Intermediate calculation steps from (7) to small perturbation formulation

Starting from (7)

$$
\begin{gathered}
\dot{X}=-\left(\frac{1}{Q_{x}}+\frac{1}{4} \alpha_{x} X^{2}\right) \frac{X}{2}+\frac{1}{2 \Omega}\left(f_{\cos x}+n_{\cos x}\right) \\
\dot{Y}=-\left(\frac{1}{Q_{y}}+\frac{1}{4} \alpha_{y} Y^{2}\right) \frac{Y}{2}+\frac{1}{2 \Omega}\left(f_{\cos y}+n_{\cos y}\right) \\
\dot{\phi}=-\frac{1}{\Omega}\left(\epsilon+\frac{3}{8} \gamma_{x} X^{2}-\frac{3}{8} \gamma_{y} Y^{2}\right)+\frac{1}{2 \Omega X}\left(f_{\sin x}+n_{\sin x}\right)-\frac{1}{2 \Omega Y}\left(f_{\sin y}+n_{\sin y}\right)
\end{gathered}
$$

the full Jacobian matrix with respect to the state of the system without any assumption on the coupling and sustaining forces is:
J_{s}

$$
=\left(\begin{array}{ccc}
-\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{3}{4} \alpha_{x} X^{2}\right)+\frac{1}{2 \Omega} \frac{\partial f_{\text {cosx }}}{\partial X} & \frac{1}{2 \Omega} \frac{\partial f_{\text {cosx }}}{\partial Y} & \frac{1}{2 \Omega} \frac{\partial f_{\text {cosx }}}{\partial \phi} \\
\frac{1}{2 \Omega} \frac{\partial f_{\text {cosy }}}{\partial X} & -\frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{3}{4} \alpha_{y} Y^{2}\right)+\frac{1}{2 \Omega} \frac{\partial f_{\text {cosy }}}{\partial Y} & \frac{1}{2 \Omega} \frac{\partial f_{\text {cosy }}}{\partial \phi} \\
-\frac{1}{X}\left(\frac{3}{4 \Omega} \gamma_{x} X^{2}+\frac{f_{\sin x}}{2 \Omega X}\right)+\frac{1}{2 \Omega X} \frac{\partial f_{\operatorname{sinx}}}{\partial X}-\frac{1}{2 \Omega Y} \frac{\partial f_{\text {siny }}}{\partial X} & \frac{1}{Y}\left(\frac{3}{4 \Omega} \gamma_{y} Y^{2}+\frac{f_{\sin y}}{2 \Omega Y}\right)+\frac{1}{2 \Omega X} \frac{\partial f_{\operatorname{sinx}}}{\partial Y}-\frac{1}{2 \Omega Y} \frac{\partial f_{\text {siny }}}{\partial Y} & \left.\frac{1}{2 \Omega X} \frac{\partial f_{\operatorname{sinx} x}}{\partial \phi}-\frac{1}{2 \Omega Y} \frac{\partial f_{\text {siny }}}{\partial \phi}\right)
\end{array}\right)
$$

In the case of a MILO, for example, the coupling and sustaining forces only depend on ϕ, so that this reduces to

$$
J_{s}=\left(\begin{array}{ccc}
-\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{3}{4} \alpha_{x} X^{2}\right) & 0 & \frac{1}{2 \Omega} \frac{\partial f_{\cos x}}{\partial \phi} \\
0 & -\frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{3}{4} \alpha_{y} Y^{2}\right) & \frac{1}{2 \Omega} \frac{\partial f_{\operatorname{cosy}}}{\partial \phi} \\
-\frac{1}{X}\left(\frac{3}{4} \gamma_{x} X^{2}+\frac{1}{2 \Omega X} f_{\sin x}\right) & \frac{1}{Y}\left(\frac{3}{4} \gamma_{y} Y^{2}+\frac{1}{2 \Omega Y} f_{\sin y}\right) & \frac{1}{2 \Omega X} \frac{\partial f_{\sin x}}{\partial \phi}-\frac{1}{2 \Omega Y} \frac{\partial f_{\operatorname{siny}}}{\partial \phi}
\end{array}\right)
$$

Now, if we consider the MILO with $\theta=90^{\circ}$, at phase $\phi=90^{\circ}$, we have

$$
\begin{gathered}
f_{\text {sinx }}\left(=\frac{F_{x}}{\pi}(\cos \theta+\cos (\theta+\phi))\right)=-\frac{F_{x}}{\pi} \\
f_{\text {cos } x}\left(=\frac{F_{x}}{\pi}(\sin \theta+\sin (\theta+\phi))\right)=\frac{F_{x}}{\pi} \\
f_{\text {siny }}\left(=\frac{F_{y}}{\pi}(\cos \theta-\cos (\theta-\phi))\right)=-\frac{F_{y}}{\pi} \\
f_{\text {cosy }}\left(=\frac{F_{y}}{\pi}(\sin \theta-\sin (\theta-\phi))\right)=\frac{F_{y}}{\pi} \\
\frac{\partial f_{\text {sinx }}}{\partial \phi}=\frac{\partial f_{\text {siny }}}{\partial \phi}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial f_{\cos x}}{\partial \phi}=-\frac{F_{x}}{\pi} \\
\frac{\partial f_{\cos y}}{\partial \phi}=\frac{F_{y}}{\pi}
\end{gathered}
$$

so that the Jacobian becomes

$$
J_{s}=\left(\begin{array}{ccc}
-\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{3}{4} \alpha_{x} X^{2}\right) & 0 & -\frac{1}{2 \Omega} \frac{F_{x}}{\pi} \\
0 & -\frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{3}{4} \alpha_{y} Y^{2}\right) & \frac{1}{2 \Omega} \frac{F_{y}}{\pi} \\
-\frac{1}{X}\left(\frac{3}{4 \Omega} \gamma_{x} X^{2}-\frac{1}{2 \Omega X} \frac{F_{x}}{\pi}\right) & \frac{1}{Y}\left(\frac{3}{4 \Omega} \gamma_{y} Y^{2}-\frac{1}{2 \Omega Y} \frac{F_{y}}{\pi}\right) & 0
\end{array}\right)
$$

From (7), we also have the following relations:

$$
\begin{aligned}
& \Omega\left(\frac{1}{Q_{x}}+\frac{1}{4} \alpha_{x} X^{2}\right) X=f_{\cos x}=\frac{F_{x}}{\pi} \\
& \Omega\left(\frac{1}{Q_{y}}+\frac{1}{4} \alpha_{y} Y^{2}\right) Y=f_{\text {cosy }}=\frac{F_{y}}{\pi}
\end{aligned}
$$

so that the Jacobian may be rewritten as:
J_{s}

$$
=\left(\begin{array}{ccc}
-\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{3}{4} \alpha_{x} X^{2}\right) & 0 & -\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{1}{4} \alpha_{x} X^{2}\right) X \\
0 & -\frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{3}{4} \alpha_{y} Y^{2}\right) & \frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{1}{4} \alpha_{y} Y^{2}\right) Y \\
-\frac{1}{X}\left(\frac{3}{4 \Omega} \gamma_{x} X^{2}-\frac{1}{2}\left(\frac{1}{Q_{x}}+\frac{1}{4} \alpha_{x} X^{2}\right)\right) & \frac{1}{Y}\left(\frac{3}{4 \Omega} \gamma_{y} Y^{2}-\frac{1}{2}\left(\frac{1}{Q_{y}}+\frac{1}{4} \alpha_{y} Y^{2}\right)\right) & 0
\end{array}\right)
$$

Regarding the Jacobian with respect to parametric fluctuations or additive noise components, these are more straightforward to derive. For example, considering only fluctuations of parameter ϵ and additive noise components $n_{\operatorname{sinx}}, n_{\sin y}, n_{\operatorname{cosx}}$ and $n_{\text {cosy }}$, as we do in most of our paper, we have:

$$
J_{p}=\frac{1}{\Omega} \times\left(\begin{array}{ccccc}
0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 \\
-1 & 1 / 2 X & -1 / 2 Y & 0 & 0
\end{array}\right)
$$

Note that only \boldsymbol{J}_{s} changes from one WCR architecture to the other (or from one steady state solution to another).

How to use the Simulink simulation files

The provided files are:

- "MILO_NL". It simulates a MILO with $\theta=90^{\circ}$. The simulation is set to run with the following parameters: $Q=100, \gamma=0.1$, and F slowly varying from 10^{-3} to 10^{-2}. Above

$$
A_{\text {Duff }}=\sqrt{\frac{2}{3 \gamma Q}}=0.25
$$

the mode with $\phi=90^{\circ}$ becomes unstable, and the system starts oscillating with $\phi=-90^{\circ}$.

- "MOLO_NL". It simulates a MOLO with $\theta=90^{\circ}$, as considered in our paper. The simulation is set to run with the following parameters: $Q=100, \gamma=0.1, \kappa=0.1$ and F slowly varying from 10^{-2} to 10^{-1}. Above

$$
A_{D u f f}=\sqrt{\frac{4 \kappa}{3 \gamma}}=1.15
$$

the phase opposition mode with $R=1$ becomes unstable, and the system starts oscillating with $R \neq 1$, but still in phase opposition. The coupling spring may be nonlinear: setting the coupling force to " $u+100^{*} u^{\wedge} 3^{\prime}$ " for example shows that nonlinear coupling increases the effective coupling stiffness, and thus the range of stability.

- "noisy_MILO". This is the simulation file used for generating the results in Fig. 7, for a MILO with $\theta=45^{\circ}$. Note that the precise value of θ is set by the transfer functions in the "Phase-shift" block. In the case Ω_{0} is significantly different from 1 (this may be assessed by the formulas in the paper), one should modify these transfer functions to $1 /\left(1+s / \Omega_{0}\right)$. The values of Q, γ and F are set by parameters " Q ", "gama" and " f ".

