
Complexity bounds for obstacle avoidance within a zonotopic
framework

Daniel Ioan1, Ionela Prodan 2, Florin Stoican 3, Sorin Olaru1, Silviu-Iulian Niculescu1

Abstract— This paper addresses the problem of collision
avoidance in a multi-obstacle environment and focuses on its
representation in optimization-based control problems. The
design problem is commonly stated in the literature in terms
of a constrained optimization problem over a non-convex
domain. Describing this non-convex domain has computational
and structural implications, generally leading to a trade-off
between computational efficiency and control performance.
Preliminary results make use of hyperplane arrangements to
characterize these regions. The hyperplane arrangements build
on generic polyhedral sets and a natural question is whether
additional structure could bring a benefit. The current paper
addresses this issue by the use of zonotopic over-approximation
and highlights their benefits when introduced in the obstacle
avoidance problem. Comparisons with classical sampled-based
approaches are presented through simulations.

I. INTRODUCTION

Recent advances in the field of multi-agent dynamical
systems show that an adequate collision avoidance strategy is
fundamental in order to ensure the safety and the integrality
of the system and of the environment. In the recent years,
the control community has endeavored to obtain collision-
free control strategies which permit real-time operations [1].

There are two main approaches in the literature which
tackle the collision avoidance problem: direct and indirect
methods. The former take explicitly into account the con-
straints and lead to a constrained optimization problem which
often reduces to MI (mixed-integer) formulations [2], [3].
The later relax the constraints by adding penalty terms in
the cost, e.g., potential field-based formulations [4], [5]. The
direct methods are considered more robust at the price of
higher computational loads. Other approaches dealing with
the path/trajectory planning in a non-convex feasible space
are the sampled-based methods, such as PRM (probabilistic
roadmaps) [6] or RRT (rapidly-exploring random tree) [7].
These replace the search of feasible paths with the search of
the shortest (w.r.t. a predefined criterion) path within a graph
whose nodes are randomly selected samples [8].

Often the obstacles are modeled as convex polytopic
regions in which case the resulting non-convex and non-
connected feasible domain can be efficiently described
through its associated hyperplane arrangement [9] which
allows to characterize the domain as a union of convex cells.
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Next, a mixed-integer formulation is used to characterize
the union of cells and is introduced in a standard constrained
optimization problem. Technical procedures like cell merg-
ing [10] or logarithmic formulations [11] are employed to
reduce the complexity of the formulation but their automatic
treatment becomes numerically complex for large numbers
of obstacles and/or agents and this will represent the focus
of the present paper.

In a nutshell, the question to be addressed is: “Can one
approximate the obstacles such that a lower number of cells
describing the feasible domain is obtained while in the same
time safeguarding the features of the initial problem?”. We
propose to address this question by considering zonotopes
and their properties for obstacle over-approximation and cell
counting while providing an explicit measure of the problem
complexity in terms of the total number of cells. Due to their
intrinsic properties, zonotopes (genuine or as intervals [12])
are widely used in control, e.g., for collision detection [13],
reachability analysis [14], fault diagnosis [15] or guaranteed
state estimation [16]. Moreover, there are toolboxes like
CORA [17] able to manipulate and display these zonotopic
sets representations.

We start from exact formulations (set inclusion constraints,
analytic formulation of the zonotope’s volume, etc.) and
relax them to a linear constrained form (which depends on
a collection of centers and scaling factors).

The main contributions of this paper are the following:
i) provide tight zonotopic approximations of the obstacles;

ii) provide a rigorous bound for the number of generators
such that the complexity is reduced;

iii) propose various measures for zonotopic approximation;
iv) provide comparisons between MI formulation of the

collision avoidance problem and a classical sampled-
based method (PRM).

The remaining of this paper is divided as follows: Sec-
tion II presents some basic set-theoretic tools and the related
control problems and Section III introduces the formula-
tion of optimized zonotopic over-approximation problem.
Furthermore, Section IV treats the approximation from the
control perspective and evaluates the result on different test
scenarios while Section V draws the conclusions.
Notation: The Minkowski sum of two sets is denoted as
A⊕B = {x : x = a+ b, a ∈ A, b ∈ B}. CX(S) denotes the
complement of the set S over X ∈ Rd . Any polytope (i.e.
a bounded polyhedron) has a dual representation in terms of
intersection of half-spaces or convex hull of extreme points:
P = {x : s>i x ≤ ri,∀i} = {x : x =

∑
αjvj ,

∑
αj =

1, αj ≥ 0,∀j}. For x ∈ Rd we denote ‖x‖2Q = x>Qx



II. PRELIMINARIES

A. Geometric prerequisites

Consider first the definition of a support function [18],
evaluated at η ∈ Rd for a given set Q ⊂ Rd:

hQ(η) = sup
q∈Q

ηT q. (1)

This notion has an interesting application for set inclusion
validation. Let us consider two sets X and Y , then the
inclusion X ⊆ Y holds only iff hX(η) ≤ hY (η),∀η ∈ Rd.
Furthermore, if Y is a polytope in the half-space form:

Y = {x ∈ Rd : s>i x ≤ ri, i = 1 . . . nv}, (2)

then the previous inequality has to be checked only for
a finite number of vectors, i.e. the condition becomes
hX(si) ≤ ri,∀i. If X is also a polytope described as convex
combination of its extreme points:

X = {x ∈ Rd : x =
∑

αjvj ,
∑

αj = 1, αj ≥ 0}, (3)

the inclusion condition is rewritten as s>i vj ≤ ri,∀i, j.
We will use extensively zonotopes as a class of polytopes,

endowed with a third representation due to their symmetry.
Definition 1 (Zonotopes-[19]): A zonotope is a centrally

symmetric polytope, which can be described as a Minkowski
sum of line segments. In its generator representation a
zonotope Z(G, c) is described by center c ∈ Rd and
generator matrix G =

[
g1 . . . gm

]
∈ Rd×m:

Z(G, c) = {c+

m∑
k=1

ξkgk : ‖ξ‖∞ ≤ 1}. (4)

Zonotopes own several properties of practical interest [20]:
i) are closed under Minkowski sum:

Z(G1, c1)⊕Z(G2, c2) = Z(
[
G1 G2

]
, c1 + c2); (5)

ii) are symmetric, up to their center:

−Z(G, c) = Z(G,−c); (6)

iii) their volume has an explicit formulation [21]:

Vol(Z(G, c)) =
∑

1≤j1<j2...jd≤m

∣∣det(Gj1...jd)
∣∣ , (7)

where Gj1...jd denotes the matrix composed from columns
of indices j1 . . . jd from G.

Having the generator form of a zonotope, the half-space
representation can be constructed as follows [14]: to each
sequence of d − 1 generators 1 ≤ j1 < j2 . . . jd−1 ≤ m
corresponds the pair (hi, ki) ∈ Rd × R, where:

hi⊥gjl ,∀jl ∈ {j1 . . . jd−1}, ki =
∑

jl /∈{j1...jd−1}

∣∣h>i gjl ∣∣ .
(8)

Adding the center from generator representation, a zonotope
is formulated in terms of its halfspaces (8) as:

Z(G, c) =
⋂

1≤j1<...jd−1≤m

{x ∈ Rd : |hi(x− c)| ≤ ki}. (9)

Using the support functions in combination with the
definition of a zonotope, the inclusion Z(G, c) ⊆ Y , with Y
defined as in (2), is valid iff :

s>i c+
∑
j

∣∣s>i gj∣∣ ≤ ri ∀i, j. (10)

Moreover, the inclusion of a polytopic set X , defined as
in (3), into a zonotope X ⊆ Z(G, c) holds iff:∣∣h>i (vj − c)

∣∣ ≤ ki ∀i, j. (11)

Consider a finite collection of hyperplanes from Rd:

H = {Hi}i∈I , (12)

with Hi = {x ∈ Rd : s>i x = ri}. Each of these hyperplanes
divides the space in two disjoint regions:

R+
i =

{
x ∈ Rd : s>i x ≤ ri

}
, (13a)

R−i =
{
x ∈ Rd : −s>i x ≤ −ri

}
. (13b)

Next, the space can be partitioned into cells using the
hyperplane arrangement notion.

Definition 2 (Hyperplane arrangements – [22]): The
collection H partitions the space into a union of disjoint
cells A(σ), characterized by a sign tuple σ ∈ {−,+}N :

A(σ) =
⋂
i∈I
Rσ(i)
i . (14)

The hyperplane arrangement of cells covering the entire
space is described by the collection of all feasible sign tuples:

A(H) =
⋃

l=1...γ(N)

A(σl), (15)

where σl ∈ {−,+}N is the sign tuple resulting from a non-
empty intersection of half-spaces and γ(N) is the number of
feasible cells. �

A (sub-)arrangement B ⊆ H is called central if⋂
Hi∈B

Hi 6= ∅.

Notation #B denotes the number of hyperplanes and rank(B)
the rank of the intersection.

Theorem 1 (Whitney’s theorem – [23]): Let A be an ar-
rangement in an d-dimensional space. Then the characteristic
polynomial of A is defined as

χA(t) =
∑

B⊆A,B central

(−1)#Btd−rank(B). (16)

Furthermore, the total number of regions and the number of
bounded regions characterizing the arrangement are:

r(A) = (−1)dχA(−1), (17a)

b(A) = (−1)rank(A)χA(1). (17b)
For a hyperplane arrangement with n hyperplanes in general
position1, the bounds are therefore:

r(A) =

d∑
k=0

(
n

k

)
, b(A) =

(
n

d− 1

)
. (18)

1An arrangement is considered to be in general position iff no two
hyperplanes are parallel (i.e., share the same normal).



B. Motivation

Consider the collection of obstacles (blue regions in Fig. 1)

P =

No⋃
j=1

Pj . (19)

Gathering the collection of associated support hyperplanes
defined as in (12) we reach the hyperplane arrangement (15).
Labeling the feasible cells (14) into interdicted ΣP = {σ :
A(σ)∩P 6= ∅} or allowed ΣX\P = {σ : A(σ)∩P = ∅} leads
to a characterization of the feasible domain in which an agent
moves (in order to avoid obstacle collisions). The feasible
domain is characterized through a mixed-integer formulation
further embedded into a constrained optimization strategy
[9]. More precisely, a MPC (Model Predictive Control)
strategy is employed in order to obtain a collision free
trajectory for an agent described by LTI dynamics through a
multi-obstacle environment:

min
u

‖xTk+Np|k‖
2
P +

Np−1∑
l=1

‖xTk+l|k‖2Q +

Np−1∑
l=1

‖uTk+l|k‖2R


(20)

s.t. xk+l|k = Axk+l−1|k +Buk+l−1|k, (21a)
xk+l|k ∈ X , uk+l|k ∈ U , (21b)
xk+l|k ∈ CX (P). (21c)

The agent dynamics are described by (21a) with x ∈
Rd the state vector, u ∈ Rdu the input vector and the
matrices A, B of appropriate dimension. Furthermore, in
(20) – (21) Np is the prediction horizon, the matrices P
(terminal cost penalty), Q (output error penalty) and R
(control move penalty) are positive semi-definite and of
appropriate dimensions. The sets X and U are compact sets
from Rd and Rdu , respectively.

Let us consider in Fig. 1a a collection of obstacles as
defined in (19) and delineate in Table I the number of:
• support hyperplanes (denoted as #H);
• feasible cells2 (denoted as γ∗(N)) with their offline

constructing time (denoted as tγ∗(N) with N = #H);
• interdicted cells (denoted as #ΣP).
For further use, we delineate as well in Table I the

parameters corresponding to the 3D case depicted in3 Fig. 1b.

#P #H γ∗(N) tγ∗(N) [s] #ΣP
d = 2 7 34 419 9.22 75
d = 3 10 106 57185 1255,88 1378

TABLE I: Constructive parameters and computing time of
the hyperplanes arrangements given in Fig. 1.

Several issues become apparent:
i) the complexity of the problem is strongly correlated

with the number of cells in the arrangement (γ∗(N));
ii) the number of cells depends on the number of hyper-

planes appearing in the obstacle description (#H).

2We take into account only the cells from the bounded domain X .
3For clarity, we do not illustrate the hyperplanes in 3D case.
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Fig. 1: Hyperplane arrangement for polytopic obstacles.

While the first issue comes naturally from the repetition
of the feasible domain along the prediction horizon, the later
one is particularly sensitive as a relatively small change in
obstacle description leads to a potentially large increase in
complexity. Herein lies the main motivation for the use of
zonotopic approximations: instead of simply “accepting” the
collection of obstacles (19) as it is, we proceed to over-
approximate them via a pre-defined family of zonotopes in
order to:

i) preserve a good approximation of the original inter-
dicted domain (gauged via various measures);

ii) have a clear complexity evaluation (in terms of total
number of cells) via hyperplane arrangement results;

Before the main developments we caution that a zonotope
is centrally symmetric. Hence, not any convex shape can
be rigorously approximated by an enclosing zonotope and
this will be the main source of conservatism hereafter (and
a potential direction of improvement). In particular, we
notice that a symmetric approximation (zonotope) with a
pre-defined topology (pre-imposed fixed direction of the
generators) can be arbitrarily conservative. It is worth to
be mentioned that a variety of algorithms provides over-
approximations [13], [14] and many of them consider pre-
defined families of zonotopes (e.g., by fixing the directions
of the generators) and thus the present work can be useful
for zonotopic approximation in general.

III. CONTRIBUTIONS ON ZONOTOPIC APPROXIMATIONS

Considering Def. 1 and (4) we refer to a family of
zonotopes parametrized after their centers c` ∈ Rd and
scaling factors ∆` ∈ Rm×m applied to a common generator
“seed” (an a priori given matrix G ∈ Rd×m):

Z(G∆j , cj), j = 1 . . . No. (22)

∆` is a diagonal matrix whose diagonal elements are equal
/ distinct4. The k-th diagonal element is noted as δjk .

Having a common generator seed:
i) provides linear (in term of the scaling and center pa-

rameters) inclusion constraints;
ii) allows measures for the obstacle over-approximation (in

terms of the `1, `∞ norms and the volume);

4If not explicitly stated otherwise, we consider the later case since the
former is a simplification of the later.



iii) expresses explicitly the complexity of the representation
(i.e., the number of cells of the associated arrangement).

A. Set inclusions for parametrized zonotopes

Replacing gk with gk · δjk in (8), the half-space represen-
tation of the j-th zonotope from (22) is given by:

hi s.t. hi ⊥ gk,∀k ∈ {k1 . . . kd−1}, (23a)

ki(∆j) =
∑

k/∈{k1...kd−1}

∣∣h>i gk∣∣ δjk , (23b)

where i enumerates the

p(d,m) =

(
m

d− 1

)
(24)

combinations of d − 1 distinct generators selected from the
list of m available ones (i.e., 1 ≤ k1 < · · · < kd−1 ≤ m).

Remark 1: Note that hi remains unchanged with re-
spect to (8) because the subspace perpendicular on
{gk}k∈{k1,...kd−1} is identical with the one perpendicular on
{gk · δjk}k∈{k1,...kd−1}, regardless of the δjk values. �
For further use we gather the support hyperplanes resulted
from (23) into the collection:

H̃ = {H(hi,±ki(∆j))},∀j = 1 . . . No, i = 1 . . . p(d,m).
(25)

Using the parametrization (23), with sets X , Y defined in
(2)-(3), allows to reformulate the inclusion conditions (10),
(11) into a linear form with respect to parameters cj , ∆j :

Z(G∆j , cj) ⊆ Y : s>i cj +

m∑
k=1

∣∣∣s>i gk∣∣∣ · δjk ≤ ri, ∀i, (26a)

X ⊆ Z(G∆j , cj) :
∣∣∣h>i (vk − cj)

∣∣∣ ≤ ki(∆j), ∀k. (26b)

Remark 2: Using X in its vertex representation (3) means
that (26b) is translated into finding the tight enclosure of a
set of points in Rd by a zonotope. [13] enforces a priori
given points (vk in (26b)) to stay on the zonotope boundary.
Hence, the “inclusion” condition is written as:

vk = cj +
∑m
i=1 ξijkgi, −δji ≤ ξijk ≤ δji ,∀i, k. (27)

The advantage of condition (27) is that it uses directly
the generator representation but requires a large number of
inequalities and is therefore not used here. �

B. Measures for zonotope approximations

The overall goal is to provide adequate over-
approximations (22) for the multi-obstacle environment (19).
That is, seek a (inherently symmetric) zonotope Z(G∆j , cj)
enclosing the known (usually non-symmetric) polytope Pj
such that a specific measure parametrized after cj , ∆j is
minimized:

(∆j , cj)
∗ =arg min

∆j ,cj
C(∆j , cj) (28a)

s.t. Pj ⊆ Z(G∆j , cj). (28b)

In the following proposition we consider several measures.

Proposition 1: For the cost defined as in (28), the follow-
ing measures5 are available:

i) zonotope volume Vol(Z(G∆j , cj)):

C(∆j , cj) =
∑

1≤k1<···<kd≤m

∣∣det(Gk1...kd)
∣∣ · ∏
k∈{k1,...,kd}

δjk ; (29)

ii) generator sum
m∑
k=1

gkδjk :

C(∆j , cj) = ||∆j ||1 =

m∑
k=1

δjk ; (30)

iii) largest generator max
k=1...m

gkδjk :

C(∆j , cj) = ||∆j ||∞ = max
k=1...m

δjk . (31)

Proof: See the Appendix.
Remark 3: Volume (29) is a sum of polynomial terms∏

k∈{k1,...,kd}
δjk , thus, non-linear. Imposing equality among the

scaling factors (δj1 = . . . = δjm = δ̃j), leads to a simplified
volume formulation:

Vol(Z(G∆j , cj)) =
∑

1≤k1<···<kd≤m

∣∣det(Gk1...kd)
∣∣ · δ̃dj , (32)

which can be used instead of (29). �
Solving (28) with (29) is burdensome in higher dimensions.
This was the reason for considering the simpler (and less
accurate) measures (30) – the Manhattan norm and (31) –
the infinity norm.

Remark 4: Taking the volume as the best measure for
zonotope approximation, (29) is nonlinear but exact and (30),
(31) are linear but coarse. Within this hierarchy is natural to
consider the Hausdorff distance [22] as an intermediate mea-
sure (in terms of complexity and precision). This direction
is not followed in this work. �

C. Hyperplane arrangement induced by the zonotopes

Collection (25), based on (22) induces the hyperplane
arrangement6 A(H̃). We aim to:

i) provide a cell count with explicit dependence on m, the
number of generators and No, the number of obstacles;

ii) compare it against the original arrangement A(H).

As shown in (25), the 2 · p(d,m) ·No hyperplanes are parti-
tioned in 2No families: in each family there is a hyperplane
with normal hi but with a different offset ±ki(∆j). This
particularity allows the following proposition.

Proposition 2: A(H̃) has the characteristic polynomial:

χ(A) =

d∑
k=0

(−1)ktd−k ·
(
p(d,m)

k

)
· (2No)k, (33)

5Fulfilling the countable additivity, null-empty set and non-negativity
properties over the class of zonotopes.

6For compactness, whenever clear from the context we use notation A.



to which correspond the following bounds:

r(A) =

d∑
k=0

(
p(d,m)

k

)
· (2No)k, (34a)

b(A) =

∣∣∣∣∣
d∑
k=0

(−1)k
(
p(d,m)

k

)
· (2No)k

∣∣∣∣∣ . (34b)

Proof: See the Appendix.
These results allow to further derive a bound for the

number of generators in the zonotopic representation.
Corollary 1: Assuming n∗o support hyperplanes in (19),

for any m ∈ N+ which verifies:
d∑
k=0

(
p(d,m)

k

)
· (2No)k ≤

d∑
k=0

(
n∗o
k

)
, (35)

the arrangement A(H̃) has fewer cells than A(H).
Proof: The left-side of (35) comes from (34) and the

right side from (18) with n 7→ n∗o.
While the previous results hold for Rd, it is worthwhile to
particularize them for d = 3.

Corollary 2: For the case d = 3, we have that:
i) the total and the bounded number of cells for A(H̃) is:

r(A) = 1 + η · 2No + η(η − 1) · 2N2
o

+
1

6
η(η − 1)(η − 2)8N3

o , (36a)

b(A) =
∣∣1− η · 2No + η(η − 1) · 2N2

o

− η(η − 1)(η − 2)

6
8N3

o

∣∣∣∣ ; (36b)

where7 η = 1
2m(m− 1);

ii) the largest m s.t. A(H̃) has fewer cells than A(H) is :

m =

⌊
1 +
√

1 + 8η∗

2

⌋
. (37)

where η∗ represents the real solution of a solvable third
order equation 8.
Proof: See the Appendix.

Let us revisit the previous illustrative examples and pro-
ceed to find the zonotopic over-approximations of the ob-
stacles described in Fig. 1. The simulations were done for
different variants of the generator seed G in (22) for both
d = 2 and d = 3 dimensions:

G1,2,3 ∈
{[

1 0 1
0 1 1

]
,

[
1 0
0 1

]
,

[
−1 0 −1
0 1 1

]}
, (38)

G4,5 ∈


1 0 0

0 1 0
0 0 1

 ,
1 0 0 1

0 1 0 1
0 0 1 1

 . (39)

Maintaining the structure of Table I, we delineate in Table II
some parameters of interest. Thus, we indicate the total

7Also, the particularization can be done for the case d = 2. In (36) η is
replaced by m (because of p(2,m) =

(m
1

)
= m) and, in both r(A) and

b(A) the last term is eliminated.
8For the largest m in (37) for the case d = 2, we only need to

solve a second order equation, holding the positive root, hence: m =⌊
(No−1)+

√
(No−1)2+n∗

o(n∗
o+1)

2No

⌋
.

computing time corresponding to each considered method
(tsol), the relative modification of the number of cells(

∆γ(N)
γ(N) = γ∗(N)−γ(N))

γ(N) · 100
)

and a couple volume spec-
ifications: the volume of the over-approximation (V ) and the
relative error with respect to the volume of the polytopic
obstacles

(
∆V
V = Vol(Z)−Vol(P)

Vol · 100
)

.
We note that ‖·‖1 has a better behavior than ‖·‖∞ (i.e., its

relative volume error is smaller) and that the volume criterion
gives the most accurate approximation (at the price of a large
computational effort). We conclude thus that ‖·‖1 provides
the best compromise between over-approximation error and
computation time. Additionally, we observe an inverse pro-
portionality between the volume of the approximation and
number of hyperplanes (and implicitly the number of cells).
Note that this factor can be tweaked by a suitable choice
of the generator matrix G. Lastly, as illustrated in Fig. 2,
the choice of the matrix seed G is not trivial and strongly
depends on the shapes of the obstacles considered (the choice
will impact the over-approximations).
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Fig. 2: Zonotopic approximation for the multi-obstacle envi-
ronment from Fig. 1.

While for d = 2 the results are somewhat ambiguous
(the decrease of the complexity is not marked), for the
d = 3 case the impact is substantial on the number of
cells. We remark a significant decrease of this number, even
though the choice of the matrix G was empirical and not
the result of an optimization process. Moreover, the cell
merging procedure [10] is burdensome for the polytopic
representation (Fig. 1b) but it is a usable technique for the
zonotopic over-approximation. On the other hand, there are
no improvements regarding the volume and that highlights
the influence of the “common seed”.

IV. MULTI-OBSTACLE COLLISION AVOIDANCE

Let us consider the following agent dynamics (21a) in Rd:

A =

[
Od Id
Od − µ

M Id

]
, B =

[
Od
MId

]
,

where µ = 3 and M = 60. The agent’s state and input are
constrained: X = {x : −15 ≤ xi ≤ 15,∀i = 1 . . . 2d} and
U = {u : −1 ≤ ui ≤ 1,∀i = 1 . . . 2d}.

A. Optimization-based control

The constrained optimization problem (20) has to be
solved over a non-convex domain CX (P) in (21c). Thus,



Measure Constraints G tsol #H γ∗(N) ∆γ(N)
γ(N)

(%) tγ∗(N) #ΣP V ∆V
V

(%)

d = 2

‖δ‖1 (26)

G1 8,13 42 505 20,53 9,53 197 376,98 71,7
G2 8,02 28 225 -46,30 3,81 101 410,07 86,78
G3 8,27 42 534 27,45 10,09 167 368,93 68,04

‖δ‖∞ (26)

G1 8,19 42 441 5,25 8,19 374 897,92 308,98
G2 8,01 28 225 -46,30 3,91 175 583,33 165,69
G3 8,19 42 441 5,25 8,19 374 897,92 308,98

Vol (26)

G1 9,40 42 510 21,72 9,66 199 368,41 67,8
G2 9,19 28 225 -46,30 3,75 101 410,07 86,78
G3 9,30 40 530 26,49 10,27 169 374,99 70,8

Vol
(26) +
δj = δ

G1 9,08 42 479 14,32 9,94 481 897,92 308,98
G2 8,88 28 225 -46,30 3,84 193 583,33 165,69
G3 9,05 42 531 26,73 11,28 272 628,72 186,37

d = 3

‖δ‖1 (26) G4 9,82 60 8400 -85,31 105,98 934 1857,46 323,56
G5 10,50 120 62480 9,26 1145,09 4952 2019,34 360,47

‖δ‖∞ (26) G4 9,71 60 8000 -86,01 100,22 1127 2623,3 498,19
G5 10,59 120 51396 -10,12 932,12 9432 5852,55 1234,56

Vol (26) G4 11,02 60 8400 -85,31 105,07 934 1857,46 323,56
G5 11,79 84 24528 -57,11 413,07 2218 1908,2 335,13

Vol
(26) +
δj = δ

G4 10,49 60 7220 -87,37 90,54 1124 2623,3 498,19
G5 11,07 120 49200 -13,96 867,08 9436 5852,55 1234,56

TABLE II: Performance of the zonotopic over-approximation techniques.

CX (P) should be described in an efficient manner. As was
stated in [9] the use of half-spaces and of hyperplane ar-
rangement with a mixed-integer formalism leads to effective
control strategies. Hereinafter, we aim to validate the benefits
brought by the use of the parametrized zonotopic sets.

Using (20), we compare the performances of the control
strategy corresponding to a polytopic representation (as in
Fig. 1) to a zonotopic over-approximation (we assume no
overlaps). We depict in Fig. 3 the agent motion starting from
the same initial position in the multi-obstacle environment
(Fig. 1a) and over-approximated (Fig. 2a).

Topology Ngoal tgoal(sec) tworst (sec)

d = 2
P 143 11.64 0.22
Z 146 10.07 0.18

d = 3
P 98 83.87 0.81
Z 132 57.07 0.42

TABLE III: Simulation results for (20) with Np = 10, P =
10I2d, Q = I2d, R = Id.

In Table III we delineate some noteworthy computational
characteristics: Ngoal represents the number of steps neces-
sary to attain a neighborhood of the final destination, tgoal
the total time neccesary to compute the trajectory, and tworst
stands for the worst time necessary to solve (20).

We note that for d = 2 case the computational perfor-
mances are quasi-similar for both representations. We have a
longer trajectory for the zonotopic representation, as was ex-
pected, because of the additional “space”( Pj \Z(G∆j , cj))
which becomes an interdicted region. However, tgoal is
smaller due to the symmetry properties while tworst is not
significantly changed. The last mentioned aspect is directly
caused by the values presented in Table II - the number of
cells. Furthermore, for the d = 3 case the differences are
more noticeable. We have a reduction of 70% of the tgoal,
and tworst is reduced at half for the zonotopic representation.
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Fig. 3: Illustration of obstacle avoidance for d = 2.

A reasonable assumption (confirmed by the simulations)
is that an increase of the prediction horizon Np will accen-
tuate the differences between these two representations but
may also lead to inapplicable control strategies due to the
computational effort. Moreover, an optimized selection of
the common “seed” will bring a more prominent difference
without an undesirable effect on the control algorithm.

B. Sample/Graph-based approaches

In contrast to the MIP approach where the discrete de-
cisions are encoded in a mathematical formalism and are
solved as such, the graph-based approaches reduce these
discrete decision to the search of the shortest path between
nodes in a graph. The PRM (probabilistic roadmaps) is a
multiple-query method in the sense that after the construction
of the roadmap (a rich set of feasible paths) it answers
queries by computing an optimal path through the graph.
The PRM is an useful method if an awareness map of the
environment is available [6]. Hence, a comparison with the
MIP-based approach is pertinent.



There exist many variants for the PRM, each representing
a valuable improvement, but for this study we select the
classical PRM. Thus, we use a method based on visibility
[24]. Specifically, we randomly select a number of samples
within the workspace, we keep only the ones from the non-
convex feasible domain and we connect these points based
on a visibility criterion (if there is a line connecting the
points without intersecting any obstacle, then the points
are visible from one another). Having this visibility graph
(offline computed, assuming the existence of the awareness
map), we only link the start and the final position to the
nearest graph nodes and find the shortest path through the
graph, e.g., using Dijkstra algorithm [6]. Afterward, we use
a tracking algorithm in order to follow the obtained path
(the black lines from Fig. 4). We opted to use MPC for
tracking9, the problem (20) without the constraint (21c) for
each segment of the path (maintaining the same values of
the MPC parameters as in Table III).

Approach Ngoal tgoal(sec) `t(m)

d = 2
MIP (Z) 146 10.07 21.36

PRM 172 9.81 24.41

d = 3
MIP (Z) 132 57.07 25.57

PRM 192 12.15 29.96

TABLE IV: Results for the agent trajectories in Fig. 4.
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Fig. 4: Illustration of obstacle avoidance for d = 2.

As it can be noted from the results depicted in Table IV,
the trajectory length (`t) obtained with PRM is longer than
the one corresponding to the MIP formulation with zonotopic
representation. As well we observe that tgoal corresponding
to the PRM method does not depend on the value of d,
whereas the zonotopic representation is strongly impacted
by the space dimension. Within these two examples10, the
MIP-based approach performs better in the sense of number
of steps and trajectory length. Nevertheless, the choice of the
approach needs always an application-dependent analysis.
However, the zonotope approximation impact is clearly ex-
emplified in this study and provides manageable complexity
and structural properties. These last elements can be crucial
in the certification of control algorithms.

9Note that the performances of the PRM method strongly depend on the
choice of the tracking algorithm.

10We illustrate the trajectories only for d = 2 case for reasons of space
and visibility.

V. CONCLUSIONS

This work presented a geometric view for the collision
avoidance problem using zonotopic over-approximations of
the obstacles. We emphasized the benefits of choosing a
particular family of sets (parametrized zonotopes) regarding
the complexity of a non-convex feasible domain represen-
tation. Additionally, we compared the MPC-based collision
avoidance with the heuristic PRM (Probabilistic Roadmaps)
technique and confirmed the potential advantages.

In this paper we concentrate exclusively on over-
approximation aspect and on its effects on the optimization
problem. We have neglected the possibility of the overlap-
ping of some of the approximations and we have not tackled
issues like lost or narrowing of the passages among the
obstacles. This will be the topic of further research and it
will present that separation conditions can be imposed in
order to maintain passages among the obstacles.

APPENDIX

Proof of Proposition 1

i) Replacing gk with gk · δjk in (7) leads to

Vol(Z(G∆j , cj)) =
∑

1≤k1<···<kd≤m

∣∣∣det(Gk1...kd ·∆k1...kd
j )

∣∣∣ .
Noting that det(M ·N) = det(M) ·det(N) and that ∆j

is a diagonal matrix with positive elements gives (29).
ii) Assuming without loss of generality that ||gk||1 = 1,

the cost reduces immediately to (30).
iii) Similar reasoning with case ii), assuming ||gk||∞ = 1.

Proof of Proposition 2

To apply Whitney’s theorem and obtain the bounds (18),
the key is to count how many central arrangements of rank
k there are. Hence, we need to avoid selecting parallel
hyperplanes from the available p(d,m) · 2No. We consider
each of the 2No families of p(d,m) hyperplanes and select
as follows: from the 1st family we select j−1 ; in the 2nd
family there remain m−j−1 available (the others are parallel
to those already selected and thus unsuitable) from which we
select j+

1 ; the procedure continues up to the 2N0-th family
from which we select j+

No
.

Enumerating all sequences j−1 , . . . , j
+
No

which add to k
and taking all the possible combinations for a fixed sequence
provides the total number of central arrangements of rank k:

∑
j−1 +j+1 +···+j−no+j+no=k

(
p

j−1

)
·

(
p− j−1
j+
1

)

. . .

(
p− j−1 − j

+
1 − · · · − j

−
No

j+
No

)
. (40)

Writing explicitly the combinatorial terms for a sequence



j−1 , j
+
1 . . . , j−No

, j+
No

p!

j−1 ! · (p− j−1 )!
· . . . ·

(p− j−1 · · · − j−no
)!

j+
no ! · (p− j−1 . . . j−No

− j+
No

)!

=
k!

(p− k)! · k!
· k!

j−1 ! · j+
1 ! · . . . · j−No

! · j+
No

!

=

(
p

k

)
· k!

j−1 ! · j+
1 ! · . . . · j−No

! · j+
No

!

and identifying k!
j−1 !·j+1 !...j−No

!·j+No
!

as the coefficient from the
multinomial theorem [25] allows to rewrite (40) as

∑
j−1 +...j+

No
=k

(
p

k

)
· k!

j−1 ! · j+
1 ! . . . j−No

! · j+
No

!
=

(
p

k

)
· (2No)k. (41)

Introducing (41) in (16) leads directly to (33) which,
applied as in (17), leads to (34), thus concluding the proof.

Proof of Corollary 2

For d = 3, the number of support hyperplanes for a
zonotope becomes p(3,m) =

(
m
2

)
= 1

2m(m− 1).
i) Introducing p(3,m) in (34) directly leads to (36).
ii) Introducing p(3,m) in (35) reduces it to a third-order

inequality in η as it follows:

2(8N3
0 − 12N2

0 + 12N0)η − 3(8N3
0 − 4N2

0 )η2 + 8N3
0 η

3 ≤

≤ n∗o +
1

6
n∗o(n

∗
o − 1)(n∗o + 1). (42)

Using the notation λ for the right term of (42) we rewrite it
as:

8N3
0 η

3−12N2
0 (2N0−1)η2+8N0(2N2

0−3N0+3)−λ ≤ 0. (43)

Therefore, we can compute the discriminant:

∆ = N6
0 [−359424− 34560λ− 1728λ2+

+ (829440 + 82944λ)N0 − (1022976 + 27648λ)N2
0

+ 663552N3
0 − 221184N4

0 + 16384N6
0 ]. (44)

We note that ∆ is negative for the so-defined positive values
of N0 and λ. This means that the third order equation has
one real solution and two complex ones. The computing of
them involves calculating:

∆0 = N4
0 (−432 + 192N2

0 ), (45a)

∆1 = N6
0 (−17280− 1728λ+ 41472N0 − 13824N2

0 ), (45b)

C = 3

√
∆1 ±

√
1728N2

0 ∆

2
. (45c)

Thus, the real solution is given by:

η∗ =
1

24N3
0

[
12N2

0 (2N0 − 1) + C +
∆0

C

]
. (46)

This real solution is introduced in the η definition, obtaining
a second-order equation in m. This inequality has two real
solutions (one negative and one positive) which means that
the largest m verifying the inequality is the closest (at its
left) from the positive solution, hence, (37) .
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[24] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Communications of
the ACM, vol. 22, no. 10, pp. 560–570, 1979.

[25] M. Hazewinkel, Multinomial coefficient, Encyclopedia of Mathemat-
ics. Springer, 2001.


