, �Ecole Polytechnique, France. Email: xristosakamad@gmail.com
zSchool of Informatics, Aristotle University of Thessaloniki, Greece. Email: papadopo@csd.auth.gr
xComputer Science Laboratory, �Ecole Polytechnique, France. Email: mvazirg@lix.polytechnique.fr

1

fragkiskos.malliaros@centralesupelec.fr
fragkiskos.malliaros@centralesupelec.fr
 xristosakamad@gmail.com
papadopo@csd.auth.gr
 mvazirg@lix.polytechnique.fr

Contents

1 Introduction 3

2 Fundamental Concepts 6
2.1 Simple Graphs . 6
2.2 Extensions to Other Types of Graphs . 8
2.3 Generalized Core Decomposition . 10
2.4 Extensions of the Core Decomposition . 11

2.4.1 Truss Decomposition . 11
2.4.2 Density-friendly Core Decomposition . 11
2.4.3 Peak Decomposition . 12
2.4.4 Nucleus Decomposition . 12
2.4.5 Peeling Bipartite Networks . 13

3 Algorithmic Techniques 14
3.1 In-Memory Computation . 15
3.2 Disk-Resident Graphs . 15
3.3 Core Decomposition in Dynamic Graphs . 17
3.4 Local Computation of Core Numbers . 19
3.5 Parallel and Distributed Techniques . 21
3.6 Probabilistic Core Decomposition . 26

4 Representative Applications 27
4.1 Network Modeling and Analysis . 28
4.2 Temporal Evolution . 28
4.3 Anomaly Detection . 29
4.4 Detection of Inuential Spreaders . 30
4.5 Network Visualization . 31
4.6 Dense Subgraph Discovery . 32
4.7 Community Detection . 33
4.8 Text Analytics . 33
4.9 The Anchoredk-Core Problem and Engagement Dynamics in Social Graphs 33
4.10 Graph Similarity . 34
4.11 Biology and Ecology . 34
4.12 Neuroscience . 35

5 Conclusions and Further Research 36

2

1 Introduction

Graph managementand graph mining are two important research areas with a plethora of signi�cant prac-
tical applications [3, 34]. The main reason for this is the fact that graphs are ubiquitous and, therefore,
their e�cient management and mining is necessary to guarantee fast and meaningful knowledge discovery.
Research on graph processing and mining was boosted by the need to explore and analyze massive graphs
in big data analytics tasks, aiming at computational e�ciency and high scalability.

A network or graph (we will use the terms interchangeably) is denoted byG(V; E), where V is the set
of nodes or vertices andE is the set of edges or links. We will follow the trend in the literature and use the
symbol n for the number of nodes (n = jV j) and the symbol m for the number of edges (m = jE j). The
number of neighbors of a nodeu 2 V plays a central role in general, and it will be denoted bydeg(u).

Figure 1(a) presents a simple graphG(V; E) with n = 8 nodes and m = 12 edges. Based on the degree
de�nition, deg(v1) = 2, deg(v4) = 2 whereas nodev3 has the highest degreedeg(v3) = 5. Therefore, node v8

has the smallest degree and nodev3 the highest.

(a) 1-core (b) 2-core (c) 3-core

Figure 1: A small graph G with n = 8 nodes and m = 12 edges and the corresponding 1-core, 2-core and
3-core ofG.

In many modern applications graphs are �rst class citizens. For example:

� The Web [75] can be modeled as a graph, where nodes represent web pages and edges represent
hyperlinks among them.

� In a social network [2], nodes may represent users and edges may provide information regarding friend-
ship relationships.

� In protein analysis, a protein-protein interaction network (PPI for short) [118] may be represented as
a graph, where nodes represent di�erent proteins and edges capture the interaction between proteins
during a speci�c experiment.

� Graphs may also represent interactions among di�erent types of nodes. For example, purchase infor-
mation may be captured by using a graph, where a set of nodes (e.g., customers) interact with another
set of nodes (e.g., products). In this case, a link between a customer and a product captures the fact
that this product was purchased by this speci�c customer.

These are only a few examples of applications that model elements and the interactions among them by
using a graph structure. In these cases, it is important to rely on the structural properties of the interactions
among the elements in order to discover useful and meaningful patterns.

Exploring and analyzing massive complex networks involves the execution of (usually) computationally
intensive tasks, aiming at uncovering the network structure and detecting the presence of useful patterns
that could be proven signi�cant. Some important graph mining tasks involve: reachability queries, graph

3

partitioning, graph clustering, classi�cation of graph nodes, predicting network evolution, discovering dense
subgraphs, detecting inuential spreaders.

In many cases we are searching for graph nodes that are considered \central" with respect to a speci�c
problem at hand. Therefore, the concept ofnode importanceis crucial in network analysis, since it is expected
that among the nodes of a massive network, only a small fraction is ofhigh signi�cance. Evidently, one should
�rst determine a method to quantify this signi�cance (importance), since this concept is highly related to
the application under consideration. For example, if we assume that we are interested in nodes with a large
degree (simply because the number of links is important), then evidently, importance is directly measured by
counting the number of neighbors of every node (a concept known asdegree centrality). As another example,
we may de�ne importance in relation to the number of triangles each node participates in; the higher the
number of triangles, the higher the node importance. Another popular measure of importance is the total
number of shortest paths passing through a speci�c node (also known asbetweenness centrality[44]). Also,
one can quantify node importance using the concept ofrandom walks and applying techniques similar to
PageRank [25]. In such a case, the importance of a node is represented by the probability that this node
will be visited by a random walker.

Based on the previous discussion, we realize that there is a plethora of di�erent ways to de�ne importance.
However, it turns out that the concept of core decompositioncan be used e�ciently and e�ectively to quantify
node importance in many di�erent domains, thus, avoiding the use of more complex and computationally
intensive algorithmic techniques. To be precise, the core decomposition of a simple graphG can be computed
in linear time with respect to the number of edges ofG, if the computation is done in main memory. Simply
put, the k-core of a graphG is the maximal induced subgraphGk , where the number of neighbors of every
node u in Gk is at least k. The core number of a nodeu (c(u)) is de�ned as the maximum value of k such
that u is contained in Gk . Figure 1 illustrates the 1-core, the 2-core and the 3-core of a toy graph. Based
on the de�nition of the core number, it holds that c(v8) = 1, c(v1) = 2 and c(v6) = 3.

Roadmap . Based on the fact that the core decomposition concept has numerous applications in diverse
domains, in this survey we cover the topic as thorough as possible, presenting theconcepts, the algorithmic
techniquesused and also the fundamentalapplications that base their main results on the core number (or
variations) of graph nodes. This survey was inspired by four tutorials presented by the authors [94] in the
following conferences:i) 7th IEEE/ACM International Conference on Social Network Analysis and Mining
(ASONAM) 2015, ii) 19th EDBT/ICDT Joint Conference 2016, iii) IEEE International Conference on Data
Mining (ICDM) 2016 and iv) The European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD) 2017. To the best of our knowledge, this is the �rst
comprehensive survey of the area. Existing works like [28, 22] cover only speci�c parts of the problem and
they do not provide an in-depth discussion of the algorithms and the associated application domains.

Table 1 presents the timeline of the main research works related to core decomposition that are cited
in this survey. We classify the related research contributions into two basic categories:i) concepts and
algorithmic techniques and ii) representative application domains. The rest of this article is organized as
follows:

� In Section 2 we present some fundamental concepts in addition to the basic de�nition of the core
decomposition and some of its most widely used extensions for speci�c graph types. In particular, we
will focus on simple, directed, weighted, signed, probabilistic, temporal, multilayer and hidden graphs
which are frequently used in modern network-based applications.

� Section 3 o�ers a thorough overview of some of the the algorithmic techniques required for the core
decomposition computation in di�erent settings. In particular, we cover main memory computation,
disk-based computation, local core number computation, parallel/distributed core decomposition and
core decomposition in probabilistic graphs. Since it is not possible to cover every single algorithm in

4

Table 1: Core decomposition timeline.

Concepts and Algorithmic Techniques � Year � Representative Application Domains

coloring number [42] � 1968 �

degeneracy [88]� 1970 �

width [45] � 1982 �

� 1983 � dense subgraphs [128]

linkage [73] � 1996 �

� 2000 � web analysis [75]

generalized cores [16]� 2002 �

main-memory computation [17] � 2003 �

� 2005 � network analysis [8], visualization [6]

� 2006 � complex networks [38], �ngerprinting and
visualization [7]

� 2007 � internet topology [27]

neuroscience [62], truss decomposition [32]� 2008 � internet evolution [158], network
analysis [64, 82, 9]

� 2009 � cell biology [92]

� 2010 � inuential spreaders [74], mobile social
networks [85]

D-cores [57], disk-based computation [30],
distributed computation [105], anchored

k-core [19]

� 2011 � communities [58], inuence [26],
neuroscience [143]

triangle cores (truss) [146, 159], weighted
networks [48]

� 2012 � embeddings [120], dense subgraphs [142]

dynamic cores [124], distributed
computation [106]

� 2013 � inuential spreaders [160], engagement [96],
network analysis [1], neuroscience [130]

MapReduce [113], local estimation [109],
uncertain graphs [23], S-cores [54]

� 2014 � clustering [56], neuroscience [122]

temporal graphs [151], disk-based and
in-memory [72], parallel computation [129],

density-friendly decomposition [136]

� 2015 � keyword extraction [121], community search [86],
earthquake networks [63], software
engineering [103], cell biology [68, 41],
neuroscience [150, 20]

incremental computation [123], disk-based
computation [60], distributed computation [12],

uncertain truss [67]

� 2016 � cell biology [39, 116], graph mining [131],
network analysis [144], neuroscience [80]

hidden cores [134], multilayer graphs [47],
parallel computation [148, 69], density-friendly
decomposition [36],k-peak decomposition [61],

(k; r)-core [157], core unravelling [155]

� 2017 � distributed clustering [31, 98], truss community
search [4], engagement [156], ecology [52, 51],
criminal networks [99]

distributed computation [66], probabilistic
cores [117], radius-bounded cores [147], bipartite

peeling [125]

� 2018 � biology [50], ecology [107], metabolic
networks [43], patterns and anomaly
detection [132], graph similarity [108]

5

its full extend, we have selected a representative set of algorithmic techniques which we describe in
detail and for the rest we o�er the corresponding links to related research.

� Next, Section 4 elaborates on diverse application domains that bene�t signi�cantly from the core
decomposition concept. More speci�cally, we present the application of the core decomposition concept
in domains such as: network analysis, temporal evolution, inuence maximization, dense subgraph
discovery, community detection, text mining, biological network analysis and neuroscience. Evidently,
the list is not exhaustive but we believe that these domains cover the vast majority of research performed
in the area.

� Finally, Section 5 concludes this survey and discusses briey open problems and future research direc-
tions.

2 Fundamental Concepts

In this section, we cover the most important concepts related to core decomposition. In particular, we
formally present the basic de�nitions and the most important properties which can be used by applications
for performing more complex network analysis tasks. Table 2 illustrates some frequently used symbols and
the corresponding interpretations.

Table 2: Frequently used symbols.

Symbol Interpretation

G a graph

V set of vertices (or nodes) ofG

E set of edges ofG

n number of nodes (n = jV j)

m number of edges (m = jE j)

u; v some vertices ofG

N (u) set of direct neighbors of vertexu

Nd(u) set of neighbors ofu at a distance at most d

deg(u) degree of nodeu (number of incident edges)

c(u) core number of nodeu

� � (G) the degeneracy of graphG

2.1 Simple Graphs

Let G(V; E) denote an undirected and unweighted graph, whereV is the set of nodes andE is the set
of edges. Thek-core decomposition ofG is a threshold-based hierarchical decomposition ofG into nested
subgraphs. The basic idea is that a thresholdk is set on the degree of each node; nodes that do not satisfy the
threshold, are excluded from the process. The following de�nitions provide some basic knowledge regarding
the concepts around core decomposition.

De�nition 1 (k-shell subgraph) The k-shell is the subgraph ofG de�ned by the nodes that belong to the
k-core but not to the (k + 1) -core.

6

Figure 2: Example of the k-core decomposition.

De�nition 2 (k-core subgraph) Let H be a subgraph ofG, i.e., H � G. H is de�ned to be thek-core of
G, denoted byGk , if it is a maximal subgraph of G in which all nodes have degree at leastk.

De�nition 3 (graph degeneracy � � (G)) The degeneracy [88]� � (G) of a graph G is de�ned as the maxi-
mum k for which graph G contains a non-emptyk-core subgraph.

De�nition 4 (core number) A node v has core numberc(v) = k, if it belongs to a k-core but not to the
(k + 1) -core.

Based on the above de�nitions, it is evident that if all the nodes of the graph have degree at least one, i.e.,
deg(v) � 1; 8v 2 V , then the 1-core subgraph corresponds to the whole graph, i.e.,G1 � G. Furthermore,
assuming that Gi ; i = 0 ; 1; 2; : : : ; � � (G) is the i -core of G, then the k-core subgraphs are nested. Formally:

G0 � G1 � G2 � : : : � G� � (G) (1)

Typically, the subgraph G� � (G) is called the maximal k-core subgraphof G. Figure 2 depicts an example
of a graph and the correspondingk-core decomposition. As we observe, the degeneracy of this graph is
� � (G) = 3; therefore, the decomposition creates three nestedk-core subgraphs, with the 3-core being the
maximal one. An attempt to create a higher order core subgraph (i.e., the 4-core of the graph) would result
in an empty subgraph, since the removal of one of the nodes belonging to the 3-core will force the removal
of the remaining nodes. The nested structure of thek-core subgraphs is indicated by the dashed lines shown
in Figure 2. Furthermore, the color of the nodes indicate the core numberc(u) of each nodeu.

It is important to note that the k-core subgraphs are not necessarily connected. As an example, consider
the graph shown in Figure 3(a). The graph is composed of two cliques (complete subgraphs) of size four that
are connected by a nodex with a degree of 2. Evidently, the graph is a 2-core, since the degree os each node
is at least 2. The transition from the 2-core to the 3-core ofG will eliminate node x, sincedeg(x) = 2. The
remaining nodes constitute the 3-core of the graph, which evidently is disconnected as shown in Figure 3(b).

The concept of degeneracy in graphs, as de�ned above, is also known aswidth [45] and linkage [73]. It
is also related to thecoloring number � of a graph [42], which is de�ned as the leastk for which there is an
ordering � of the graph nodes, such that for everyv 2 V , the number of adjacent nodesw � v is less than
� .

7

(a) 2-core (b) 3-core

Figure 3: Example of a disconnectedk-core subgraph. The 2-core is shown in (a). The removal of the node
with degree 2 leads to (b) which depicts the 3-core (and also the maximum core of the graph). The 3-core
is disconnected.

2.2 Extensions to Other Types of Graphs

The k-core decomposition described above considers that graphs are unweighted and undirected. However,
many real-world networks carry rich semantics, as expressed by more complex graph types. To that end,
there exist research e�orts towards meaningful extensions of thek-core decomposition to other types of
graphs. In most of the cases, these extensions pose additional challenges to the e�cient computation of the
decomposition as well.

Directed Graphs . Directed graphs or digraphs [13] are characterized by rich semantics in comparison to
simple graphs, simply because edge direction is important. In a directed graph the degree of a nodeu may
refer to the number of incoming links (degin (u)) or to the number of outgoing links (degout (u)). These are
also known as the in-degree and the out-degree respectively.

Giatsidis et al. [59, 57] introduced D-cores, an extension of thek-core structure to directed graphs. In
this case, the notion of (k; `)-core is used to represent subgraphs in which all nodes have in-degree at least
k and out-degree at least̀ respectively.

Weighted Graphs . A weighted graph is characterized by the existence of weights on the graph edges.
Each edgee is associated with a weightw(e) that may represent the cost of the edge, or the strength of
the link between the participating nodes, or any other type of quanti�cation, depending on the application.
Computing the core decomposition in a weighted graph is signi�cantly harder than the computation in a
simple graph, mainly because there is no easily derived bound on the core number of a node. In [58, 48, 40],
the authors propose e�cient algorithms for computing the core decomposition in weighted graphs.

Signed Graphs . In [54], an extension of thek-core decomposition forsigned networkswas proposed. Signed
networks [76, 77, 83] are used to capture the notion of positive and negative interactions among the nodes of
a graph (e.g., trust/distrust, friend/foe relationships). Examples of such networks include the trust networks
that can be produced by product review websites like Epinions1 and the voting election network between
the administrators of Wikipedia 2.

Dynamic Graphs . A dynamic graph is characterized by changes performed on the set of nodes and/or the
set of edges. These changes may correspond to insertion or deletions of edges. Changes in the graph may
have an impact on the core numbers of nodes. In the worst case, an insertion of a single edge may change all
core numbers of nodes. On the other extreme, the insertion may cause no changes at all. The typical case

1 www.epinions.com
2 www.wikipedia.org

8

www.epinions.com
www.wikipedia.org

is that an edge insertion (or deletion) will have an impact on some core numbers. Therefore, the challenge
is to be able to monitor the core numbers of all nodes by applying only a few computations, avoiding the
re-computation of the core decomposition.

In Section 3 we will discuss in detail an algorithm for monitoring the core decomposition in a dynamic
graph reported in [124], where insertions and deletions of edges may be applied at any time. The main
characteristic of the algorithm is that it detects the minimal set of nodes that must be checked for changes
in the core numbers, thus reducing the overall processing cost signi�cantly.

Temporal Graphs . A temporal graph is a special case of a dynamic graph. Two nodesu and v may me
connected by an edge at multiple time instances or intervals. We may assume that each edge is annotated
with a timestamp, denoting the time instance of the speci�c interaction. Also, two nodes may be linked for
a speci�c time interval [t i ; t j] de�ned by two time instances t i , t j , where t i � t j .

In [151], the de�nition of the core decomposition is adapted to the case of temporal graphs. The concept
of (k; h)-core is de�ned, where as usuallyk represents the degree of a node andh represents the number of
multiple temporal edges between two vertices. Given a temporal graphG, the (k; h)-core of G is the largest
subgraph H (k;h) of G such that every vertex u in H (k;h) has at least k direct neighbors, and there are at
least h temporal edges betweenu and each one of its neighbors inH (k;h) .

Probabilistic Graphs . A special category of graphs, includes graphs that introduceuncertainty with
respect to the existence of nodes and edges [70]. For example, an edgee between nodesu and v may exist
or not. The existence of an edge depends on several factors, mainly on the particular application under
consideration. For example, in a social network where an edge corresponds to a message exchange between
two users, the message will be sent with some probability (i.e., it is not sure that useru will send a message
to user v). As another example, consider a protein-protein interaction network, where each node corresponds
to a protein and each edge denotes interactions among proteins. In this case, we may realize that proteins
u and v interact in 70% of the cases, which means that the edgeeu;v will be present in the graph with a
probability of 0.7. Also, uncertainty may be introduced on purpose for privacy reasons.

Computing the core decomposition of an uncertain graph is not trivial. One approach could be to trans-
form the uncertain graph into a weighted graph, where the weightw(e) of an edgee is inversely proportional
to the existential probability p(e) of the edge. However, this simplistic approach has severe drawbacks,
since the meaning of the probability is lost during this transformation and it does not give any insight
regarding the importance of the computed cores. To attack the problem, Bonchi et al. [23] proposed a
core decomposition methodology for uncertain graphs. The problem was also studied later in [117]. The al-
gorithm of [23] will be covered in detail in the following section that covers the major algorithmic techniques.

Multilayer Graphs . Usually, we assume that graph nodes are of the same type and also graph edges
represent the same relationship among nodes. However, in many cases this simple view of the network may
not represent reality. People interact in many di�erent ways. Fore example, two persons may be friends in
real life, but also may be friends in a social network, may collaborate in a research project or may work in
the same company. These are di�erent relationship types that may be present.

In its simplest form, a multilayer graph (a.k.a. multidimensional graph) G(V;E) is composed of a set
of nodesV and a set of edge subsetsE = E1 [E2 [::: [E l , where l is the total number of layers and
E j contains the set of edges present in thej -th layer of G. The �rst algorithm for computing the core
decomposition of a multilayer graph is reported in [47]. The authors not only provide a novel de�nition for
the core numbers on a multilayer graph but also show that this de�nition has some nice properties regrading
the density of the k-core subgraphs which are in sync with the core decomposition concept in simple graphs.

9

Hidden Graphs . Conventional graphs are characterized by the fact that both the set of verticesV and the
set of edgesE are known in advance, and are organized in such a way to enable e�cient execution of basic
tasks. Usually, the adjacency lists representation is being used, which is a good compromise between space
requirements and computational e�ciency. However, a concept that recently has started to gain signi�cant
interest is that of hidden graphs [11]. In contrast to conventional graphs, a hidden graph is de�ned as
G(V; f ()), where V is the set of vertices andf () is a function V � V ! f 0; 1g which takes as an input two
vertex identi�ers and returns true or false if the edge exists or not respectively. Therefore, in a hidden graph
the edge setE is not given explicitly and it is inferred by using the function f ().

Hidden graphs constitute an interesting tool and an promising alternative to conventional graphs, since
there is no need to represent the edges explicitly. This enables the analysis of di�erent graph types that are
implicitly produced by changing the function f (). Note that the total number of possible graphs that can

be produced for the same set of vertices equals 2(n
2) , where n = jV j is the number of vertices. It is evident,

that the materialization of all possible graphs is not an option, especially whenn is large. Therefore, hidden
graphs is a tempting alternative to model relationships among a set of entities. On the other hand, there
are signi�cant challenges posed, since the existence of an edge must be veri�ed by evaluating the function
f (), which is costly in general.

Motivated by recent developments in the area [135, 153] for detecting the top-k nodes with the highest
degrees in bipartite graphs, in [134], an algorithm is proposed to discover if a hidden graph contains ak-core
subgraph or not, by applying as few edge probing queries as possible.

2.3 Generalized Core Decomposition

The k-core decomposition was initially introduced for the degree property of the nodes in a graph. A natural
inquiry would be \why do we focus on node degrees?". An obvious answer to this question would be that
the degree of a node is relatively easily computed and it is a very simple concept. However, the degree is
not the only node property that could be applied in this framework. Batagelj and Zaver�snik proposed the
notion of generalized cores[16], which extends cores from degree to other node properties. In fact, any node
property can be used potentially to de�ne a di�erent kind of core decomposition, where the concept of the
core is associated with the node property under consideration.

De�nition 5 (Generalized Cores or p-cores) Let G = (V; E) be a graph and letw : E ! R be a function
assigning values (or weights) to the edges of the graph. A node property functionp() that assigns real values
on graph G, is de�ned as p(v; C), where v 2 V and C � V . Then, a subgraphH = (VH ; EH) induced by
the set VH � V is called a p-core at level t 2 R if and only if (i) 8v 2 VH : t � p(v; VH) and (ii) VH is a
maximal set.

Recall that, a function p() is called monotone if and only if the following property holds:

C1 � C2) p(v; C1) � p(v; C2); 8v 2 V: (2)

In [16] it was shown that for a monotone function p, the p-core at level t of the decomposition can be found
be successively removing nodes with value ofp less than t { as has been already described for thek-core
decomposition. Furthermore, the subgraphs corresponding to the cores are nested, i.e.,t1 < t 2) H t 2 � H t 2 .
In fact, if we consider that function p corresponds to the degree of a node, i.e.,p(v; C) = dC

v , where dC
v is

the degree of nodev in subgraph C, this function is monotone. Also, many other functions on the nodesv of
the graph including the in-degree and out-degree, the weighted degree (i.e., sum of weights of the adjacent
edges) and the number of cycles of lengthl that pass through node v, have been proven to be monotone;
thus, the same procedure can be used to extract the correspondingp-cores.

10

Figure 4: Example of a graph and itsK -classes, 2� K � 5. The �gure is courtesy of Wang and Cheng
[146]. c 2012 VLDB Endowment.

2.4 Extensions of the Core Decomposition

In this section, we describe various extensions of the core decomposition, covering among others the notion
of truss decomposition { a particular type of generalized cores based on the property of triangles.

2.4.1 Truss Decomposition

The K -truss decompositionextends the notion of k-core using triangles, i.e., cycle subgraphs of length three
[32, 146, 159]. LetG(V; E) be an undirected graph. We de�ne as atriangle 4 uvw a cycle subgraph of nodes
u; v; w 2 V . Additionally, the set of triangles of G is denoted by4 G . The support of an edgee = (u; v) 2 E
is de�ned as sup(e; G) = jf4 uvw : 4 uvw 2 4 G gj and expresses the number of triangles that contain edgee.

Given an undirected graph G, the K -truss, K � 2, denoted by TK = (VTK ; ETK), is de�ned as the
largest subgraph of G, where every edge is contained in at leastK � 2 triangles within the subgraph,
i.e., 8e 2 ETK ; sup(e; TK) � K � 2. Based on that, the truss number of an edgee 2 G is de�ned as
tedge(e) = max f K : e 2 ETK g. Thus, if tedge(e) = K , then e 2 ETK but e 62ETK +1 . We use K max to
denote the maximum truss number of any edgee 2 E. The K -class of a graph G = (V; E) is de�ned as
� K = f e : e 2 E; t edge(e) = K g. Figure 4 shows an example graph and itsK -classes.

Based on the above de�nitions, we can now introduce the concept ofK -truss decomposition.

De�nition 6 (K -truss decomposition) Given a graphG = (V; E), the K -truss decomposition is de�ned
as the task of �nding theK -truss subgraphs ofG, for all 2 � K � K max . That is, the K -truss can be obtained
by the union of all edges that have truss number at leastK , i.e., ETK =

S
j � K � j .

Since the K -truss decomposition is de�ned based on the number of triangles { a more \strict" criterion
compared to the one of degree { it can intuitively be considered as the \core" of thek-core subgraph.

Lastly, we mention here that the concept of K -truss decomposition has recently been extended to the
case of probabilistic (or uncertain) graphs [67, 162].

2.4.2 Density-friendly Core Decomposition

One of the drawbacks of thek-core decomposition is that the nestedk-core subgraphs do not satisfy a natural
density property { simply de�ned as the ratio between the number of edges and nodes of the subgraph. In
other words, the maximal k-core subgraph is not necessarily the densest subgraph of the graph. Based on
this observation, Tatti and Gionis [136] introduced the concept of density-friendly graph decomposition,
where i) the density of the inner core subgraphs given by the decomposition is higher than the density of
the outer ones, andii) the most inner subgraph will correspond to the densest subgraph. Furthermore, the
authors of [136] have shown that the locally-dense decomposition can be computed in polynomial time. Note

11

(a) k-cores andk-shells (b) k-contours and k-peaks

Figure 5: Example of the k-core andk-peak decomposition. The peak number of a node is at most its core
number. The �gure is courtesy of Govindan et al. [61]. c 2017 International World Wide Web Conference
Committee.

that, more recently, Danisch et al. [36] proposed a scalable algorithm for computing such a decomposition,
based on convex programming.

2.4.3 Peak Decomposition

Another drawback of the k-core decomposition de�ned earlier has to do with the fact that it is computed
globally; if the graph contains distinct regions of di�erent densities, the sparser among these regions might
be neglected by the decomposition. To deal with this issue, the authors of [61] have proposed the notion of
k-peak decomposition, which aims at �nding the centers of distinct regions in the graph { viewing the global
structure of the graph as a set of regions, each one resembling a mountain with a central peak.

More precisely, given a graphG, the k-contour can be de�ned as follows.

De�nition 7 (k-contour) Given a graph G(V; E), a k-contour is the induced subgraph over the maximal
set of nodes, such thati) the k-contour does not contain nodes from a higher contour (i.e., values higher
than k), and ii) each node in thek-contour has at leastk links to other nodes in thek-contour.

Based on that, we can de�ne the peak number of a node as the valuek such that the node belongs to a
k-contour. Then, a k-peak decompositionof a graph G is de�ned as the assignment of each node to exactly
one contour. Figure 5 shows an example graph and the correspondingk-core andk-peak decomposition.

De�nition 8 (k-peak) Given a graph G, a k-peak is the induced subgraph of the union ofj -contours,
8j � k.

Lastly, as shown in the paper [61], similar to the case ofk-core decomposition, thek-peak decomposition
is also unique, i.e., each node has a single unique peak number.

2.4.4 Nucleus Decomposition

Another extension of the core decomposition is thenucleus decomposition[126]. The basic motivation here
comes from the problem of dense subgraph detection, where the goal is to identify structures of dense
subgraphs within a large graph and to understand how those structures are related to each other. In
particular, we are interested in extracting a global, hierarchical representation of many dense subgraphs.

12

To this direction, the authors of [126] de�ned the notion of nuclei in a graph: an (r; s)-nucleus, for �xed
and small positive integers r < s , is de�ned as a maximal subgraph where everyr -clique (i.e., complete
graph of r nodes) is part of manys-cliques. Furthermore, nuclei subgraphs that do not contain one another,
cannot share anr -clique. Based on that, for various values ofr and s (r < s), it can be shown that the
(r; s)-nuclei form an hierarchical decomposition of the graph { where the density of the nuclei is increasing
as we move towards the leaves of the decomposition. In practice, the authors of [126] have observed that the
(3; 4)-nuclei provide the most interesting decomposition of real-world graphs. Figure 6 depicts an example
of the hierarchical structure of (3; 4)-nuclei decomposition in a snapshot of the Facebook graph composed
by 88K nodes. Each node of the structure corresponds to a (3; 4)-nucleus, and the tree edges indicate
containment. More generally, an ancestor nucleus contains all descendant nuclei. The �gure also shows the
scale and densities of the various nuclei subgraphs.

Figure 6: (3; 4)-nuclei subgraphs for a snapshot of the Facebook graph [126]. Branching depicts the di�erent
regions in the graph. The �gure is courtesy of Sar�y•uce et al. [126]. c 2015 International World Wide Web
Conference Committee (IW3C2).

2.4.5 Peeling Bipartite Networks

A graph G(Vh ; Va ; Eb) is called bipartite if the node set V can be partitioned into two disjoint sets Vh

and Va , where V = Vh [Va , such that every edgee 2 Eb connects a node ofVh to a node of Va , i.e.,
e = (i; j) 2 E) i 2 Vh and j 2 Va . In other words, there are no edges between nodes of the same partition.
A common approach to analyze bipartite networks is to project them into weighted or unweighted unipartite
ones. Nevertheless, this simplistic approach has several drawbacks { with the major one being the fact that,
a node with degreed in the original bipartite network will result in a d-clique in the projected one. Thus,
hub nodes will dominate the maximal k-core subgraph produced by the core decomposition on the projected
unipartite network.

Motivated by the task of dense subgraph detection in bipartite networks, Sar�y•uce and Pinar [125]
introduced the concept of bipartite graph peeling to detect dense subgraphs and the relationships among
them. The main idea is to rely on higher-order structural motifs [18] that are able to capture cohesiveness in
bipartite graphs. More precisely, the authors of [125] have used a particular motif, calledbuttery subgraph,
which corresponds to a (2; 2)-biclique (bipartite clique with 2 nodes at each partition) { the overall goal is
to discover bipartite subgraphs including many buttery structures and to construct relations among them.
Then, two types of decomposition can be de�ned: thetip decomposition and the wing decomposition.

13

De�nition 9 (k-tip decomposition) A bipartite subgraphH (U; V; E) � G induced onU, is a k-tip if and
only if: i) each nodeu 2 U takes part in at least k butteries; ii) each node pair (u; v) 2 U is connected by
a series of butteries; iii) H is maximal, i.e., there is no other k-tip that subsumesH .

Note that, two nodes u; w 2 U are connected by a series of buttery subgraphs, if there exists a sequence of
nodesu = v1; v2; : : : ; vk = w such that some buttery contains vi and vi +1 , for each i .

De�nition 10 (Tip number � (u)) The tip number � (u) of a node u 2 U is the largest valuet such that
there exists at-tip that contains u. Then, the tip decomposition of a bipartite graphG(U; V; E) is to �nd the
tip numbers of nodes inU.

2-tip
! ()=2

a b c

2 31

d e f

5 64

g

Figure 7: Example ofk-tip decomposition. Nodesa, b, e, and f participate at two buttery subgraphs, while
nodesc and d at three. Notice that, nodesc and d cannot have a tip number of 3 since their induced subgraph
has just one buttery. Therefore, nodes a to f form a 2-tip, and their tip number will be � (a � f) = 2. The
�gure is courtesy of Sar�y•uce and Pinar [125]. c 2018 Association for Computing Machinery.

Figure 7 gives an example graph and itsk-tip decomposition. Notice that, the k-tip decomposition does
not allow node overlaps, which might be the case in many real-world bipartite networks (e.g., author-paper
collaboration networks). To allow node overlaps, the authors of [125] have introduced the concept ofk-wing
decomposition, where the focus is on the edges of the network instead of the nodes.

De�nition 11 (k-wing decomposition) A bipartite subgraph H (U; V; E) � G induced on U, is a k-tip if
and only if: i) each edge(u; v) 2 E participates in at least k butteries; ii) each edge pair(u1; v1); (u2; v2) 2 E
is connected by a series of butteries;iii) H is maximal, i.e., there is no other k-wing that subsumesH .

De�nition 12 (Wing number (e)) The wing number (e) of an edgee 2 E is the largest values such
that there exists as-wing that contains e. Then, the wing decomposition of a bipartite graphG(U; V; E) is
to �nd the wing numbers of edges in a graphG.

3 Algorithmic Techniques

In this section, we focus on algorithmic techniques for the computation of thek-core decomposition in
di�erent settings. The design of an algorithm for core decomposition depends on many diverse factors such
as the type of the graph (simple, directed, signed, weighted, probabilistic), the hardware infrastructure
(memory-based, disk-based, parallel, distributed), the type of the output (exact, approximate), just to name
a few. Since there is a plethora of di�erent algorithms we are going to discuss the most representative ones.

14

3.1 In-Memory Computation

The computation of the k-core decomposition of a graph can be performed through a simple process that is
based on the following rationale: to extract the k-core subgraph, all nodes with degree less thank and their
adjacent edges should be recursively deleted [128]. That way, beginning withk = 1, the algorithm removes
all the nodes (and the incident edges) with degree equal to or less thank, until no such node remains in the
graph. Also notice that, removing edges that are incident to a node may cause reductions to the degree of
neighboring nodes; the degree of some nodes may become at mostk, and thus, they should also be removed
at this step of the algorithm. When all remaining nodes have degreedv > k , k is increased by one and the
process is repeated until no more remaining nodes are left in the graph.

A straight-forward implementation of this algorithm requires a priority queue to store the nodes, prior-
itized by their degree. The removal of a node requires in the worst case the deletion ofn � 1 edges which
translates to the execution ofn � 1 decrease-key operations in the priority queue. Since each edge is examined
exactly once, the worst case complexity of the naive algorithms becomesO(m � logn).

However, the problem can be solved in linear time, by using bin-sorting as it was demonstrated in [17]
by Batagelj and Zaver�snik. However, the same idea was applied by Matula and Beck [100]. All nodes are
maintained sorted with respect to their degrees by using a comparison-free sorting algorithm which maintains
separate bins for each degree value. Clearly, for a graph withn nodes, the minimum degree of a node is 1
(assuming no isolated nodes exist) and the maximum isn � 1. Thus, by keeping an in-memory array of all
possible degree values and keeping track of bin boundaries, each edge deletion can be handled inO(1) time,
resulting in a total complexity of O(m + n). The corresponding pseudocode is given in Algorithm 1. Note
that, maintaining the k-core decomposition of a graph is equivalent of keeping the core numberci ; 8i 2 V .

Algorithm 1: CoreDecomposition (G)

Input: the graph G
Result: the core numbers (arrayC)

1 V set of vertices ofG
2 array D vertex degrees
3 sort array D in non-decreasing order
4 for eachv 2 V in the order do
5 C[v] D [v]
6 for eachu 2 N (v) do
7 if D [u] > D [v] then
8 D[u] D [u] � 1
9 reorder array D accordingly

10 return C

3.2 Disk-Resident Graphs

A natural extension to the previous algorithm is based on the fact that most of the interesting real-world
networks are too large to �t in main memory. Therefore, we need e�cient algorithmic techniques for providing
the core decomposition in cases where the graph is stored in secondary storage (i.e., disk).

The �rst algorithm (EMCore) to attack the problem in secondary storage was reported in [30].EM-
Core assumes that the graph resides on disk and it performs the following steps:i), graph partitioning, ii)
core number estimation andiii) recursive top-down processing.

15

Graph partitioning . The purpose of this step is to decompose the graph into small subgraphs, so that
core number computation can be performed in each subgraph separately. Evidently, each of these subgraphs
must �t in main memory.

Although many graph partitioning techniques are available, we are interested in a partitioning disk-
resident graphs. The algorithms scans the input graph only once and partitions the vertex setV into a set
of p mutually disjoint vertex subsets U = f U1; :::; Upg, where V =

S
i Ui and for any i , j , Ui \ Uj = ; .

The graph partitioning algorithm starts reading nodes from the disk-resident graph and maintains in
memory as many nodes as possible. LetUmem denote the current memory-resident part of the graph. For
any examined nodeu, if u is not connected to any of the vertex subsets currently inUmem , a new partition
is created andu becomes the only member of it. Otherwise,u is assigned to the vertex subset to withu
has the most connections. In case we reach the block limits, a new block is ushed to the disk. Also, if the
memory capacity is reached, the largest partition of the memory-resident partUmem is ushed to the disk.
This process continuous until all nodes have been scanned.

Core number estimation . For each subgraph determined by the partitioning process, the upper bound of
the core number of each node is determined. This bound becomes tighter during the course of the algorithm.
Initially, the upper bound (u) of the core number of each nodeu, is set to the degree ofu, i.e., (u) = deg(u).

The re�nement of the upper bound is performed by using the following observation: for a vertexu let
Z denote the subset of the neighbors ofu such that their upper bound is strictly less than (u). Then,
for any nonempty subset Z 0 � Z , if deg(u) � j Z 0j < (u), then the upper bound (u) can be tighten as
 (u) = max f deg(u) � j Z 0j; max (Z 0)g, where max (Z 0) denotes the maximum upper bound found inZ 0.

Algorithm 2: Estimate (G)

Input: the graph G
Result: core number estimation

1 for each vertexu 2 V do
2 initialize (u) deg(u)

3 for eachU 2 V do
4 set Z f v 2 N (u); (v) < (u)
5 if deg(u) � j Z j < (u) then
6 let f (X) maxf deg(u) � j X j; max (X)g
7 set (u) minf f (Z 0) : Z 0 � Z; Z 0 6= ;g

8 repeat lines 3-7

The outline of the estimation process is shown in Algorithm 2. This algorithm is executed every time a
block needs to be ushed to disk during the partitioning process described previously. Note that in order to
determine the subsetZ 0, there is no need to generate all possible subsets ofZ which would lead to checking
2jZ j subsets. Instead, nodes inZ are sorted in decreasing order of (u) and keep the �rst nodes in the order
that minimize the value of f (Z 0). This results in a much more e�cient computation, since we only need to
check at most jZ j subsets.

Recursive top-down processing . Based on the upper bound of the core number, thek-classes are
recursively computed for a convenient value ofk. The value of k is determined so that the relevant subgraph
can �t in main memory. More speci�cally, a range of values [kl ; ku] is determined, wherekl � ku . The target
is to determine the value ofkl , given the value ofku and b, which is the maximum number of blocks that can

16

be accommodated in main memory. The value ofb is simply bM=B c, whereM is the total memory capacity
and B is the size of the disk block.

Let 	 ku
k l

denote the subset of nodes with core upper bound estimation in the range [kl ; ku], i.e., 	 ku
k l

=
f u : u 2 V; kl � (u) � ku g. At each recursive step, the algorithm constructs a subgraph that is relevant for
the computation of the exact core numbers of the nodesv 2 	 ku

k l
.

We will discuss briey the way kl is determined. Let K be the set of values ofk such that the nodes
in the set 	 ku

k are distributed in at most b di�erent vertex sets of U. Formally, the set K is computed as
follows:

K = f k : 1 < k � ku ; jUx : Ux 2 U; Ux \ 	 ku
k 6= ;j � bg

Based on this, the value ofkl is set to minf k : k 2 K g if K 6= ; or it is set to ku otherwise. This way, at each
recursive step, the algorithm loads as many parts of the graph as possible into main memory. Since bothkl

and ku are determined, the algorithm proceeds with the computation of the core numbers of all nodes in 	ku
k l

by loading in main memory the corresponding subgraphs. Then, the core number of each nodeu currently
in main memory is re�ned. Before the execution of the next recursive step, the nodes that have their core
number re�ned are removed from main memory (together with the corresponding edges) afterdepositing
some important bookkeeping information that may be needed by the next recursive step. A new value for
the upper bound of the core number is set asku (kl � 1), the new value ofkl is computed and the next
recursive step is executed. The process terminates when no morek values are left to examine (essentially
this translates to kl � 1).

In conclusion, EMCore manages to compute the core number of all nodes without the requirement that
the graph �ts in main memory. This fact enables the computation of core decomposition of large disk-resident
graphs. The algorithm performsO(kmax) iterations over a graph G, wherekmax is the maximum core number
of G. A limitation of the EMCore algorithm is that it may require a signi�cant number of I/O operations
to detect the appropriate partitions. In [60] a space-e�cient algorithm is proposed (NimbleCore), that
provides accurate estimates of the core numbers by usingO(n) space for graphs with power-law degree
distribution and O(n logdmax) space for arbitrary graphs, wheredmax is the maximum node degree. Another
implementation of EMCore has been reported in [72], which is based on GraphChi [78]. In the same work,
the classic code decomposition algorithm [17] is implemented using the Webgraph [21] framework. Webgraph
is a graph compression framework that provides e�cient access to a compressed graph.

3.3 Core Decomposition in Dynamic Graphs

The previous techniques discussed so far assume that the graph is available in the very beginning of the
execution. However, many modern applications are characterized by frequent updates, meaning that the
structure of the graph may change over time by the insertion/deletion of nodes or edges. Evidently, if the
graph changes then we can reevaluate the core numbers by running the algorithm again. Although this
approach will provide the correct results, it is expected that the performance will degrade, especially of
updates are frequent.

As an example, consider the graph shown in Figure 8(a). The core numbers are shown in parentheses
near each node identi�er. Assume that a new edge between nodes 6 and 8 is inserted. The updated core
numbers are shown in Figure 8(b). It is evident that only the core numbers of node 8 will change from 1 to
2. No other changes are required, since the core number of the rest of the nodes does not change.

A possible alternative is to maintain the previous core numbers and perform only incremental changes
to the core numbers, based on the parts of the graph that have change. For example, the insertion of a
new edge in the graph may impact the core numbers of speci�c nodes. The idea is to detect the set of
a�ected nodes and recompute their core numbers without recomputing the core numbers for all the nodes.
A similar approach can be followed when an edge is deleted from the graph. Performing incremental changes

17

(a) initial graph (b) after inserting edge (6,8)

Figure 8: Changes performed to the core numbers after inserting a new edge linking nodes 6 and 8. Only
the core number of node 8 needs to be updated.

is expected to be much more e�cient than re-executing the core decomposition algorithm from scratch. In
this section, we discuss the methodology proposed in [124], which provides an incremental way to update
the core numbers. The incremental algorithm is based on the following foundations:

1. If an edge is inserted to or removed fromG, the core number of any nodeu can change by at most one.

2. If an edge (u; v) is inserted to or removed fromG, where c(u) < c (v), then c(v) cannot change.

3. If an edge (u; v) is inserted into G, then all of the vertices whose core numbers have changed should
form a connected subgraph. Similarly, if an edge (u; v) is removed from G, then all the vertices whose
core numbers have changed should form a connected subgraph.

4. If an edge (u; v) is inserted (removed) andc(u) � c(v), then only the vertices w that have c(w) = c(u)
and are reachable fromu via a path that consists of vertices with core numbers equal toc(u), may
have their core numbers incremented (decremented).

In [124], three di�erent algorithms are studied: i) SubCore , which is based on the aforementioned foun-
dations, ii) PureCore , which applies some additional optimizations andiii) Traversal , which manages
to reduce the number of examined nodes even further and shows the best overall performance. Based on the
experimental results in [124], even theSubCore algorithm, which is the simplest among the three proposed,
manages to update the core numbers up to 14,000 faster than the standard baseline algorithm which recom-
putes the core decomposition from scratch. Interestingly, a very similar set of foundations is also de�ned in
[87] for the same topic. The two pieces of work are seemingly developed in parallel and there is not direct
comparison of their proposed algorithms but the theorems appear to be equivalent.

The later work [151] address [124] and [87] as being impractical for large graphs (in the aspect of number
of nodes). Dynamic graphs are referred as temporal in [151] and the number of edges between two vertices
may be more than one as a mean to describe an edge being in multiple instances in time (i.e. if an edge
exists in t1 and t2 then it is counted as two edges). This transforms the problem ofk-core decomposition to
a (k; h)-core decomposition where theh is the number of edges a node shares with all of its neighbors and it
is an additional degree/dimension in the core decomposition model. E�ectively, by thresholdingh (similar
to k) one calculates cores as di�erent temporal instances.

Two distributed algorithms are proposed for the calculation of the temporal core decomposition. The
�rst is based on the Pregel model [93] and is similar to the classick-core algorithm on Pregel but it
is considered ine�cient as it has high memory, communication and computation costs. A more e�cient
distributed algorithm is then presented based a block-centric model for graph computations [152] (Blogel)
which is elaborated in the Distributed Computation section.

In [46] cores in a temporal graph are considered to exist in temporal internals � and are named span-
cores. The authors then make the the note that a span-core atk; � is contained in a span core k; � 0 if

18

k0 � k & � 0 � �. Based on this, they de�ne a maximal span-core as one where it is not contained in
another span core (the previous condition cannot be satis�ed by another core).

In order to �gure out whether graph of � = [ts; te] contains a maximal span-core, the authors prove that
one only needs the core numbers from �0 = [ts � 1; te] and � 00 = [ts; te + 1]. This eventually motivates
the authors to start from larger temporal spans instead of calculating the core decomposition at each time-
instance t of the graph. In this manner, the authors do not consider every core decomposition at eacht as
a maximal one.

3.4 Local Computation of Core Numbers

The main characteristic of the aforementioned techniques is that the core number of a node is determined
by taking into account the whole graph. Moreover, the output in all cases is the core number of every node
u 2 V . In interesting alternative is to try to estimate the core number of a node u by considering only the
neighborhood ofu (e.g., the 1-hop, 2-hop 3-hop neighborhood, etc). The main advantage of such an approach
is that we do not need to consider the whole graph, which potentially leads to more e�cient computation.
Also, in many cases we need to compute the core number of a small subset of nodes. However, we expect
that the core number determined by such alocal computation may not much the core number determined if
the whole graph is taken into account.

The �rst work towards local core number estimation was reported in [109]. For a nodeu let Nd(u)
denote the set of nodes at adistance at most d from u. In its simplest form, the distance can be the shortest
path distance, which, in the case of unweighted graphs, translates to the minimum number of hops between
two nodes. Let Gu

d denote the graph induced by thed-neighborhood of u. One possible approach is to
compute the core number of nodeu in the induced subgraphGu

d . Let cd(u) denote the core number of node
u computed in the induced subgraphGu

d . By increasing d it is expected that a more accurate estimate of the
core number may be achieved, since a larger induced subgraph is being used. Evidently, ifd is large enough
so that Gu

d = G, then cd(u) = c(u), meaning that the core number will be accurately computed. It is not
hard to prove that always cd(u) � c(u), i.e., the core number computed in the induced subgraphGu

d is a
lower bound on the exact core numberc(u) computed in the whole graph. The outline of the lower bound
computation is given in Algorithm 3.

Algorithm 3: LowerBound (G,d,u)

Input: graph G, number of hopsd, node u,
Result: core number estimation in induced subgraphGu

d

1 if d == 0 then
2 return (deg(u))

3 else
4 Vd(u) the d-neighborhood ofu
5 Ed(u) edges amongVd(u)
6 create induced graphGu

d using Vd(u) and Ed(u)
7 executeCoreDecomposition on Gu

d
8 return cd(u) (the core number of u in Gu

d)

In the sequel, we present a more sophisticated estimator which, in contrast to the previous one, uses
some additional foundations to provide tighter bounds for the core number. Letu the node we are interested
in. In case d = 0, the only available bound that we may use is the degree ofu, since c(u) � deg(u). By
setting d = 1, we may use additional information related to the 1-hop neighborhood ofu. For example, if

19

the core numbers of the direct neighbors ofu are known, then the value ofc(u) can be computed accurately,
by utilizing the following rationale:

� A node u belongs to thek-core of G, if and only if u has at leastk direct neighbors in the k-core.

� Let u1, u2; ::: be the direct neighbors ofu with known core numbers. Then, it holds that:

c(u) = max
1� i � deg(u)

(min(c(ui); deg(u) � i + 1)) (3)

Evidently, the assumption that the core numbers of all neighbors ofu are known, is quite restrictive.
However, the rationale of the previous idea is very useful in deriving an upper bound of the core number
of a node, based on upper bounds of the core numbers if its neighbors. In fact, Equation 3 is valid for any
f (u) � c(u), 8u 2 V . Thus, we can derive the following recurrence, whereu1, u2, ... are the direct neighbors
of u ordered in increasing order based on ^cd� 1(), i.e., ĉd� 1(ui) � ĉd� 1(ui +1):

ĉd (u) =

(
max

1� i � deg (u)
(min(ĉd� 1(ui); deg(u) � i + 1)) ; d > 0

0; d = 0

Evidently, ĉd(u) is an upper bound for c(u). The outline of the computation of ĉd(u) for any node u and
any value of d is given in Algorithm 4.

Algorithm 4: UpperBound (G,d,u)

Input: graph G, number of hopsd, node u,
Result: core number estimation ĉd(u)

1 if d == 0 then
2 return (deg(u))

3 else
4 for v 2 N1(u) do
5 compute ĉd� 1(v)

6 order nodes inN1(u) based onĉd� 1

7 ĉd(u) deg(u)
8 for 1 � i � j N1(u)j do
9 j minf ĉd� 1(u); deg(u) � i + 1g

10 if j > ĉd(u) then
11 ĉd(u) j

12 return ĉd(u)

Based on the previous discussion, the exact core numberc(u) of a node u is bounded by the two values
cd(u) and ĉd(u):

cd(u) � c(u) � ĉd(u); 8d � 0

Based on the experimental results given in [109], both estimators provide satisfactory results ford = 2 for
di�erent input graphs. The accuracy of the estimators is quanti�ed by considering the percentage of the total
number of nodes for which the estimators give the exact core number. In most of the cases, the propagating
estimator ĉd(u) is more e�cient than the induced estimator cd(u) in terms of accuracy as de�ned previously.
In fact, the propagating estimator manages to achieve an accuracy between 80% and 90%, in the majority
of the experiments performed, ford = 2.

20

As a concluding remark, in cases were the core number of speci�c nodes needs to be computed, the
methodology described is an e�ective alternative to the complete core decomposition process since it is more
e�cient with respect to runtime and provides satisfactory accuracy results.

3.5 Parallel and Distributed Techniques

The main feature of the algorithmic techniques discussed so far is that they work in a centralized environ-
ment. However, mining massive graphs in a centralized manner does not provide scalable solutions. A very
promising alternative is the exploitation of multiple resources to attack the problem. Towards this goal,
there are two di�erent research directions based on architectural assumptions:i) solving the problem in a
shared-memorymulti-core machine (the parallel case) andii) solving the problem in a cluster of machines
(the distributed case).

Parallel Computation . Parallel computation of core decomposition in multi-core processors was �rst
investigated in [129], where theParK algorithm was proposed. ParK was designed to work e�ciently in
multi-core processors where locality of reference is very important. In contrast to other techniques,ParK
carefully reduces the number of random memory accesses performed. Note that random memory accesses
may invalidate the caches in a multi-core system leading to performance degradation.

ParK uses three data structures: Core, Curr and Next . Core is an array if size n initialized to the
degrees of the nodes, i.e., initiallyCore(u) = deg(u) for any node u. It is updated continuously during the
course of the algorithm and its �nal values correspond to the core numbers of the nodes.Curr contains the
set of nodes to be processed during the current iteration, whereasNext contains the nodes to be processed
in the next iteration.

To process a nodeu involves accessing the direct neighbors ofu and decreasing their degree if they have
not already been processed. Computation is performed in di�erent levels. While processing levell , all nodes
that belong to the l-shell are processed. This is performed in two steps,Scan and Loop :

� During the Scan phase, the arrayCore is scanned and all relevant nodes belonging to thel-shell are
collected in the setCurr . Formally: Curr = f u : deg(u) = lg.

� The Loop phase is executed in sublevels. In each sublevel, all nodes in the setCurr are processed.
While processing nodeu, if a neighbor v is moved to Curr , which means that deg(v) = l, then node v
is added to the setNext . At the end of the sublevel, the contents ofNext are transferred to the set
Curr to be processed in the next sublevel.

The outline of ParK is given in Algorithm 5. It is supported by two procedures: Scan and SubLevel .
In the previous discussion, the description ofParK is based on a centralized environment. In the sequel

we provide the changes need to be applied in order to useParK in a parallel (shared-memory) setting. First,
we assume that processing will be performed by a set of threadsT. Let t denote the total number of threads
in T. Next, proceduresScan and SubLevel must be enhanced to allow multi-thread execution. To achieve
this, nodes are split among thet threads, meaning that each thread handles roughlyn=t nodes. However,
since the data structures used may need to be written by multiple threads concurrently, race conditions may
appear and they must be handled carefully to avoid inconsistencies.

The outline of the parallel version of Park is given in Algorithm 6. By inspecting the pseudocode we
observe that there are some di�erences in comparison to the centralized variation. For example, changes
performed to the Curr set must be atomic, which means that the write operations must be protected due
to race conditions. For example, adding a new node id toCurr requires anatomicIncrement() operation
(Line 23) in Procedure Scan . Also, similar atomic operations are required in ProcedureSubLevel (Lines

21

Algorithm 5: ParK (G) /* centralized */

Input: the graph G
Result: core numbers

1 Curr ;
2 Next ;
3 remaining = n
4 level = 1
5 while remaining > 0 do
6 invoke Scan (Core, level, Curr)
7 while jCurr j > 0 do
8 remaining remaining � j Curr j
9 invoke SubLevel (Curr , Core, level, Next)

10 Curr Next
11 Next ;

12 level level + 1

13 return Core

14 Procedure Scan (Core, level, Curr)
15 for u 2 V do
16 if Core[u] = level then
17 Curr Curr [f ug

18 Procedure SubLevel (Curr , Core, level, Next)
19 for u 2 Curr do
20 for v 2 N (u) do
21 if Core[v] > level then
22 Core[v] Core[v] � 1
23 if Core[v] == level then
24 Next Next [f vg

30, 32, 34). In addition, in the main algorithm we need to invokefork() (Line 3) to create multiple instances
that will execute in parallel and also join() (Line 17) to wait for the threads to �nish before we report the
core numbers back to the caller ofParK . Moreover, there is need for include synchronization calls (Lines
8, 12, 15). The invocation of synchronize() sets a barrier which must be reached by all running threads
before code execution can continue. In Algorithm 6 the additions required to guarantee consistency during
execution are depicted framed.

To get an idea of the performance improvement thatParK achieves, for the Friendster graph [84] which
contains 65 million nodes and 1.8 billion edges,ParK needs roughly 160 seconds to compute the core num-
bers whereas the centralized algorithm requires almost 1000 seconds on a machine with 8 physical cores.
Similar behavior is observed in the majority of the datasets used for experimental evaluation.

Distributed Computation . Although the computation of the core decomposition using parallelism is very
attractive compared to the centralized alternative, still there are signi�cant limitations. The use of shared
memory may become a bottleneck by increasing the number of parallel resources in the system. Anyway, the
level of parallelism may increase up to a point using a shared-memory architecture. In addition, if the size
of the graph grows signi�cantly, we may face storage problems since the graph may not be accommodated

22

Algorithm 6: ParK (G) /* parallel */

Input: the graph G
Result: core numbers

1 Curr ;
2 Next ;
3 invoke fork()
4 remaining = n
5 level = 1
6 while remaining > 0 do
7 invoke Scan (Core, level, Curr)
8 invoke synchronize()
9 while jCurr j > 0 do

10 remaining remaining � j Curr j
11 invoke SubLevel (Curr , Core, level, Next)
12 invoke synchronize()
13 Curr Next
14 Next ;
15 invoke synchronize()

16 level level + 1

17 invoke join()
18 return Core

19 Procedure Scan (Core, level, Curr)
20 for i = 0 to n � 1 in parallel do
21 idx 0
22 if Core[u] = level then
23 a atomicIncrement(idx , 1)
24 Curr [a] i

25 Procedure SubLevel (Curr , Core, level, Next)
26 idx 0
27 for u 2 Curr in parallel do
28 for v 2 N (u) do
29 if Core[v] > level then
30 a atomicDecrement(Core[v], 1)
31 if a � level then
32 atomicIncrement(Core[v], 1)

33 if a + 1 == level then
34 b atomicIncrement(idx , 1)
35 Next [b] v

in main memory. One may argue that in such a case, disk-based techniques, like theEMCore algorithm
which was covered in a previous section, could be applied. The problem with the algorithms that utilize
secondary storage is that they perform a large number of passes over the data. As the graph grows larger
the number of passes is expected to increase leading to ine�cient computation.

During the last �fteen years we have witnessed a tremendous progress in data-driven distributed comput-
ing. In addition to the numerous ad-hoc solutions, several uni�ed distributed platforms like MapReduce [37],

23

Hadoop [149] and Spark [154] appeared and paved the way for nowadays cluster computing. These platforms
are based on a cluster of shared-nothing machines (usually of commodity hardware) and they are able to
execute complex data mining and machine learning algorithms over massive datasets e�ciently. For the re-
maining of this section we will focus on a distributed core decomposition algorithm that was initially designed
for a cluster of machines without any speci�c organization. The only requirement is that the processors may
communicate my exchanging messages through the interconnect (usually a high-speed LAN). However, the
algorithm was later adapted in order to be applicable in the Spark distributed engine.

The �rst distributed core decomposition algorithm was reported in [105, 106]. In the general case,
each processing unit is responsible for multiple graph nodes. To simplify the presentation we will adopt the
one-to-one scenario, meaning that we assume that each graph node corresponds to a single processing unit
(a processor or a core). This model, resembles the Pregel's [93] \think as a vertex" point of view. In other
words, to design an algorithm we should take the point of view of a graph nodeu and try to provide the
answer based on the information collected from the neighbors ofu in an iterative manner. Each graph node
u maintains the following information:

� core(u): This is the currently most accurate estimate for the core number ofu, which is initialized to
the degree ofu.

� est[u1; :::; ul]: This is an array (or hashmap) storing the current estimates for the core numbers ofu's
neighbors. More speci�cally, est[uj] is the most up-to-date estimate of the core number ofuj known
by u. Initially, est[uj] 1 .

� changed(u): This is a boolean ag that is set to true whenever the value ofcore(u) changes. This
attribute is initialized to false.

The computation for a node u begins by sending a message to all it's neighbors. Since initially there is
no accurate estimate forc(u) (the core number of u), we may use the node degree as an upper bound. Node
u prepares a messagemsg[u; deg(u)] containing the node identi�er of u and the current best estimate of the
core number. This message is transmitted to all neighbors ofu.

Assume now that u receives a messagemsg[ui ; k] from node ui (i.e., the i -th neighbor of u). From this
message, we know thatk is the current best estimate for core(ui). Therefore, if k < est [ui], this means
that the previous estimate that node u knows about ui is larger than the last received, and it should be
updated by setting est[ui] k. Once nodeu receives such a message, a new estimate forcore(u) may be
produced. Let h denote the newly estimated value of the core number based on the information contained
in est[u1; :::; ul]. If h < core(u), then core(u) h and also changed(u) true , which means that a new
estimate for core(u) is available.

The outline of this technique is given in Algorithm 7. The main part of the algorithm is composed of three
phases, depending on the event being handled. Initially, and before the start of execution an initialization
step is applied in Lines 1-6. In this step, the only valid estimate for the core number of the degree ofu.
Therefore, the message send by nodeu to all its neighbors simply contains the degree ofu. Every time a new
message is received byu from one of its neighborsui , an update is performed in case the new value received
has an impact on the estimation the core(u) (Lines 7-13). The function UpdateCore is used in this case
(Lines 18-29). Nodeu sends periodically (every � t time instances) the value ofcore(u) to its neighbors, in
casecore(u) has changed (Lines 14-17).

The algorithm terminates when no change is performed on any core number. If this happens, then the
core number estimate for each node equals its actual core number. To be able to achieve this convergence
several techniques may be applied, e.g., centralized, decentralized, barrier synchronization. Another more
e�cient technique is to execute the algorithm for a �xed number of rounds. The main motivation for this
alternative is that after the the �rst few rounds the core number estimates are quite close to the actual

24

Algorithm 7: PerNode (u)

Input: node u
Result: new estimateh for core(u)

1 On Initialize /* initialization step */
2 changed(u) false
3 core(u) deg(u)
4 for eachui 2 N (u) do
5 est[ui] 1

6 send(msg[u; ui]), 8i /* inform neighbors */

7 On Receive([ui ; k]) /* msg from a neighbor */
8 if k < est [ui] then
9 est[ui] k

10 h UpdateCore (u; est[]; core(u))

11 if h < core(u) then
12 core(u) h /* update core estimate */
13 changed(u) true

14 Repeat (every � t time instances)
15 if changed(u) then
16 send(msg[u; core(u)]) /* inform neighbors */
17 changed(u) false

18 Function UpdateCore (u,est[],k)
19 for i = 1 to k do
20 count[i] 0

21 for eachv 2 N (u) do
22 j minf k; est[v]g
23 count[j] count[j] + 1

24 for i = k downto 2 do
25 count[i � 1] count[i � 1] + count[i]

26 i k
27 while i > 1 and count[i] < i do
28 i i � 1

29 return i

core numbers. Therefore, there is an e�ciency vs. accuracy trade-o� since on one hand the number of
rounds is �xed but on the other hand the core numbers reported may not be 100% accurate. We have
performed some experiments to test the accuracy of the algorithm by using a �xed number of iterations.
Table 3 presents some representative results. More speci�cally, the table shows the percentage of nodes that
have the correct core number after 20 rounds (iterations). We observe, that the accuracy is adequate for
most realistic scenarios taking into account that an exact computation would require a signi�cant number
of rounds (shown in columnmax num of iters). All datasets are available at [84].

In [151], the Pregel model is deemed ine�cient for large temporal graphs and an alternative is proposed
based on the Bogel model [152]. This approach partitions the graph into blocksVb that are accompanied
with the information of which vertices are also connected toVb (V +

b). The core numbers in eachVb are
computed and then the core numbers of theV +

b vertices are used to update their respective block (Vb). The

25

Table 3: Percentage of nodes with correct core numbers after 20 iterations (Accuracy@20).

Graph Max Num of Iters Accuracy@20

Orkut 191 88.76%

LiveJournal 99 98.49%

Web-Stanford 538 90.2%

Enron Email 28 99.7%

degree of a node inVb takes into account alsoV +
b . The main intuition of the update is that the vertices in V +

b

with a core number lower than the minimum degree ofVb will not contribute to the core number of vertices
in the future. Those vertices are removed fromV +

b and core numbers are recomputed inVb recursively.

3.6 Probabilistic Core Decomposition

The aforementioned algorithmic techniques operate oncertain graphs, meaning that graph nodes and edges
are present with certainty (they always exist). However, as stated in Section 2, many applications require
some kind of uncertainty associated with nodes or edges. In such a case, the graph becomesuncertain or
probabilistic, meaning that the edge (or node) will be present in the network with some probability. For the
following discussion, we will assume that graph nodes are certain (i.e., exist at all times) whereas uncertainty
is associated only with edges.

In the sequel we describe the algorithm reported in [23]. LetG = (V; E; p) be an uncertain (a.k.a
probabilistic) graph, where p : E ! (0; 1] is a function that assigns probabilities to the edges of the graph.
A widely used approach to analyze uncertain graphs is the one ofpossible worlds, where each possible world
constitutes a deterministic realization of G. According to this model, an uncertain graph G is interpreted as
a set f G = (V; EG)gE G � E of 2jE j possible deterministic graphs [119, 110, 111]. LetG v G indicate that G is
a possible world ofG. Then, the probability that G = (V; EG) is observed as a possible world ofG (assuming
independence of edge existence) is given by the following formula:

Pr[GjG] =
Y

e2 E G

p(e)
Y

e2 E nE G

(1 � p(e)) (4)

As an example, consider the probabilistic graphG shown in Figure 9(a). Two possible instances ofG are
given in Figure 9(b) and 9(c). High-probability edges are expected to show up more frequently in instances
of G in comparison to low-probability edges. In this example,G1 and G2 are two of the possible worldsthat
can be produced by usingG as a template.

One of the novelties of the approach proposed in [23] is that the degree of a node is expressed by using
probabilistic arguments. First, we need an expression of the probability that the degree of a nodeu is more
than k. Note that this is a natural concept taking into account that the degree of a node is in general
di�erent in di�erent instances of the probabilistic graph G. This probability is expressed as follows:

Pr[deg(u) � k] =
X

G2G k
u

Pr[G] (5)

where Gk
u is the set of instances ofG where u has a degree at leastk. Next, we introduce the � -degree of a

26

(a) G (b) G1

b

b

b

v3

b

b

b

b

b

v1

v2

v4

v5

v6

v7

v8

v9

b

(c) G2

Figure 9: A probabilistic graph G and two possible instancesG1 and G2. The numbers near the edges denote
existential probabilities.

node u, denoted as�deg(u) and de�ned as follows:

�deg(u) = max f k � j N (u)jj Pr[deg(u) � k] � � g (6)

More speci�cally, the �deg(u) is the maximum k for which the probability that the degree of u is more than
k, is more than � . Recall that jN (u)j is the number of direct neighbors ofu in the probabilistic graph G.
Based on the variablesk and � , the concept of (k; �)-core is de�ned: the (k; �)-core of a probabilistic graph
G is a maximal subgraphH(VH ; EH ; p) such that the probability that each vertex u 2 VH has degree no less
than k in H is greater than or equal to � , i.e., 8u 2 V : Pr[degH (u) � k] � � .

De�nition 13 (Probabilistic core decomposition) Given an uncertain graphGand a probability thresh-
old � 2 [0; 1], �nd the (k; �)-core decomposition ofG, that is the set of all (k; �)-cores of G.

The outline of the probabilistic core decomposition technique is shown in Algorithm 8. We observe that
in contrast to the standard core decomposition approach, degree computation is substituted by� -degree
computation in the probabilistic case. More speci�cally, all � -degrees are computed at the beginning of the
processing (Lines 1,2), and� -degrees of neighboring nodes are updated accordingly (Lines 11-15). However,
while the degree computation is straightforward in the deterministic case, computing� -degrees are far from
trivial. In [23], interesting techniques are developed for computing� -degrees e�ciently, based on dynamic
programming.

The probabilistic core decomposition was also studied recently in [117], where (k; �)-cores were proposed.
In contrast to (k; �)-cores, (k; �)-cores capture the likelihood of a node to be ak-core member in di�erent
instances of an uncertain graphG. Given k and the probability threshold � , the technique of [117] detects
nodes such that with probability at least � are included in the k-core in possible worlds.

4 Representative Applications

The core decomposition concept, despite its simplicity, has been applied successfully in many di�erent
scienti�c disciplines. It turns out that the core number of network nodes plays di�erent roles, depending on
the context being used and the type of the network applied. In this section, we present the most representative
use cases and the associated results obtained.

27

Algorithm 8: ProbCores (G, �)

Input: the probabilistic graph G, probability threshold �
Result: the � -core number for each node

1 forall u 2 V do
2 compute �deg(u)

3 c ; ; d ; ; D [; ; : : : ; ;]
4 forall u 2 V do
5 d[u] �deg(u)
6 D [�deg(u)] D [�deg(u)] [f ug

7 forall k = 0 ; 1; : : : ; n do
8 while D [k] 6= ; do
9 D [k] D [k] � f vg, random v 2 D [k]

10 c[v] k
11 forall u : (u; v) 2 E; d[u] > k do
12 recompute � -deg(u)
13 D [d[u]] D [d[u]] � f ug
14 D [� -deg(u)] D [� -deg(u)] [f ug
15 d[u] � -deg(u)

16 V V � f vg

17 return c /* n-dimensional vector containing the� -core number of each vertex inG */

4.1 Network Modeling and Analysis

The k-core decomposition and its extensions have been extensively used in several applications. Seidman
[128] was the �rst that proposed to use the tool ofk-core decomposition in social network analysis, as an easy
to compute and e�ective way to extract dense subgraphs. Later, other studies in large scale real networks
followed [64, 58], including the analysis of Microsoft Instant Messenger (MSN) [82] and Facebook [141] social
graphs. In a similar way, the decomposition has been applied to study [9] and model [27] the Internet graph.

Furthermore, several theoretical studies about the structure of real networks have been presented from
the statistical physics community [38]. In [65], it was shown that the k-core plays a central role for the
modeling of real world graphs and their percolation properties. Based on that, a graph generation model
was introduced, and the properties of the generated graphs has been compared against a variety of real
networks.

4.2 Temporal Evolution

An interesting application of temporal cores is found in the aforementioned work of [46] (Dynamic Graphs)
for the detection of anomalous contacts in social networks. Besides the extensions of thek-core structure
into temporal graphs, the evolution of degeneracy has also been studied as a property through time (e.g.
like density, diameter etc.). In [158] the authors usek-core to study the evolution of the Internet through
time and discover that the majority of new nodes are added to the periphery of the graph while the size of
the maximal k-core is quite stable through time.

28

Figure 10: Themirror pattern of an Email communication graph (left) and a snapshot of the Twitter network
(right). Each plot depicts the correlation between the degree and core number of the nodes of the graph.
The �gure is courtesy of Shin et al. [131]. c 2016 IEEE.

Algorithm 9: Core-D

Input: graph stream: G, sampling probability : p, coe�cients: w0; w1

Result: estimated degeneracy:̂kmax

1 GSample = ;
2 for each edgee 2 G do
3 add e to GSample with probability p

4 #� Sample T riangleCounting (GSample) [140]
5 # �̂ #� Sample (1=p)3

6 k̂max exp(w0 + w1log(# �̂))
7 return k̂max

4.3 Anomaly Detection

Shin et al. [131, 132] examined the properties of thek-core decomposition in a wide range of real-world
networks. Their main observations include a set of empirical patterns that hold across several real-world
graphs and can further be used to detect anomalies. The main observation, called themirror pattern ,
indicates that the core number of the nodes of a graph has a strong positive correlation with the degree
(which essentially represents an upper bound for the core number).

Figure 10 depicts the mirror pattern of two real-world graphs: an Email communication network and a
snapshot of the Twitter graph. As one can observe, their is strong positive correlation between node degree
and core number. For example, in the case of the Email network, Spearmans rank correlation coe�cient
has value � = 0 :99, while in Twitter network the correlation coe�cient is � = 0 :95. Intuitively, the mirror
pattern implies that nodes with high core number have also the tendency to have high degree and vice versa.

Nevertheless, one may observe that some nodes deviate from this \ideal" behavior; as the authors mention,
these nodes correspond to two di�erent types of anomalies: \lonerstars" (i.e., nodes mostly connected to
\loners") and \lockstep behavior" (i.e., a group of similarly behaving nodes). In the Email network of Figure
10 (left), the marked node has the highest degree but relatively low core number; this node corresponds to
a secondary email account of the former CEO of the company, which was used only to receive emails.

In the case of the Twitter network, the nodes with the highest core number in Figure 10 (right) have
been marked. Those nodes, have relatively low degrees and slightly deviate from the mirror pattern. Taking
a closer look on the corresponding Twitter accounts, the authors noticed that at least 78% of those nodes
were directly involved in a \Follower-Boosting" service { thus, can be annotated as anomalies.

29

In order to conduct this analysis, they devise a novel approach for estimating the core number in huge
graphs (Core-D , Algorithm 9). Their algorithm is based on estimating the the number of triangles by using
the work of [140] for sampling and estimating the triangle count in large networks. The degeneracy of the
graph can be estimated then based on coe�cients (w0; w1) which are calculated from real data using linear
regression.

4.4 Detection of Inuential Spreaders

Detecting inuential spreaders is an important topic for understanding how information di�uses in social
networks. An intuitive notion in this domain is that individuals with high connectivity would contribute
more in the di�usion process. This would naturally lead to metrics like betweenness centrality to be utilized
for the identi�cation of good spreaders (e.g., [112]).

The work of Kitsak et al. [74] �nds a contradiction to that { as being highly connected in a network is not
su�cient. It is pointed out that the quality of the connections are also important (i.e., the neighbors must
be also well connected) and that thek-core is better at �nding highly inuential nodes. The observation
that the core number of a node is a good predictor of its spreading capabilities, formed a new line of research
in the area of inuence spreading. A similar study that was conducted in [115], including PageRank as well
as additional inuence spreading metrics, lead to the same conclusion in favour ofk-core.

Naturally, several improvements and extensions have been made to this approach (e.g., [91, 114, 79]).
One such improvement ranks nodes of a network by the sum of the core numbers of its neighbors [89]. In
[26], the authors apply k-core (k-shell) on data from Twitter and notice that the skew in the degrees of the
nodes creates a unnecessary number of cores (thousands) with most of the nodes existing in the lowered
ranked ones (up to 4). To limit the number of cores, instead of mappingk connection to the k-th level, they
assign 2k � 1 to k. In order to provide a more sophisticated decomposition, weights can be introduced in
the graph. the authors of [5] provide a weighting scheme that represents the interaction among nodes and
apply a weighted version of thek-core algorithm. This weight is speci�c to the nature of the graph (e.g.
based on retweets in Twitter).

Other extensions of the k-core decomposition can be utilized as well. A prime example is the use of
k-truss (triangle-based) [95]. This more restrictive version of graph degeneracy provides a smaller and more
re�ned set of nodes in the maximalk-truss subgraph (which is a subset of the maximalk-core). The k-truss
structure also captures the cohesiveness of the graph.

The work of [86] utilizes the k-core as a prepossessing step for an algorithm that extracts inuential
communities. A basic assumption in that work is that we can weight the graphs with some inuential metric
(e.g., Pagerank). Then thek-inuential community is de�ned as an induced subgraph H k of G where:

� H k is connected.

� Each node inH k has a degree ofk.

� There is no other subgraph that satis�es the other two criteria, is not a subgraph of H k and has a
minimum weight (among its nodes) lower than H k .

While there is a much more e�cient algorithm presented in that work, we present here in Algorithm 10 the
naive basic version of computing the top-r k -connected communities as it is more intuitive. The authors note
that this is better than k-truss as it includes the inuence of each community (the minimum node-weight)
but there is no direct comparison.

The work of [132] usesk-core decomposition for detecting inuential spreaders as well (besides anomaly
detection). In their approach (Core-S Algorithm 11) for this application, they apply \vanilla" k-core
decomposition and rank the potential spreaders with their eigen-centrality within the core (instead of the

30

Algorithm 10: TopCom (G,W ,r ,k)

Input: G(V; E), W , r , and k
Result: The top-r k -inuential communities

1 G0 G; i 0;
2 while Gi contains a k � core do
3 Compute the maximal k � core Ck (Gi);
4 Let H k (i) be the maximal connected component

of C k (Gi) with the smallest inf luence value ;
5 Let u be the smallest � weight node in H k (i);
6 Delete u;
7 Let G i +1 be a subgraph of Ck (Gi) af ter

deleting u;
8 i i + 1;

9 if i � r then
10 return H k (i1); : : : ; H k (ir)

11 else
12 return H k (i1); : : : ; H k (0)

global graph) . They compare their approach againstk-core, k-truss, and eigen-centrality presenting better
results than them both in e�ciency and accuracy.

Algorithm 11: Core-S for top-k spreaders

Input: Graph: G, Number of spreaders:k(nmax)
Result: k inuential spreaders

1 Run the core decomposition ofG
2 Extract the degeneracy-coreG0(V 0; E 0) from G
3 Compute the in-core centrality of the vertices in V 0 using power iteration in G0

4 Return top-k vertices with the highest in-core centralities

4.5 Network Visualization

The nested decomposition ofk-core organizes vertices e�ciently into groups for visual analysis as well. One
of the earliest pieces of work fork-core based graph visualization focused on the presentation of the graph's
adjacency matrix [15].The main idea is to reorder the vertices in rows and columns by their core number.

In general, the k-core has been used to display examples of results from the analysis of real world graphs
by focusing in the most dense cores. In [58] the authors display dense cliques of collaboration found in the
academia with fractional (weighted) cores. Triangle cores are also used on publication data in [159] as well
as the Wikipedia graph and protein to protein interaction networks among others to display examples of
discovered cliques. A similar concept to the triangle cores, them-core is de�ned based on the number of
triangles an edge (instead of a vertex) belongs to [161]. Based on them-coreness of an edge, a vertex will
belong to anm-core if at least one of its endpoint vertices belongs to it. Them-core is utilized in [33] on an
internet graph as well as on the E. Coli metabolic network to support that real world networks are organized
with mechanisms that are based on local instead of global properties.

A variety of system and software applications have been developed to provide visualizations of graphs

31

Figure 11: Example ofk-core-based ego network.

either at their entirety or at speci�c sub-graphs. Focusing on those that utilize graph degeneracy, Gephi
[14] is a popular graph visualization tool that includes -among many others-k-core as a vertex positioning
algorithm to organize vertices in concentric nested circles that are equal to the number of cores while the
position of the a vertex in each circle is random. In a work with a speci�c focus of evaluation of individuals,
the authors of [53], present a tool for selecting and displaying the ego network of researchers in the graph of
academic collaborations where only the colleagues of at least equal core number are included while the rest
are hidden (example at Figure 11).

Finally, [7] o�ers a well developed tool for degeneracy based graph visualization. An mock-up of what
it produces can be found in Fig 12. The nodes are organized in a nested manner that indicates their
core number while the degree of the vertices and their proximity among them is also taken into account.
Speci�cally the degree is represented by the size of the vertex while the proximity is displayed by positioning
them in relevant proximity at the nested circles.

Figure 12: Example of the model for graph visualization with k-cores of [7].

4.6 Dense Subgraph Discovery

A common application of the k-core decomposition is the identi�cation of dense subgraphs; Andersen and
Chellapilla [10] were based on this to propose solutions with approximations guarantees for variants of

32

the densest subgraph problem. In a similar spirit, variants of the community detection problem has been
addressed utilizing the properties ofk-core decomposition, including local community detection techniques
[35] and the inuential community search problem [86, 4] where the notion of inuence is de�ned as the
minimum weight of the nodes in that community.

4.7 Community Detection

In a recent work on community detection [56],the authors built upon the properties of the decomposition
to speed-up the execution time of computationally intensive graph clustering algorithms, such asspectral
clustering. In particular, they have proposed CoreCluster , an e�cient graph clustering framework that
can be used along with any known graph clustering algorithm. The approach capitalizes on processing the
graph in a hierarchical way provided by its k-core decomposition. That way, the nodes are clustered in an
incremental manner that preserve the clustering structure of the graph, while making the execution of the
chosen clustering algorithm much faster due to the smaller size of the graph's partitions onto which the
algorithm operates.

4.8 Text Analytics

Recently, the concept ofk-core decomposition has been also applied in information networks used to represent
textual information. Models for graph construction from textual data can be found at [104]. In short, one
may consider elements of text (n-grams, single terms etc.) as vertices and as edges the co-occurrence of those
elements. The edges can be enriched with additional properties depending on the application. One common
approach assigns weights to the edges based on the frequency of term co-occurrence withing a �xed window
- where a sliding window is assumed over the text.

A variety of graph based techniques have been utilized on those graphs. For example, [104] utilizes
Pagerank and [90] uses HITS for ranking words in text based on their ranking in the corresponding graph.
This, in both cases, aims at of the task of keyword extraction. Naturally, the ranking provided from
degeneracy has been utilized as well for keyword extraction [121]. As the authors note in their work, beyond
better results than the the other aforementioned approaches, the maximalk-core automatically decides the
number of keywords in contrast with other methodologies where a �xed number is selected. Later on, Tixier
et al. [138] further re�ned the concept of core (and truss) decomposition for the task of keyword extraction.
Overall, the additional bene�t of exibility on the properties of the graph motivated the utilization of
advanced approaches and applications of thek-core in text mining.

One such example is found in the later work of detecting events in Twitter streams [101]. The graph
of words is build there from tweets in time-windows of �xed size and the detection of the event is based
on thresholding the vertex/term weighted degree in the maximal core (i.e. the degrees de�ne the event
appearance). Another example [139], utilizes thek-core and k-truss structure for text visualization and
summarization as an online real-time application. Moreover, the degeneracy approach has found application
on keyword extraction from multiparty conversations [102]. In all cases there is a bene�t from the e�cient
calculation of the k-core which allows almost instant results.

4.9 The Anchored k-Core Problem and Engagement Dynamics in Social Graphs

A common behavior of users in social networks is that their decisions are inuenced by that of their neighbors,
exhibiting the so-called positive network e�ect: assuming some notion of utility or gain per individual, this
is increasing with the number of friends that behave in a certain way. For example, it has been empirically
observed that users are more likely to engage to the activities of a social network if their friends do so. Based
on that, how can we design or modify a social network in order to maximize the engagement of its users?

33

Let us assume that all users in a community are initially engaged and each individual has two strategies:
to remain engaged in the activities of the community or to drop out [96]. An individual will remain engaged if
at least k of his/her friends are engaged (i.e., degree constraint). A user with less thank engaged friends will
decide to drop out, and his/her decision might spread over the network forming a cascade of departures (i.e.,
other individuals might drop out too). When the collapse stops, the remaining engaged users correspond
to the k-core subgraph. That way, the size ofk-core can be used to measure the overall engagement of the
social network. In the related literature, many empirical studies have used the core number of nodes or the
size of the maximal k-core subgraph to characterize the engagement properties of individual nodes or even
the engagement characteristics of the whole graph [96, 49, 97].

Based on the previously described model of user engagement in social networks, Bhawalkar et al. [19]
introduced the anchoredk-core problem, which examines how to prevent unravelling on the network: we aim
at retaining (anchoring) some individuals, so as to maximize the number of users that will remain engaged
when the unraveling stops (i.e., the size of the maximalk-core subgraph). Once a nodev in G is anchored,
it is always retained by the k-core decomposition regardless of its degree (i.e., it is never removed by the
decomposition) [155, 156].

De�nition 14 (Anchored k-core subgraph) Given an undirected graphG and a vertex setA � G, the
anchoredk-core subgraph, denoted byCk (GA), is the correspondingk-core of G with vertices in A anchored.

De�nition 15 (Anchored k-core problem) Given an undirected graphG, a degree constraint k and a
budgetb, the anchoredk-core problem aims at �nding a set A of b nodes, such that the size of the resulting
anchoredk-core, Ck (GA), is maximized.

If we have a setA of anchor nodes, then we can directly use the linear time algorithm presented in Section
3 to compute Ck (GA). However, �nding the optimal A is a computational di�cult problem; it has been
shown that, when k � 3, the anchoredk-core problem is NP-hard [19]. Zhang et al. [155] have proposed an
e�cient heuristic algorithm, called OLAK, to deal with the complexity constraints of the anchored k-core
problem.

4.10 Graph Similarity

In a very recent work [108], the hierarchy of the core decomposition is utilized to provide a general framework
for computing similarity metrics among graphs.

Graph similarity is an upcoming topic in the domains of computational biology, chemistry and natural
language processing. Simply put, when computing similarities among graphs basic structures (e.g. trees,
cycles) are compared between graphs in a local or global level with graph kernels. The aforementioned
work [108], contributes by utilizing existing kernels at equivalent core levels between graphs in order to
compare the structures at similar levels of connectivity.

Algorithm 12 is straightforward as it accumulates the similarities of a base-kernel along the corresponding
cores between two graphs. Despite its simplicity in implementation, it outperforms the utilized baselines
in comparison with the result if they (the baselines) were used without the framework. The evaluation is
performed on classi�cation tasks of real world graphs from a variety of domains.

4.11 Biology and Ecology

Many interactions in real organisms are modeled as networks. Biological networks have been studied signi�-
cantly by many di�erent perspectives. One of these, is related to the discovery of core/periphery structure of
biological networks. In [92] this idea is studied for protein-protein interactions networks (PPI). It turns out

34

Algorithm 12: GraphSimKernel (G,G0)

Input: A pair of graphs G and G0

Result: Result of the kernel function, val
1 val = 0
2 � min = min (� (G); � (G0))
3 Let C i ; C0

i be the i � core of G; G0 for i = 0 ; : : : ; � min

4 for i = � min to 0 do
5 val = val + kernel(Ci ; C0

i)

that in addition to the discovery of interesting correlations between connectivity and biological properties,
the core/periphery structures help to reveal the existence of multiple levels of protein expression dynamics.
Moreover, as reported in [68], residues belonging to inner cores are more conserved than those at the periph-
ery of the network and also it seems that these groups are functionally and structurally critical. Another
important result was reported in [41] which studied the relation between the core numbers of proteins and
mutation rates. It turns out that the mutation rates for the interior cores is lower.

In addition to homogeneous networks that appear in biology, bipartite networks are also quite frequent:
gene-protein, host-pathogen, predator-prey. In [50], two new visualization types are proposed that exploit
the structural properties of these networks to improve readability. The basis of these methods is the core
decomposition of the bipartite graph.

Other Biology-related works that use the concept of core decomposition include: [39], which applies the
concept in weighted biological networks, [116] that performs protein complex prediction and [43] which uses
core decomposition in plant metabolic networks.

The core decomposition has been e�ectively applied to other branches of Biology, such as Ecology. For
example, in [51] an application is presented to plot bipartite ecological networks. Also, in [52], the authors
study di�erent techniques to identifying the species for which the networks are most vulnerable to cascade
extinctions. It turns out that the core decomposition concept sheds light on the understanding of the
robustness properties in mutualistic networks. Also, similar ideas can be found in [107], which studies the
concept of structural collapse in mutualistic ecosystems. More speci�cally, based on the authors, it was
shown that \when species located at the maximumk-core of the network go extinct as a consequence of
su�ciently weak interaction strengths, the system will reach the tipping point of its collapse".

4.12 Neuroscience

The study and the understanding of the brain is an ongoing adventure. It turns out the core decomposition
concept plays an important role in this study. One of the �rst works that applied the concept was published
in [62]. In that work, the authors performed an in-depth analysis of the brain functional network which is
composed of parts of the brain that are functionally interconnected in a dense manner. The main result of
this study is that regions of the brain that belong to the structural core, share high degree, strength, and
betweenness centrality, and they operate as hubs linking other major structural modules.

In a similar line, the work in [143] demonstrates that parts of the brain with high connectivity (i.e.,
brain hubs) form a so-called \rich club", which means that there is a tendency for high-degree nodes to be
more densely connected among themselves than nodes of a lower degree. The result is that this \rich club"
provides important information on the higher-level topology of the brain functional network.

Later, this idea was developed further in [130] in order to compare the brain organization of pigeons and
mammals. The main result of this study was that the pigeontelencephalon3 is organized in a similar manner

3The telencephalon is the most highly developed and anterior part of the forebrain, composed mainly of the cerebral

35

to that of a mammal.
Additional research e�orts in the area that use the core decomposition concept as a �rst class citizen

include: [122] which studies the inuence of wiring cost on the large-scale architecture of human cortical
connectivity, [20] which examines the way the brain functional network reorganizes during cognition, [150]
which links the concept of cell assembliesto that of k-core and studies a speci�c type of cell assembly called
k-assembly and [80] which studies the hierarchical cortical organization of the human brain.

5 Conclusions and Further Research

The core decomposition of a graph is a concept that has been studied for many years and is applied in
many di�erent problems in diverse scienti�c areas { also displaying its value in real world applications. The
main reason for its ubiquity lies in the fact that it provides an e�cient manner for organizing the graph into
hierarchical structures of increasing cohesiveness.

In this survey article, we have provided a thorough review on existing approaches for applications and
algorithmic techniques concerning degeneracy-based graph decompositions. In the application domain, most
of the works have focused primarily on real-world scale-free networks. A possible explanation is that, random
graphs do not exhibit interesting degeneracy-based properties. In other words, there is no actual discrepancy
of the core numbers of nodes in random graphs. Concerning algorithmic techniques, we have examinedk-
core (and its variants) being applied to a multitude of computational models covering many scenarios. One
perhaps issue, we notice that in most cases the approaches are tailored by utilizing specialized structures
which makes di�cult to utilize the same model in a more generic graph analysis scenario (we elaborate on
this below).

We have organized this review by three major axesi) graph types, ii) algorithmic techniques, and iii)
applications. We note that many publications could be mentioned in all of these axes as the graph type is
usually de�ned in a speci�c scenario for \not simple" graphs which in turn requires re-de�nition (or extension
of the de�nition) of degeneracy and consecutively the re-design of the algorithm. For this reason we place
each piece work into one of these axes based on its major focus.

To the extend of our knowledge, this survey is the �rst in attempting to cover degeneracy to this ex-
tend. Two notable attempts in similar reviews exist in the general literature as book chapters found in
\Encyclopedia of Social Network Analysis and Mining" [22] and in \Cohesive Subgraph Computation over
Large Sparse Graphs" [29] both covering to a lesser extend a subset of the main topics presented in this
manuscript.

Although core decomposition has been covered by many di�erent perspectives, still there is room for
more work in the area. Next, we discuss briey possible topics of interest for future research.

Algorithmic Aspects . A variety of computational models have been studied fork-core decomposition (in
memory, streaming, in parallel) but most of them focus on a single dimension of decomposition based on a
function upon properties of the node i.e. the degree, the number of triangles etc. As graph models become
more elaborate (direction, label, timestamp), the algorithms are redesigned for a speci�c computational
model. While this is expected (one designs an algorithm speci�c to the needs of application and core
extension), there is a lack for a uniform model regardless of the dimensions across which the core is computed.
One of the original works for Generalized Cores [16] attempted at providing such a general model but this
would not be applicable in e.g. temporal cores as the additional dimension can be used in a di�erent manner
than the degree (which lead to a variety of works speci�cally for temporal cores).

hemispheres (https://en.wikipedia.org/wiki/Cerebrum).

36

Through out this review, the reader may notice that di�erent models for graph decomposition try to
solve the same problem in principle for computing the decomposition -while they study di�erent graph
properties. Never the less, a variety of algorithms has been introduced that solve the same problem (with
similar approaches). As such, it is expected in future research for "generalized cores" to re-appear for a
greater extension of dimensions and computational models.

Furthermore, there is a lot of potential for graph computational models in general in distributed envi-
ronments due to the advances in this domain both in academia but in the industry as well combined with
need for scalable algorithms on fast evolving data. While we cover here cases for distributed, parallel and
streaming computation for large graphs, these approaches are yet to be adopted in general in real world
applications and for now are speci�c implementations. One major factor for this is due to the fact that they
require speci�c data structures and designs that do not generalize in usability by other algorithms e.g. the
model used in incremental k-core decomposition [123] is very e�cient but it might not be very e�cient in
other graph analysis tasks like eigen-centrality computation or triangle counting. As such, it is hard to adopt
a solution if it requires a great cost for transformation in order to use other graph mining algorithms.

Core Decomposition in Machine Learning . While we saw here the potential ofk-core decomposition
even in graphs that are extracted from not graph data (in graphs of words), it seems that it has not been
explored in too many cases in the domain of Machine Learning or Data Science in general. While the topic is
beyond the scope of this review, there are many cases where a graph structure is assumed as representation
of the data in some form (e.g. manifold based decomposition [137], spectral clustering on none graph data
through a�nity kernels [145]).

Despite that graph structures are used quite frequently through data transformations and a�nity ker-
nels, the k-core structure of those graphs has not even been examined for its properties and potentials (e.g.
feature extraction). This is somewhat, surprising as thek-core algorithm is quite e�cient and -as it has been
seen in this review- it o�ers the potential of �nding out-liers or anomalies in real-world graphs. Of course,
other types of data (e.g., points in the Euclidean space) will not have the same properties as the graphs that
are usually studied with degeneracy. Nevertheless, at the minimum a study is lacking on the properties of
\other" graphs.

Representation Learning on Graphs . A recent work (core2vec [127]) showed the potential of using
k-core decomposition in feature engineering with deep learning techniques. In general this work lies in the
domain of representing nodes with latent features { as an embedding in a multidimensional space { that are
learned automatically. Usually, this embedding represents similar vertices as vectors with a high similarity in
the vector space model. The aforementioned work describes an alternative to using random walk during one
of the phases of an existing technique, by biasing the walk with core-based information (focusing the walk
in the same core). Although this can be considered a marginal modi�cation, it o�ers motivation on working
in this sub-domain of machine learning. We have seen throughout this review a variety of core models with
di�erent interpretations { capturing di�erent (structural) properties of the vertices and subgraphs in general.
While these properties can be considered as features, one could utilize them in a similar way to the core2vec
model (e.g., as prepossessing techniques), in order to optimize graph embedding techniques.

Inuence Maximization . The topic of inuence maximization and the identi�cation of inuential spread-
ers has received a lot of attention in the domain of online social networks and recommender systems due
to its economical applications but also due to the general emergence of interest in the study of information
di�usion.

As we have seen in Section 4, thek-core has played a major role in this domain and further improvements

37

did not involve only the extension of the k-core but also its combination with other methodologies. As only a
few basic models have been studied, the exploration of the more elaborate ones remains still an open subject
(e.g., in directed graphs). Moreover, any lateral property de�ned on this topic will always have the potential
of being combined with the k-core structure in similar manners to the ones reviewed. Lastly, thek-core has
mainly been used so far as a heuristic algorithm to identify nodes with good spreading properties. It remains
open problem how to combine the properties of the core decomposition with the greedy algorithm by Kempe
et al. [71], towards a scalable core-based inuence maximization algorithm with theoretical guarantees.

References

[1] A. Adiga and A. K. S. Vullikanti. How robust is the core of a network? In H. Blockeel, K. Kersting,
S. Nijssen, and F. �Zelezn�y, editors, Machine Learning and Knowledge Discovery in Databases, pages
541{556, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[2] C. C. Aggarwal, editor. Social Network Data Analytics. Springer, 2011.

[3] C. C. Aggarwal and H. Wang. Managing and Mining Graph Data. Springer, 2010.

[4] E. Akbas and P. Zhao. Truss-based community search: A truss-equivalence based indexing approach.
Proceedings of the VLDB Endowment, 10(11):1298{1309, Aug. 2017.

[5] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana. Identi�cation of inuential spreaders in on-
line social networks using interaction weighted k-core decomposition method.Physica A: Statistical
Mechanics and its Applications, 468:278{288, 2017.

[6] J. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, and A. Vespignani. K-core decomposition: A tool for the
visualization of large scale networks.Adv. Neural Inf. Process. Syst., 18, 04 2005.

[7] J. I. Alvarez-hamelin, A. Barrat, and A. Vespignani. Large scale networks �ngerprinting and visu-
alization using the k-core decomposition. InNIPS '06: Advances in Neural Information Processing
Systems, pages 41{50, 2006.

[8] J. I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, and A. Vespignani. k-core decomposition: a tool for
the analysis of large scale internet graphs, 2005.

[9] J. I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, and A. Vespignani. k-core decomposition of internet
graphs: Hierarchies, self-similarity and measurement biases.NHM, 3(2):371, 2008.

[10] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. InWAW , pages 25{37,
2009.

[11] D. Angluin and J. Chen. Learning a hidden graph using o(logn) queries per edge.J. Comput. Syst.
Sci., 74(4):546{556, June 2008.

[12] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis. Distributed k-core decomposition and
maintenance in large dynamic graphs. InProceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, DEBS '16, pages 161{168, New York, NY, USA, 2016. ACM.

[13] J. Bang-Jensen and G. Z. Gutin.Digraphs: Theory, Algorithms and Applications. Springer Publishing
Company, Incorporated, 2nd edition, 2008.

38

[14] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source software for exploring and manip-
ulating networks. Icwsm, 8(2009):361{362, 2009.

[15] V. Batagelj, A. Mrvar, and M. Zaver�snik. Partitioning approach to visualization of large graphs. In
International Symposium on Graph Drawing, pages 90{97. Springer, 1999.

[16] V. Batagelj and M. Zaversnik. Generalized cores.CoRR, cs.DS/0202039, 2002.

[17] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of networks, 2003. cite
arxiv:cs/0310049.

[18] A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks.
353(6295):163{166, 2016.

[19] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma. Preventing unraveling in
social networks: the anchoredk-core problem. In ICALP '11: Proceedings of the 39th International
Colloquium Conference on Automata, Languages, and Programming, pages 440{451, 2011.

[20] M. Bola and B. Sabel. Dynamic reorganization of brain functional networks during cognition. Neu-
roImage, 114, 03 2015.

[21] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques. InProceedings of the
13th International Conference on World Wide Web, WWW '04, pages 595{602, New York, NY, USA,
2004. ACM.

[22] F. Bonchi, F. Gullo, and A. Kaltenbrunner. Core Decomposition of Massive, Information-Rich Graphs,
pages 1{11. Springer New York, New York, NY, 2017.

[23] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. Core decomposition of uncertain graphs. In
KDD , pages 1316{1325, 2014.

[24] U. Brandes. Social network analysis and visualization [applications corner].IEEE Signal Processing
Magazine, 25(6), 2008.

[25] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. InProceedings
of the Seventh International Conference on World Wide Web 7, WWW7, pages 107{117, Amsterdam,
The Netherlands, The Netherlands, 1998. Elsevier Science Publishers B. V.

[26] P. Brown and J. Feng. Measuring user inuence on twitter using modi�ed k-shell decomposition. In
The Social Mobile Web, volume WS-11-02 ofAAAI Workshops. AAAI, 2011.

[27] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of internet topology using k-shell
decomposition. PNAS, 104(27):11150{11154, 2007.

[28] L. Chang and L. Qin. Cohesive Subgraph Computation over Large Sparse Graphs. Springer, 2018.

[29] Q.-L. Chang, Lijun. Minimum Degree-Based Core Decomposition, pages 21{39. Springer Series in the
Data Sciences.

[30] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. E�cient core decomposition in massive networks. InICDE ,
pages 51{62, 2011.

[31] S.-T. Cheng, Y.-C. Chen, and M.-S. Tsai. Using k-core decomposition to �nd cluster centers for k-
means algorithm in graphx on spark. In he Eighth International Conference on Cloud Computing,
GRIDs, and Virtualization , pages 93{98, 2017.

39

[32] J. Cohen. Trusses: Cohesive subgraphs for social network analysis.National Security Agency Technical
Report, 2008.

[33] P. Colomer-de Sim�on, M. A. Serrano, M. G. Beir�o, J. I. Alvarez-Hamelin, and M. Bogun�a. Deciphering
the global organization of clustering in real complex networks.Scienti�c reports , 3:2517, 2013.

[34] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

[35] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in large graphs. InSIGMOD,
pages 991{1002, 2014.

[36] M. Danisch, T.-H. H. Chan, and M. Sozio. Large scale density-friendly graph decomposition via convex
programming. In Proceedings of the 26th International Conference on World Wide Web, WWW '17,
pages 233{242, 2017.

[37] J. Dean and S. Ghemawat. Mapreduce: Simpli�ed data processing on large clusters. InProceedings
of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6,
OSDI'04, pages 10{10, Berkeley, CA, USA, 2004. USENIX Association.

[38] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. k-core organization of complex networks.
Physical Review Letters, 96:040601, 2006.

[39] M. Eidsaa. Core Decomposition Analysis of Weighted Biological Networks. PhD thesis, NTNU, 2016.

[40] M. Eidsaa and E. Almaas. s-core network decomposition: A generalization ofk-core analysis to
weighted networks. Phys. Rev. E, 88:062819, 2013.

[41] A. I. Emerson, S. Andrews, I. Ahmed, T. K. Azis, and J. A. Malek. K-core decomposition of a protein
domain co-occurrence network reveals lower cancer mutation rates for interior cores.Journal of Clinical
Bioinformatics , 5(1):1, Mar 2015.

[42] P. Erds and A. Hajnal. On chromatic number of graphs and set-systems.Acta Mathematica Academiae
Scientiarum Hungarica, 17(1-2):61{99, 1966.

[43] H. A. Filho, J. Machicao, and O. M. Bruno. A hierarchical model of metabolic machinery based on
the kcore decomposition of plant metabolic networks.PLOS ONE, 13(5):1{15, 05 2018.

[44] L. C. Freeman. A set of measures of centrality based on betweenness.Sociometry, 40(1):35{41, 1977.

[45] E. C. Freuder. A su�cient condition for backtrack-free search. J. ACM , 29(1):24{32, 1982.

[46] E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo. Mining (maximal) span-cores from
temporal networks. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pages 107{116. ACM, 2018.

[47] E. Galimberti, F. Bonchi, and F. Gullo. Core decomposition and densest subgraph in multilayer
networks. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
CIKM '17, pages 1807{1816, New York, NY, USA, 2017. ACM.

[48] A. Garas, F. Schweitzer, and S. Havlin. Ak-shell decomposition method for weighted networks.New
Journal of Physics, 14(8), 2012.

[49] D. Garcia, P. Mavrodiev, and F. Schweitzer. Social resilience in online communities: The autopsy of
friendster. In COSN '13: Proceedings of the First ACM Conference on Online Social Networks, pages
39{50, 2013.

40

[50] J. Garcia-Algarra, J. Pastor, M. L. Mouronte, and J. Galeano. A structural approach to disentangle
the visualization of bipartite biological networks. Complexity, 2018:1{11, 02 2018.

[51] J. Garcia-Algarra, J. M. M. Pastor, M. L. Mouronte, and J. Galeano. Bipartgraph: An interactive
application to plot bipartite ecological networks. bioRxiv, 2017.

[52] J. Garca-Algarra, J. Pastor, J. Iriondo, and J. Galeano. Ranking of critical species to preserve the
functionality of mutualistic networks using the k-core decomposition. PeerJ, 5(e3321), 2017.

[53] C. Giatsidis, K. Berberich, D. M. Thilikos, and M. Vazirgiannis. Visual exploration of collaboration
networks based on graph degeneracy. InProceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1512{1515. ACM, 2012.

[54] C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis. Quantifying trust dynamics
in signed graphs, the s-cores approach. InProceedings of the 2014 SIAM International Conference on
Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014, pages 668{676, 2014.

[55] C. Giatsidis, B. Cautis, S. Maniu, D. M. Thilikos, and M. Vazirgiannis. Quantifying trust dynamics
in signed graphs, the s-cores approach. InSDM, pages 668{676, 2014.

[56] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis. Corecluster: A degeneracy based
graph clustering framework. In AAAI '14: Proceedings of the Twenty-Eighth AAAI Conference on
Arti�cial Intelligence , pages 44{50, 2014.

[57] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: Measuring collaboration of directed graphs
based on degeneracy. InICDM '11: Proceedings of the 11th IEEE International Conference on Data
Mining , pages 201{210, 2011.

[58] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating cooperation in communities with the
k-core structure. In ASONAM '11: Proceedings of the International Conference on Advances in Social
Networks Analysis and Mining, pages 87{93, 2011.

[59] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores: measuring collaboration of directed graphs
based on degeneracy.Knowl. Inf. Syst. , 35(2):311{343, 2013.

[60] P. Govindan, S. Soundarajan, T. Eliassi-Rad, and C. Faloutsos. Nimblecore: A space-e�cient external
memory algorithm for estimating core numbers. InASONAM, pages 207{214. IEEE Computer Society,
2016.

[61] P. Govindan, C. Wang, C. Xu, H. Duan, and S. Soundarajan. The k-peak decomposition: Mapping
the global structure of graphs. In Proceedings of the 26th International Conference on World Wide
Web, WWW '17, pages 1441{1450, 2017.

[62] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, and O. Sporns. Mapping the structural
core of human cerebral cortex.PLOS Biology, 6(7):e159, 2008.

[63] X. He, H. Zhao, W. Cai, G.-G. Li, and F.-D. Pei. Analyzing the structure of earthquake network by
k-core decomposition.Physica A: Statistical Mechanics and its Applications, 421:34{43, 2015.

[64] J. Healy, J. Janssen, E. Milios, and W. Aiello. Characterization of graphs using degree cores. InWAW
'08: Algorithms and Models for the Web-Graph, pages 137{148, 2008.

[65] L. H�ebert-Dufresne, A. Allard, J.-G. Young, and L. J. Dub�e. Percolation on random networks with
arbitrary k-core structure. volume 88, page 062820. APS, 2013.

41

[66] X. Hu, F. Liu, V. Srinivasan, and A. Thomo. k-core decomposition on giraph and graphchi. In
L. Barolli, I. Woungang, and O. K. Hussain, editors, Advances in Intelligent Networking and Collabo-
rative Systems, pages 274{284, Cham, 2018. Springer International Publishing.

[67] X. Huang, W. Lu, and L. V. Lakshmanan. Truss decomposition of probabilistic graphs: Semantics and
algorithms. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD
'16, pages 77{90, 2016.

[68] A. E. Isaac and S. Sinha. Analysis of core{periphery organization in protein contact networks reveals
groups of structurally and functionally critical residues. Journal of Biosciences, 40(4):683{699, Oct
2015.

[69] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore platforms. In IPDPS Workshops,
pages 1482{1491. IEEE Computer Society, 2017.

[70] V. Kassiano, A. Gounaris, A. N. Papadopoulos, and K. Tsichlas. Mining uncertain graphs: An
overview. In T. Sellis and K. Oikonomou, editors, Algorithmic Aspects of Cloud Computing, pages
87{116, Cham, 2017. Springer International Publishing.

[71] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of inuence through a social network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining , KDD '03, pages 137{146, 2003.

[72] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core decomposition of large networks on a
single PC. PVLDB , 9(1):13{23, 2015.

[73] L. M. Kirousis and D. M. Thilikos. The linkage of a graph. SIAM J. Comput. , 25(3):626{647, 1996.

[74] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljerosand, L. Muchnik, H. E. Stanley, and H. A. Makse.
Identi�cation of inuential spreaders in complex networks. Nature Physics, 2010.

[75] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. The web as a
graph. In PODS, 2000.

[76] J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: Mining a social network with
negative edges. InProceedings of the 18th International Conference on World Wide Web, WWW '09,
pages 741{750, New York, NY, USA, 2009. ACM.

[77] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. D. Luca, and S. Albayrak. Spectral analysis
of signed graphs for clustering, prediction and visualization. InSDM, pages 559{570. SIAM, 2010.

[78] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on just a pc.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI'12, pages 31{46, Berkeley, CA, USA, 2012. USENIX Association.

[79] L. L_ Vital nodes identi�cation in complex networks. Physics Reports, 650:1 { 63, 2016. Vital nodes
identi�cation in complex networks.

[80] N. Lahav, B. Ksherim, E. Ben-Simon, A. Maron-Katz, R. Cohen, and S. Havlin. K -shell decomposition
reveals hierarchical cortical organization of the human brain. New Journal of Physics, 18(8):083013,
2016.

[81] S. Lahiri, S. R. Choudhury, and C. Caragea. Keyword and keyphrase extraction using centrality
measures on collocation networks.CoRR, 2014.

42

[82] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. InWWW
'08: Proceedings of the 17th International Conference on World Wide Web, pages 915{924, 2008.

[83] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. InProceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI '10, pages 1361{1370, New York,
NY, USA, 2010. ACM.

[84] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.http://snap.
stanford.edu/data , June 2014.

[85] M. Li, W. Zhou, and L. Gao. S-kcore: A social-aware kcore decomposition algorithm in pocket switched
networks. In 2010 IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing
(EUC 2010)(EUC) , volume 00, pages 737{742, 12 2010.

[86] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Inuential community search in large networks. Proceedings
of the VLDB Endowment, 8(5):509{520, 2015.

[87] R.-H. Li, J. X. Yu, and R. Mao. E�cient core maintenance in large dynamic graphs. IEEE Transactions
on Knowledge and Data Engineering, 26(10):2453{2465, 2014.

[88] D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathematics, 22:1082{1096,
1970.

[89] J.-H. Lin, Q. Guo, W.-Z. Dong, L.-Y. Tang, and J.-G. Liu. Identifying the node spreading inuence
with largest k-core values. Physics Letters A, 378(45):3279{3284, 2014.

[90] M. Litvak and M. Last. Graph-based keyword extraction for single-document summarization. In
Proceedings of the workshop on Multi-source Multilingual Information Extraction and Summarization,
pages 17{24. Association for Computational Linguistics, 2008.

[91] L. L•u, T. Zhou, Q.-M. Zhang, and H. E. Stanley. The h-index of a network node and its relation to
degree and coreness.Nature Communications, 7:10168 EP {, 01 2016.

[92] F. Luo, B. Li, X.-F. Wan, and R. H. Scheuermann. Core and periphery structures in protein interaction
networks. BMC Bioinformatics , 10(Suppl 4):s8, 2009.

[93] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:
A system for large-scale graph processing. InProceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD '10, pages 135{146, New York, NY, USA, 2010. ACM.

[94] F. D. Malliaros, A. N. Papadopoulos, and M. Vazirgiannis. Core decomposition in graphs: Concepts,
algorithms and applications. In EDBT , pages 720{721. OpenProceedings.org, 2016.

[95] F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating inuential nodes in complex networks.
Scienti�c reports , 6:19307, 2016.

[96] F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling engagement dynamics in
social graphs. In 22nd ACM International Conference on Information and Knowledge Management,
CIKM'13 , pages 469{478, 2013.

[97] F. D. Malliaros and M. Vazirgiannis. Vulnerability assessment in social networks under cascade-based
node departures.EPL (Europhysics Letters), 110(6):68006, 2015.

43

[98] A. Mandal and M. A. Hasan. A distributed k-core decomposition algorithm on spark. In Proceedings
of the 2017 IEEE International Conference on Big Data (Big Data), BIG DATA '17, pages 976{981.
IEEE Computer Society, 2017.

[99] C. Z. Marshak. Applications of Network Science to Criminal Networks, University Education, and
Ecology. PhD thesis, UCLA, 2017.

[100] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.J.
ACM, 30(3):417{427, July 1983.

[101] P. Meladianos, G. Nikolentzos, F. Rousseau, Y. Stavrakas, and M. Vazirgiannis. Degeneracy-based
real-time sub-event detection in twitter stream. In ICWSM, pages 248{257, 2015.

[102] P. Meladianos, A. Tixier, I. Nikolentzos, and M. Vazirgiannis. Real-time keyword extraction from
conversations. In Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers, volume 2, pages 462{467, 2017.

[103] P. Meyer, H. Siy, and S. Bhowmick. Identifying important classes of large software systems through
k-core decomposition.Advances in Complex Systems, 17:1550004, 04 2015.

[104] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference
on empirical methods in natural language processing, 2004.

[105] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. In PODC, pages
207{208, 2011.

[106] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. IEEE Transactions
on Parallel and Distributed Systems, 24(2):288{300, 2013.

[107] F. Morone, G. Ferraro, and H. A. Makse. The k-core as a predictor of structural collapse in mutualistic
ecosystems.Nature Physics, 10 2018.

[108] G. Nikolentzos, P. Meladianos, S. Limnios, and M. Vazirgiannis. A degeneracy framework for graph
similarity. In IJCAI , pages 2595{2601, 2018.

[109] M. P. O'Brien and B. D. Sullivan. Locally estimating core numbers. In ICDM , pages 460{469, 2014.

[110] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. The pursuit of a good possible world: Extracting
representative instances of uncertain graphs. InSIGMOD, pages 967{978, 2014.

[111] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. Uncertain graph processing through representative
instances. ACM Trans. Database Syst., 40(3):20:1{20:39, 2015.

[112] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks.Physical review
letters, 86(14):3200, 2001.

[113] K. Pechlivanidou, D. Katsaros, and L. Tassiulas. Mapreduce-based distributed k-shell decomposition
for online social networks. 2014 IEEE World Congress on Services, 0:30{37, 2014.

[114] S. Pei and H. A. Makse. Spreading dynamics in complex networks.Journal of Statistical Mechanics:
Theory and Experiment, 2013(12):P12002, 2013.

[115] S. Pei, L. Muchnik, J. S. Andrade Jr, Z. Zheng, and H. A. Makse. Searching for superspreaders of
information in real-world social media. Scienti�c reports , 4:5547, 2014.

44

[116] M. Pellegrini, M. Baglioni, and F. Geraci. Protein complex prediction for large protein protein inter-
action networks with the core & peel method. BMC Bioinformatics , 17(12):372, Nov 2016.

[117] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin. E�cient probabilistic k-core computation on
uncertain graphs. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages
1192{1203, 2018.

[118] E. M. Phizicky and S. Fields. Protein-protein interactions: methods for detection and analysis.Mi-
crobiological reviews, 59 1:94{123, 1995.

[119] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in uncertain graphs.Proceed-
ings of the VLDB Endowment, pages 997{1008, 2010.

[120] S. Qing, J. Liao, J. Wang, X. Zhu, and Q. Qi. Hybrid virtual network embedding with k-core decom-
position and time-oriented priority. In ICC, pages 2695{2699, 2012.

[121] F. Rousseau and M. Vazirgiannis. Main core retention on graph-of-words for single-document keyword
extraction. In ECIR '15: Proceedings of the 37th European Conference on Information Retrieval, pages
382{393, 2015.

[122] D. Samu, A. K. Seth, and T. Nowotny. Inuence of wiring cost on the large-scale architecture of human
cortical connectivity. PLOS Computational Biology, 10(4):1{24, 04 2014.

[123] A. E. Sar�y•uce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and •U. V. C�ataly•urek. Incremental k-core
decomposition: algorithms and evaluation. The VLDB Journal , 25(3):425{447, Jun 2016.

[124] A. E. Sar��y•uce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. C�ataly•urek. Streaming algorithms
for k-core decomposition.Proceedings of the VLDB Endowment, 6(6):433{444, Apr. 2013.

[125] A. E. Sariy•uce and A. Pinar. Peeling bipartite networks for dense subgraph discovery. InProceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, WSDM, pages 504{512,
2018.

[126] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V. Catalyurek. Finding the hierarchy of dense subgraphs
using nucleus decompositions. InProceedings of the 24th International Conference on World Wide Web,
WWW '15, pages 927{937, 2015.

[127] S. Sarkar, A. Bhagwat, and A. Mukherjee. Core2vec: A core-preserving feature learning framework
for networks. In IEEE/ACM 2018 International Conference on Advances in Social Networks Analysis
and Mining, ASONAM 2018, pages 487{490, 2018.

[128] S. B. Seidman. Network Structure and Minimum Degree.Social Networks, 5:269{287, 1983.

[129] N. Shailaja Dasari, D. Ranjan, and M. Zubair. Park: An e�cient algorithm for k-core decomposition
on multicore processors.Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big
Data 2014, pages 9{16, 01 2015.

[130] M. Shanahan, V. Bingman, T. Shimizu, M. Wild, and O. Gntrkn. Large-scale network organization
in the avian forebrain: a connectivity matrix and theoretical analysis. Frontiers in Computational
Neuroscience, 7:89, 2013.

[131] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Corescope: Graph mining using k-core analysis - patterns,
anomalies and algorithms. InICDM , pages 469{478. IEEE, 2016.

45

[132] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores of real-world graphs with
applications. Knowl. Inf. Syst. , 54(3):677{710, 2018.

[133] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed �le system. InProceedings
of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), MSST '10,
pages 1{10, Washington, DC, USA, 2010. IEEE Computer Society.

[134] P. Strouthopoulos and A. N. Papadopoulos. Core discovery in hidden graphs.CoRR (to appear in
Data and Knowledge Engineering), abs/1712.02827, 2017.

[135] Y. Tao, C. Sheng, and J. Li. Finding maximum degrees in hidden bipartite graphs. InProceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD '10, pages
891{902, New York, NY, USA, 2010. ACM.

[136] N. Tatti and A. Gionis. Density-friendly graph decomposition. In WWW , pages 1089{1099, 2015.

[137] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319{2323, 2000.

[138] A. Tixier, F. D. Malliaros, and M. Vazirgiannis. A graph degeneracy-based approach to keyword ex-
traction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1860{1870. Association for Computational Linguistics, 2016.

[139] A. Tixier, K. Skianis, and M. Vazirgiannis. Gowvis: a web application for graph-of-words-based text
visualization and summarization. Proceedings of ACL-2016 System Demonstrations, pages 151{156,
2016.

[140] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion: counting triangles in massive
graphs with a coin. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 837{846. ACM, 2009.

[141] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social graph, 2011.
cite arxiv:1111.4503Comment: 17 pages, 9 �gures, 1 table.

[142] E. Valari, M. Kontaki, and A. N. Papadopoulos. Discovery of top-k dense subgraphs in dynamic graph
collections. In A. Ailamaki and S. Bowers, editors, Scienti�c and Statistical Database Management,
pages 213{230, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[143] M. P. van den Heuvel and O. Sporns. Rich-club organization of the human connectome.Journal of
Neuroscience, 31(44):15775{15786, 2011.

[144] T. Verma, F. Russmann, N. Arajo, J. Nagler, and H. Herrmann. Emergence of coreperipheries in
networks. Nature Communications, 7, 2016.

[145] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395{416, 2007.

[146] J. Wang and J. Cheng. Truss decomposition in massive networks.Proceedings of the VLDB Endowment,
5(9):812{823, May 2012.

[147] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. E�cient computing of radius-bounded k-cores. In
2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 233{244, 2018.

46

[148] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q. Hua. Parallel algorithm for core maintenance
in dynamic graphs. In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) , volume 00, pages 2366{2371, June 2017.

[149] T. White. Hadoop: The De�nitive Guide. O'Reilly, 4 edition, 2015.

[150] C. I. Wood and I. V. Hicks. The minimal k-core problem for modeling k-assemblies.The Journal of
Mathematical Neuroscience (JMN), 5(1):14, Jul 2015.

[151] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu. Core decomposition in large temporal
graphs. In BigData, pages 649{658. IEEE, 2015.

[152] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework for distributed computation
on real-world graphs. Proceedings of the VLDB Endowment, 7(14):1981{1992, 2014.

[153] M. L. Yiu, E. Lo, and J. Wang. Identifying the most connected vertices in hidden bipartite graphs
using group testing. IEEE Transactions on Knowledge & Data Engineering, 25:2245{2256, 10 2013.

[154] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman,
M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache spark: A uni�ed engine for
big data processing.Commun. ACM, 59(11):56{65, Oct. 2016.

[155] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. Olak: An e�cient algorithm to prevent unraveling
in social networks. Proceedings of the VLDB Endowment, 10(6):649{660, Feb. 2017.

[156] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users for social network engage-
ment: The collapsed k-core problem. InProceedings of the Thirty-First AAAI Conference on Arti�cial
Intelligence, pages 245{251, 2017.

[157] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement meets similarity: E�cient
(k,r)-core computation on social networks. Proceedings of the VLDB Endowment, 10(10):998{1009,
June 2017.

[158] G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, and T. Zhou. Evolution of the Internet and its
cores. New Journal of Physics, 10(12):123027+, Dec. 2008.

[159] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs within net-
works. In ICDE '12: Proceedings of the 2012 IEEE 28th International Conference on Data Engineering,
pages 1049{1060, 2012.

[160] R. Zhuo-Ming, L. Jian-Guo, S. Feng, H. Zhao-Long, and G. Qiang. Analysis of the spreading inuence
of the nodes with minimum k-shell value in complex networks. Acta Physica Sinica, 62(10):108902,
2013.

[161] V. Zlati�c, D. Garlaschelli, and G. Caldarelli. Networks with arbitrary edge multiplicities. EPL (Euro-
physics Letters), 97(2):28005, 2012.

[162] Z. Zou and R. Zhu. Truss decomposition of uncertain graphs.Knowledge and Information Systems,
50(1):197{230, Jan. 2017.

47

	Introduction
	Fundamental Concepts

