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Nonlinear operation of resonant sensors based on weakly-

coupled resonators: experimental investigation of an actively-

coupled architecture 

Jérôme Juillard, Ali Mostafa, Pietro Maris Ferreira 

Abstract - This paper is aimed at the validation of a theoretical analysis of the 

properties of nonlinearly-operated weakly-coupled resonators (WCRs) for 

resonant sensing applications. In particular, we investigate the relationships 

between the operating point of such devices and different performance indicators, 

such as parametric sensitivity, sensitivity to drive level and to noise, and 

bandwidth. To this end, a couple of high-Q MEMS resonators exhibiting nonlinear 

restoring and damping forces are used. A careful characterization of the 

resonators and their associated electronics is made, resulting in a very good, 

quantitative fit between the experimental results and those predicted by theory. 

I Introduction 

Because of their large parametric sensitivity and their capacity to reject environmental 

drift, sensor architectures based on actively- and passively-coupled MEMS resonators 

are a subject of current research interest [1-4]. While the linear theory of operation of 

such devices is well-known [5-6], there is little theoretical background concerning their 

nonlinear (large oscillation amplitude) operation. However, some recent studies show 

there may be a practical interest to operating in such a regime, demonstrating, on a case-

by-case basis, improvement in measurement range [7], signal-to-noise ratio [8], or drive 

voltage fluctuations [9] for example.  

In [10], we have presented a comprehensive theoretical framework for modeling WCRs 

subject to nonlinear restoring forces, as well as nonlinear damping forces. Based on our 

analysis, some common characteristics of nonlinear WCRs could be established. These 

properties are summed up in Appendix A of this paper. In this work, we aim at 

illustrating and commenting these properties in the context of an experimental study, 

far from the ideal framework of [10]. It should be stressed that we do not seek to 

demonstrate a hypothetical improvement in performance compared to “conventional” 

frequency-modulated resonant sensors, but merely to validate our theoretical analysis, 

provide some helpful examples and gain some critical insight.  

To this end, a discrete PCB implementation of the actively-coupled architecture shown 

in Fig. 1 is used: it is a mutually injection-locked oscillator (MILO) consisting of two 

MEMS resonators, an analog front-end (AFE), and a digital mixer ensuring the active 

coupling of the resonators, as studied in [7]. The circuit and the MEMS resonators are 

described in detail in section II. In particular, the nonlinear characteristics of the 

resonators are established, and the connection between electrical measurements and 



theoretical framework is made. Section III is dedicated to an experimental sensitivity 

analysis of the system, aimed at validating the quasi-static properties of nonlinear WCRs 

established in [10] (and recapitulated in appendix A). Section IV is focused on the 

spectral analysis of the measured signals and illustrates the amplitude-dependent finite 

bandwidth of these systems. Section V is dedicated to a discussion and some concluding 

remarks. 

 

Fig. 1 – System-level view of a MILO based on a digital mixer. 

 

Fig. 2 – Resonator mechanical structure (from [11]). The resonator is modeled as a 

clamped-clamped beam with an imperfect clamping condition (at the left end) 

preventing nonlinear hardening [12]. 



II Description of the setup1 

II-1 MEMS resonators 

The MEMS resonators used in these experiments are two vacuum-packaged resonant 

gauges taken from P90 pressure sensors, presented in [11] and characterized in detail in 

[12-13]. These one-port resonators, shown in Fig. 2, consist in an electrostatically-

actuated and capacitively-detected silicon beam, with natural frequency 𝑓0 ≈ 69kHz and 

quality factor 𝑄 ≈ 2 × 104. One end of the beam is perfectly clamped while the other is 

attached to the membrane used as a pressure sensing element. As a consequence of this 

imperfect clamping condition, no stress-stiffening is observed in the gauges, even at very 

large oscillation amplitudes [12], electrostatic softening being the dominant source of 

nonlinearity as far as nonlinear restoring forces are concerned. As reported in [14], 

internal resonances also occur in these resonators outside of their nominal operating 

range, resulting in an apparent decrease of their quality factor. This may adequately be 

modelled as a nonlinear damping phenomenon, as shown in section II-3.  

II-1-a Simplified model of the resonators 

Each resonator is accurately described by a single-DOF non-dimensional model resulting 

from the Galerkin projection of the electrostatically-actuated Euler-Bernoulli beam 

equation on the first clamped-clamped beam eigenmode [15]: 
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where 𝑥 or 𝑦 designates the relative displacement of the center of the beam with respect 

to the electrostatic gap, 𝜅 is a parameter representing the mechanical detuning of the 

resonators with respect to their average unbiased natural frequency, 𝜂𝑥 and 𝜂𝑦 are 

electromechanical transduction coefficients (see below), 𝑛𝑥(𝑡)  and 𝑛𝑦(𝑡)  are 

independent random forces acting on the resonators, and 𝑣𝑥 ≪ 1 (resp. 𝑣𝑦) is the ratio of 

the drive voltage 𝑣𝐷𝑅𝑉𝑥(𝑡) (resp. 𝑣𝐷𝑅𝑉𝑦(𝑡)) of the resonator to its DC bias voltage 𝑉𝐵𝑥 

(resp. 𝑉𝐵𝑦). For a clamped-clamped beam resonator, static pull-in occurs at 40% of the 

gap, as a static analysis of (1) shows. The expression of the electromechanical coefficient 

is then simply: 
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,  (2) 

where 𝑉𝑃𝐼 is the value of the pull-in voltage of the resonator. 

                                                      
1
 Note that, in the experiments of sections II, III and IV, no particular precaution is taken to control temperature, 

ambient pressure or other environmental factors. 
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Meaning Unit Sym

bol 

Meaning Unit 

𝑥, 𝑦 Displacement of resonators  ND 𝑋, 𝑌 Mechanical amplitudes of 

resonators  

ND 

𝑅 Ratio of mechanical 

amplitudes 

ND 𝜙 Phase difference of 

resonators 

(°) 

𝑄 Quality factor ND 𝛼 Nonlinear damping 

coefficient 

ND 

𝜂 Electromechanical coefficient ND 𝑉𝑃𝐼 Static pull-in voltage (V) 

𝜅 Relative stiffness mismatch 

(mech. only).  

ND 𝜖 Relative stiffness mismatch 

(incl. electrostatic softening) 

ND 

𝑓 Excitation force ND 𝐹 Peak value of 𝑓 ND 

𝑛 Random force ND 𝜃 MILO phase-shift (°) 

𝐴𝐷𝑢𝑓𝑓 Critical Duffing amplitude ND 𝐴𝑑𝑎𝑚𝑝 Critical damping amplitude ND 

𝑉𝐵 Bias voltage (V) 𝑣𝑂𝑈𝑇  Voltage at AFE output (V) 

𝑣𝐷𝑅𝑉 Drive voltage  (V) 𝑣𝑑𝑟𝑣 Peak value of 𝑣𝐷𝑅𝑉 (V) 

𝑣𝐶𝑂𝑀𝑃 Voltage at comparator output (V) 𝐶0 Capacitance of resonator (F) 

𝐶𝑓 AFE feedback capacitance (F) 𝑅𝑓 AFE feedback resistance (Ω) 

Table 1 – Main notations used in the paper. A suffixed 𝑥, resp. 𝑦, means the value applies 

only to resonator 𝑥, resp. 𝑦 (e.g. 𝐹𝑥).  

Dropping the the 𝑣𝑥
2  and 𝑣𝑦

2  terms in (1), and the terms resulting in DC or 2Ω  

components of the restoring force, we obtain: 
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3
2

𝑣𝑦(𝑡) + 𝑛𝑦(𝑡).  (3-b) 

Note that the resulting model is nearly identical to (A-1), in appendix A, the main 

difference being the actuation nonlinearity appearing on the right-hand side, which is 

known to induce waveform-dependent phenomena [12]. This effect is specifically 

studied in section II-2-b. 



II-1-b Electrostatic tuning of the resonators 

The proper operation point of MILOs is when the resonators have zero stiffness 

mismatch, i.e. when  

2𝜅 −
3

2
(𝜂𝑥 − 𝜂𝑦) = 0.  (4) 

Thus, it is possible to tune the resonators by setting their bias voltages so that (4) is 

verified. From this operation point, changing the bias voltage of resonator 𝑦 by a small 

amount from 𝑉𝐵𝑦 to 𝑉𝐵𝑦 + 𝛿𝑉𝐵𝑦, for instance, simulates a relative mechanical stiffness 

mismatch 𝛿𝜖 according to: 

𝛿𝜖 =
3

2
𝜂𝑦

𝛿𝑉𝐵𝑦

𝑉𝐵𝑦
.  (5) 

Note that changing the bias voltage of a resonator also changes its Duffing coefficient 

and the amplitude of its driving force.  

Measuring the MILO’s oscillation frequency at small oscillation amplitudes for different 

bias voltages yields the following relation between the electromechanical transduction 

coefficient and bias voltage 

𝜂𝑥,𝑦 ≈ 𝜒 × 𝑉𝐵𝑥,𝑦
2  (6) 

with 𝜒 = 3.35 × 10−6. According to (2), this corresponds to a pull-in voltage equal to 

235V. 

 

Fig. 3 – Schematic of the studied MILO, consisting of (i) MEMS resonators, (ii) 

feedthrough compensation stages, (iii) readout stages, (iv) comparators and (v) logic 

gates. The resistive bridges used for setting drive voltage values have been omitted, and 

passive bandpass filters at the comparators inputs as well. The arrows correspond to the 

phasor representation of the signals in the system when 𝜖 = 0 and 𝜙 = 90°. With 



𝜃 = 45°, the digital mixer generates actuation voltages (purple arrows) with a 90° 

phase-lead with respect to the mechanical motion.  

II-2 Electronic circuit and transduction 

A schematic of the studied MILO is represented in Fig. 3. The angle 𝜃 = 𝜃𝑑𝑒𝑡 + 𝜃𝑐𝑜𝑚𝑝 +

𝜃𝑎𝑐𝑡  is the sum of 𝜃𝑑𝑒𝑡  , the phase-shift resulting from the detection transducer and 

analog front-end (AFE), 𝜃𝑐𝑜𝑚𝑝, the phase-shift resulting from the comparator, and 𝜃𝑎𝑐𝑡  

the phase-shift resulting from the driving stage and actuation transducer at the digital 

mixer output. Angle 𝜃 is an important parameter, since it sets the value of the phase 

between the resonator motion (𝑥(𝑡), 𝑦(𝑡)) and the excitation signal (𝑓𝑥(𝑡), 𝑓𝑦(𝑡)) in each 

loop, which must be 90° for each resonator to be nominally driven at resonance. Setting 

𝜃 = 45° guarantees that this is indeed the case, as illustrated in Fig. 3, where 

𝜃𝑑𝑒𝑡 = −135°, 𝜃𝑐𝑜𝑚𝑝 = 180° and 𝜃𝑎𝑐𝑡 = 0°. We first give a general description of this 

circuit, before focusing on how motional oscillation amplitudes or actuation forces may 

be derived from the electrical signals.  

II-2-a General description of the oscillator loop 

The motional signals are amplified with transimpedance amplifiers, with equal values of 

the resistive and capacitive part of the feedback impedance at resonance, i.e. 𝐶𝑓 = 15pF, 

𝑅𝑓 = 160kΩ ≈ 1/2𝜋𝑓0𝐶𝑓 . This results in a 45° phase-lag compared to a regular charge 

amplifier (with 𝑅𝑓 ≫ 1/2𝜋𝑓0𝐶𝑓). The output voltage 𝑣𝑂𝑈𝑇𝑥 then satisfies 

𝑑

𝑑𝑡
(𝑣𝑂𝑈𝑇𝑥) + 𝑣𝑂𝑈𝑇𝑥 = −

𝑉𝐵𝑥

2

𝐶0

𝐶𝑓

𝑑𝑥

𝑑𝑡
×

1

(1−𝑥)3/2, (7) 

where 𝐶0 ≈ 0.5pF is the nominal capacitance of the resonator. Note that the capacitance 

changes as the inverse of the square root of 𝑥 because of the non-uniform deformation 

along the length of the beam [15]. Note also that (7) only holds provided capacitive 

feedthrough is properly cancelled. In our setup, feedthrough cancellation is enforced via 

an active attenuator stage in parallel with the resonator, as illustrated in Fig. 3. Low-

noise, high-speed AD8065 operational amplifiers are used for these two stages.  

The binary-valued drive signals 𝑣𝐷𝑅𝑉𝑥 and 𝑣𝐷𝑅𝑉𝑦 , with peak values 𝑣𝑑𝑟𝑣𝑥 and  𝑣𝑑𝑟𝑣𝑦, are 

generated through a set of comparators (AD8561), logic gates (74HCT04 and 74HCT08) 

and potentiometers, as in [7]. Passive bandpass filters are used at the comparator inputs 

to attenuate unwanted signals below 6kHz or above 600kHz. A small amount of high-

frequency hysteresis is also introduced, as proposed in [16]. All in all, simulations and 

measurements show that the phase delay introduced by the mixer is nearly independent 

of the amplitude or the harmonicity of its inputs, so that the electronics enforce the 

condition 𝜃 = 45° regardless of the oscillation amplitude, provided it is significantly 

higher than a few mV. 

 



 

Fig. 4 – Typical waveforms at the AFE outputs and at the resistive bridge outputs when 

𝑉𝐵𝑥 = 40V, and 𝑉𝐵𝑦 ≈ 36V, so that 𝜙 ≈ 90°, in the cases (a) 𝑣𝑑𝑟𝑣𝑥 = 𝑣𝑑𝑟𝑣𝑦 = 100mV, and 

(b) 𝑣𝑑𝑟𝑣𝑥 = 𝑣𝑑𝑟𝑣𝑦 = 1V. 

Small and large-amplitude waveforms are shown in Fig. 4, highlighting the efficiency of 

the feedthrough removal, and also the distortion resulting from the detection 

nonlinearity for large values of motional oscillation amplitudes 𝑋 and 𝑌.  

II-2-b Transduction 

From (7), one may determine the relation between the RMS value at the amplifier 

output, which is measured in our experiments, and the mechanical oscillation amplitude. 

To this end, the solution of (7) is calculated assuming the input 𝑥(𝑡) is harmonic, i.e. 

𝑥(𝑡) = 𝑋 sin Ω𝑡 , and approximating the output 𝑣𝑂𝑈𝑇𝑥  with harmonic balance (20 

harmonics are used). Then a simple model is fitted to infer 𝑋 from the RMS value of 

𝑣𝑂𝑈𝑇𝑥: 

𝑋 =
𝑍

1+0.5𝑍2
,  (8-a) 

𝑍 = 4
𝐶𝑓

𝐶0

RMS(𝑣𝑂𝑈𝑇𝑥)

𝑉𝐵𝑥
. (8-b) 

with 0.8% accuracy up to 50% of the gap. In our setup, the ratio 𝐶𝑓/𝐶0 is measured to be 

equal to 35.  

With the same approach, one may also determine how the amplitude of the actuation 

force is related to that of the drive voltage. Two opposing effects result in a nearly linear 

relation between these two quantities. First of all, as a result of detection nonlinearity, 

𝑣𝑂𝑈𝑇𝑥  and 𝑣𝑂𝑈𝑇𝑦  become distorted at large oscillation amplitudes (see. Fig. 4-b). 

Consequently, the width of the pulses delivered to the resonators (which depends on 

when 𝑣𝑂𝑈𝑇𝑥  and 𝑣𝑂𝑈𝑇𝑦  change signs) is a monotonically decreasing function of 

amplitude, going from 24.5% duty-cycle when 𝑋 = 𝑌 = 0.1, to 23% when 𝑋 = 𝑌 = 0.5. 

This phenomenon tends to make the drive less efficient at large oscillation amplitudes, 

since less energy per cycle is injected into the resonators. However, actuation 



nonlinearity tends to make electrostatic drive more efficient as the oscillation amplitude 

increases (ultimately leading to resonant pull-in [15]). Our simulations, which take these 

two opposing effects into account, show that the relation between the amplitude of the 

force acting on one resonator and its drive voltage is nearly linear and independent of 

oscillation amplitude, with a 3.5% worst-case error when 𝑋 = 𝑌 = 0.5. One may then 

neglect these two phenomena altogether and consider, for the purpose of fitting to 

experimental data, that both resonators are excited by 25% duty-cycle square waves, 

with peak value: 

𝐹𝑥,𝑦 ≈ 2 × 𝜂𝑥,𝑦 ×
𝑣𝑑𝑟𝑣𝑥,𝑦

𝑉𝐵𝑥,𝑦
.  (9) 

II-3 Characterization of nonlinear damping 

The presence of nonlinear damping in the resonators used in the present work was 

observed, but not fully characterized, in [14]. Here, this phenomenon is evidenced by the 

fact that, between Fig. 4-a and Fig. 4-b, the oscillation amplitude at the amplifier output 

increases by a factor which is much less than 10, although the drive voltage goes from 

100mV to 1V. One may precisely estimate the quadratic damping coefficients of the 

resonators through the relation between their oscillation amplitude and their excitation 

force. Indeed, when the resonators oscillate in quadrature, a first-harmonic, steady-state 

analysis of (3) (see appendix B) yields: 

𝑋 (
1

𝑄𝑥
+

1

4
𝛼𝑥𝑋2) = 𝐹𝑥

√2

𝜋
,  𝑌 (

1

𝑄𝑦
+

1

4
𝛼𝑦𝑌2) = 𝐹𝑦

√2

𝜋
 (10) 

where 𝐹𝑥 and 𝐹𝑦 are given by (9).  

We represent in Fig. 5 the experimental curves of the 𝐹𝑥/𝑋 and 𝐹𝑦/𝑌 ratios obtained with 

𝑉𝐵𝑥 = 40𝑉 and 𝑉𝐵𝑦 = 36𝑉, for drive voltages ranging between 50mV and 1V. For each 

point, the value of the oscillation amplitude is obtained from the measured RMS voltage 

through (8), and the value of the force is derived from (9). This figure confirms the 

quadratic dependence of the damping coefficient to the oscillation amplitude. The 

(inverse of the) quality factor of each resonator is given by the horizontal line.  

Repeating this experiment for other values of 𝑉𝐵𝑥 and 𝑉𝐵𝑦 shows that quality factors 𝑄𝑥 

and 𝑄𝑦  do not depend on bias voltage, but that coefficients 𝛼𝑥  and 𝛼𝑦  do. This 

observation is consistent with the hypothesis that, in our MEMS devices, nonlinear 

damping results from internal resonance, as considered in [14].  

 



 

Fig. 5 – Characterization of nonlinear damping. Experimental measurements (circles) 

and quadratic fits (full lines). The dashed line corresponds to what would be obtained 

with a linear model of damping.  

III Experimental sensitivity analysis 

III-1 Experimental protocol 

We are interested in verifying the consistency of the properties established in [10], and 

summed up in Appendix A, regarding the sensitivity to mismatch and the sensitivity to 

intrinsic noise of MILOs in the nonlinear regime. In this sub-section, we explain how 

these quantities may be experimentally assessed.  

III-1-a Sensitivity to mismatch 

Sensitivity to mismatch is straightforward to measure. This is done in two steps. First, 

for a given peak drive voltage 𝑣𝑑𝑟𝑣𝑥 = 𝑣𝑑𝑟𝑣𝑦, and a given value of 𝑉𝐵𝑥, one adjusts 𝑉𝐵𝑦 so 

that the two resonators oscillate in quadrature (𝜙 = 90°) – practically, this condition is 

obtained by finding the value of 𝑉𝐵𝑦 for which the duty cycle of 𝑣𝐷𝑅𝑉𝑥 is equal to that of 

𝑣𝐷𝑅𝑉𝑦. The corresponding mechanical oscillation amplitudes (𝑋 and 𝑌) and amplitude 

ratio 𝑅 = 𝑋/𝑌 are estimated from the RMS values of 𝑣𝑂𝑈𝑇𝑥 and 𝑣𝑂𝑈𝑇𝑦 with (8).  

Then, a stiffness variation is induced by changing the value of 𝑉𝐵𝑦 by 𝛿𝑉𝐵𝑦 (by an 

“infinitesimal” amount, about 1% in all of our experiments), with the corresponding 

change in 𝜖 given by (5). The resulting phase difference variation 𝛿𝜙 and amplitude 

variations 𝛿𝑋 and 𝛿𝑌 are measured.  



The sensitivity to mismatch can then be calculated by differentiating the results 

obtained in the two steps with respect to 𝜖. These two steps are repeated for different 

values of the drive voltage (ranging between 50mV and 1V) and of the bias voltage 𝑉𝐵𝑥 

(from 25V to 40V).  

III-1-b Sensitivity to noise 

Sensitivity to noise is more tricky to determine. However, this quantity may be assessed 

by purely deterministic means. In our first harmonic analysis, the effect of 

thermomechanical noise in the system amounts to four independent force components 

(𝑛𝑐𝑜𝑠𝑥 , 𝑛𝑐𝑜𝑠𝑦 , 𝑛𝑠𝑖𝑛𝑥 , 𝑛𝑠𝑖𝑛𝑦) acting on the resonators (see appendices A and B). In 

particular, from (B-2), we see that a quasi-static variation 𝛿𝐹𝑦 of 𝐹𝑦 has the same impact 

on amplitude ratio 𝑅 as 𝑛𝑐𝑜𝑠𝑦, and we find: 

|
𝜕𝑅

𝜕𝐹𝑦
| =

1

𝜋
|

𝜕𝑅

𝜕𝑛
|. (11) 

Furthermore, for large oscillation amplitudes (with respect to either 𝐴𝐷𝑢𝑓𝑓 or 𝐴𝑑𝑎𝑚𝑝), 

we also have 

|
𝜕𝜙

𝜕𝐹𝑦
| =

1

𝜋
|

𝜕𝜙

𝜕𝑛
|. (12) 

Hence, the sensitivity to noise may be determined in a two-step process, as above, but 

this time the second step consists in changing the value of 𝑣𝑑𝑟𝑣𝑦 by a small amount 

𝛿𝑣𝑑𝑟𝑣𝑦  (from 20mV to 50mV, as 𝑣𝑑𝑟𝑣𝑦  changes from 100mV to 1V), with the 

corresponding change in driving force given by (9) 

𝛿𝐹𝑦 = 2 × 𝜂𝑦 ×
𝛿𝑣𝑑𝑟𝑣𝑦

𝑉𝐵𝑦
.  (13) 

III-1-c Model comparison 

All the model parameters are summed up in table 2.  

Parameter 𝐶𝑓/𝐶0   𝜒  𝑄 𝛼 

Unit no dim. V−2 no dim. no dim. 

Condition    𝑉𝐵𝑥 = 25V 𝑉𝐵𝑥 = 40V 

Resonator 𝑥 
32.5 3.35 × 10−6 

19.5 × 103 11.7 × 10−3 6.68 × 10−3 

Resonator 𝑦 14.4 × 103 1.73 × 10−3 2.66 × 10−3 

Table 2 – Numerical values of model parameters.  

 



Except for 𝐶𝑓/𝐶0, all the parameters are obtained by characterizing the resonators, as 

explained in section II: the value of 𝜒 is obtained by measuring the electrostatically-

induced frequency shift, while damping related parameters are obtained by fitting 

parabolas to the 𝐹𝑥/𝑋 vs. 𝑋 and 𝐹𝑦/𝑌 vs. 𝑌 curves. Note that this last step requires 𝐶𝑓/𝐶0 

to be known. The values of 𝑄𝑥,𝑦 and 𝛼𝑥,𝑦 given in table 1 are those obtained for 

𝐶𝑓/𝐶0 = 32.5. This value of 32.5 is within component tolerances of the nominal value 

(equal to 30) of 𝐶𝑓/𝐶0, and gives a slightly better fit between the model and the 

experimental results, as shown in the following sections.  

III-2 Results  

Experimental results obtained with the protocol described in the previous section are 

shown in Fig. 6. The results obtained with a quasi-static model of the fluctuations 

(continuous lines) are superposed to the experimental data (crosses and circles). In 

order to improve the readability of this experimental sensitivity analysis, the 

sensitivities to noise and to mismatch are represented versus the average oscillation 

amplitude 𝐴𝑎𝑣𝑔 = (𝑋 + 𝑌)/2.  

 

Fig. 6 – Experimental (circles and crosses) and simulated (full lines) sensitivities of the 

MILO with different operating conditions. Blue corresponds to phase difference, red to 

amplitude ratio. Vertical dashed lines correspond to the average critical Duffing 

(magenta) and damping (green) amplitudes of the resonators. 



 

Fig. 7 – Extrapolated FOM of amplitude ratio (red) and of phase difference (blue), for 

𝑉𝐵𝑥 = 25𝑉 (a) and 𝑉𝐵𝑥 = 40𝑉 (b) vs. oscillation amplitude. Vertical dashed lines 

correspond to the average critical Duffing (magenta) and damping (green) amplitudes of 

the resonators. The dotted lines represent the ratio of sensitivity to mismatch over 

sensitivity to force. 

We can verify that there is a very good fit between the model and the experimental data. 

There is a quantitative fit for most curves over several orders of magnitude, except in 

the case of sensitivity to mismatch at 𝑉𝐵𝑥 = 25𝑉, where the model systematically 

overestimates sensitivity by about 3dB. However, even in that case, the experimental 

and simulated results have highly similar trends. Thereby, the theoretical analysis of 

[10] is validated.  

The two sets of results are qualitatively different in the sense that, in the case 𝑉𝐵𝑥 = 25𝑉 

(and 𝑉𝐵𝑦 ≈ 17𝑉), the average critical Duffing amplitude is about twice as large as in the 

case 𝑉𝐵𝑥 = 40𝑉 (and 𝑉𝐵𝑦 ≈ 36𝑉) - 11% of the gap, as opposed to 6% of the gap. On the 

other hand, the critical damping amplitude is relatively unchanged - 28% of the gap in 

the first case, and 26% in the second. Thus, in the case 𝑉𝐵𝑥 = 40𝑉, there is a wider 

region in which nonlinear stiffening dominates, in which the sensitivity to force (and 

hence to intrinsic noise) of the phase-difference decreases at a much slower rate than its 

sensitivity to mismatch. In the same region, the sensitivity to force of the amplitude ratio 

decreases with 𝐴𝑎𝑣𝑔 much faster than that of the phase difference. Since the sensitivities 

to mismatch of these two quantities decrease at approximately the same rate, the FOMs 

of the different output metrics (extrapolated from our model) are quite different, 

depending on whether 𝑉𝐵𝑥 = 25V or 𝑉𝐵𝑥 = 40V, as shown in Fig. 7.  

Systematic errors may result from our overlooking the dependence on bias voltage of a 

system parameter: for example, the static deformation of the resonator beam (and 

consequently 𝐶𝑓/𝐶0), which is bias voltage-dependent, is not accounted for. Moreover 

the expressions of the electrostatic force used in (1) and that of the motional current 

used in (7) are valid in the case of an initially straight clamped-clamped beam oscillating 



along its first eigenmode [15], whereas, in the present case, the beam has a pressure-

induced initial deformation, which also influences the electrostatic softening coefficient. 

However, we do not have sufficient data to accurately account for these effects and must 

content ourselves with the current model. Measurement errors are of a different nature 

depending on whether the oscillation amplitude is small or large (the amplitude span of 

our experiment is from 0.05% to 50% of the gap): at small amplitudes, the sensitivity to 

mismatch is large (on the order of 14 × 103), making it difficult to manually tune 𝑉𝐵𝑦 to 

obtain 𝜙 = 90°. Furthermore, the sensitivity to driving force fluctuations (and more 

generally to noise) is also large, which results in unstable readings. At large amplitudes, 

both sensitivities are considerably reduced (by about one order of magnitude, 

concerning the sensitivity to mismatch), and are therefore more difficult to estimate 

because of the limited accuracy of the oscilloscope (MSO5204) used in these 

experiments. 

IV Spectral analysis  

In this section, we seek to validate the results established in [10] regarding the dynamic 

behavior of WCRs, through an analysis of the spectra of different output metrics. 

IV-1 Experimental protocol 

The spectra presented in this section are obtained by setting 𝑉𝐵𝑥 = 40𝑉, and 𝑉𝐵𝑦 ≈ 36𝑉 

so that the resonators oscillate in quadrature. Then 50 consecutive 4-second-long 

acquisitions of 𝑣𝑂𝑈𝑇𝑥 and 𝑣𝑂𝑈𝑇𝑦 are taken with a high-resolution 2-channel digitizer 

(Alazar ATS660, 16-bit digitizer) at a sampling frequency of 500 kHz. For each 

acquisition, 𝑣𝑂𝑈𝑇𝑥
2 , 𝑣𝑂𝑈𝑇𝑦

2  and 𝑣𝑂𝑈𝑇𝑥 × 𝑣𝑂𝑈𝑇𝑦  are averaged with a sliding window, 

yielding an estimate of the fluctuations of 𝑅 and 𝜙 over time. Reduced-variance spectra 

are then obtained by averaging the 50 periodograms resulting from each acquisition 

(Bartlett’s method).  

IV-2 Results 

The power spectra of the fluctuations of 𝑅  and 𝜙  obtained at three oscillation 

amplitudes (𝐴𝑎𝑣𝑔 varying from 0.26 to 0.46) are represented in Fig. 8-a and Fig. 8-b. The 

measured noise levels are much larger than the thermomechanical noise floor or than 

our digitizer’s. They are consistent with the voltage fluctuations of the power supplies, 

which result, through 𝑉𝐵𝑥 and 𝑉𝐵𝑦, in additive measurement noise at the AFE outputs, 

and in a slow drift of 𝜖 around 0. More precisely, assuming 𝑉𝐵𝑥(𝑡) = 𝑉𝐵𝑥
̅̅ ̅̅̅ + 𝛿𝑉𝐵𝑥(𝑡), 

equation (7) becomes:  

𝑑

𝑑𝑡
(𝑣𝑂𝑈𝑇𝑥) + 𝑣𝑂𝑈𝑇𝑥 ≈ −

𝑉𝐵𝑥̅̅ ̅̅ ̅̅

2

𝐶0

𝐶𝑓

𝑑𝑥

𝑑𝑡
×

1

(1−𝑥)
3
2

−
𝐶0

𝐶𝑓

𝑑𝛿𝑉𝐵𝑥

𝑑𝑡
,   (14) 

and (4-5) yield: 



 

 

Fig. 8 – Experimental phase difference (a) and amplitude ratio (b) spectra, at three 

different drive amplitudes. Simulated spectra of phase difference (c) and amplitude ratio 

(d) accounting for bias voltage noise.   

𝛿𝜖(𝑡) ≈ −
3

2
𝜒𝑉𝐵𝑥

̅̅ ̅̅̅ × 𝛿𝑉𝐵𝑥(𝑡). (15) 

The superposition of these two effects can partly explain the measured spectra: 

measurement noise results in a white noise floor, while the signal transfer function 

(STF) of the output metrics – equations (36-38) in [10] – amplifies the variations of 𝜖 

around 0. The simulated spectra accounting for bias voltage fluctuations are shown in 

Fig. 8-c and 8-d. 

We find a rather good agreement between the experimental and simulated spectra of 𝑅. 

The level of the measured fluctuations corresponds to what is theoretically predicted 

when accounting only for bias voltage fluctuations. The same characteristic bump is 

found near the cutoff frequency, although it is a little less marked in the experimental 

spectra, and the value of the cutoff frequency increases with oscillation amplitude in the 

same proportions. At very low frequency offset, the experimental spectrum of 𝑅 is 

dominated by flicker noise: this is only partly explained by bias voltage drift, which 

suggests that another phenomenon, such as intrinsic mechanical stiffness fluctuations 

[17] or quality factor fluctuations, may be at work.  



The comparison of the experimental and simulated spectra of 𝜙 is more puzzling, in the 

sense that the resonance peak marking the cutoff frequency is much less marked in the 

experimental spectra than in theory. However, this may be a consequence of fluctuations 

of the cutoff frequency (resulting from the bias-voltage dependence of some of the 

system parameters, for example) over the time required for doing the 50 measurements. 

These fluctuations can probably not be considered infinitesimal (and may not fall into 

the framework of analysis of [10]), which may explain the spread-out peak in the 

spectrum of 𝜙. Finally, it is interesting to note that there is a quantitative fit between 

theory and experiment as far as flicker is concerned: thus, one can probably rule out 

mechanical stiffness fluctuations (which would affect equally both 𝑅 and 𝜙) as the cause 

of the low frequency fluctuations of 𝑅.  

IV-3 Input-referred noise 

One may calculate the spectrum of the input-referred noise for a given output-metric by 

dividing the estimated spectrum of its fluctuations (Fig. 8-c for 𝜙, Fig. 8-d for 𝑅) by its 

signal transfer function  𝑆𝑇𝐹𝜙 or 𝑆𝑇𝐹𝑅 (B-3). The results are shown in Fig. 9. Regardless 

of the oscillation amplitude, input-referred noise is always smaller for 𝜙 than for 𝑅. To 

determine whether nonlinear operation is interesting or not in the context of a given 

application, one may determine the power of input-referred noise over a given 

frequency bandwidth. For example, if we consider the [0,100Hz] bandwidth, we can see 

from Fig. 9 that there would indeed be a great interest in nonlinear operation, in 

particular for the amplitude ratio output metric: the power of input-referred noise is 

divided by 15 for 𝑅, and by 4 for 𝜙, as 𝑣𝑑𝑟𝑣 goes from 250mV to 1V. On the other hand, if 

we consider the [0,10Hz] bandwidth, then nonlinear operation only makes things worse: 

the power of input-referred noise is then multiplied by 4 for 𝑅, and by 1.1 for 𝜙, as 𝑣𝑑𝑟𝑣 

goes from 250mV to 1V. 

 

Fig. 9 – Input-referred noise (fluctuations of 𝜖) estimated from the spectra of Fig. 8-c and 

8-d. 



V Conclusion 

This paper provides, for the first time, an experimental proof of several results 

postulated in [10] for nonlinear WCRs with a critical Duffing amplitude smaller than the 

critical damping amplitude (𝐴𝐷𝑢𝑓𝑓 < 𝐴𝑑𝑎𝑚𝑝). Using two matched resonators displaying 

such nonlinear behavior, we have verified:  

- the similar decrease in parametric sensitivity of 𝑅 and 𝜙 in WCRs operated above 

𝐴𝐷𝑢𝑓𝑓.  

- the improved robustness to drive-level fluctuations (and hence to intrinsic 

oscillator noise) of 𝑅 between 𝐴𝐷𝑢𝑓𝑓 and 𝐴𝑑𝑎𝑚𝑝. 

- the amplitude-dependence of the bandwidth in which 𝑅 and 𝜙 are sensitive to 

intrinsic noise and to stiffness mismatch 𝜖. 

These experimental results were found to be in quantitative agreement with our 

simulations, which validates the analysis in [10].  

As mentioned in section I, sensor performance was not our primary concern. Still, the 

results presented in this paper may be analyzed in this respect. We have shown that, in 

the current setup, operating at a large oscillation amplitude results in a wider 

bandwidth for both 𝑅 and 𝜙, and that the input-referred noise of both output metrics 

decreased with oscillation amplitude over a 100Hz bandwidth, but increased over a 

10Hz bandwidth. Our calculations also showed 𝜙 to have smaller input-referred noise 

than 𝑅. However, this should not be considered a definitive or a general result, but is 

probably quite specific to our resonators, with predominant damping nonlinearity, and 

to our circuit and instrumentation setup, with bias voltage fluctuations shadowing all 

other noises in the system.  

Finally, several questions remain unanswered, and require further investigation. First, 

the spread-out outlook of the peaks in the observed experimental spectra is 

unexplained, although some hypotheses were formulated as to this phenomenon. One 

may then refine the models in [10] to account for flicker, drift and finite fluctuations of 

the system parameters, for example by using a non-perturbed model such as (7) in [10] 

or multiple-scale analysis [18]. More practically, one may also try to reproduce the 

experiments in a carefully controlled environment, or with better-matched resonators 

(which would more efficiently reject common-mode variations).  

Another point that requires further study is the behavior of WCRs when damping 

nonlinearity dominates: first, as mentioned in [10], there does not seem to be a 

definitive theory linking thermomechanical noise to nonlinear damping. Decreasing 

(bias voltage) noise in our setup may then help us investigate this phenomenon. 

Alternatively, other resonators with increased damping, in particular MEMS resonators 

operated in ambient atmospheric pressure and subject to squeezed-film damping, may 

be better suited to this investigation. 
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Appendix A 

Here the main results from [10] are summed up, in the case of two nominally-identical 

resonators governed by the (non-dimensionalized) equations: 

(1 + 𝜖 + 𝛾𝑥𝑥2)𝑥 + (
1

𝑄𝑥
+ 𝛼𝑥𝑥2)

𝑑𝑥

𝑑𝑡
+

𝑑2𝑥

𝑑𝑡2 = 𝑓𝑥 (𝑥,
𝑑𝑥

𝑑𝑡
, 𝑦,

𝑑𝑦

𝑑𝑡
) + 𝑛𝑥(𝑡), (A-1-a) 

(1 − 𝜖 + 𝛾𝑦𝑦2)𝑦 + (
1

𝑄𝑦
+ 𝛼𝑦𝑦2)

𝑑𝑦

𝑑𝑡
+

𝑑2𝑦

𝑑𝑡2 = 𝑓𝑦 (𝑥,
𝑑𝑥

𝑑𝑡
, 𝑦,

𝑑𝑦

𝑑𝑡
) + 𝑛𝑦(𝑡), (A-1-b) 

where 𝑡 is time, 𝑥 and 𝑦 are the motional signals, with amplitudes 𝑋 and 𝑌 and phase 

difference 𝜙, 𝑓𝑥 and 𝑓𝑦 are the forces used for driving the resonators and coupling them, 

𝑛𝑥 and 𝑛𝑦 are independent random forces typically resulting from thermomechanical 

fluctuations (“intrinsic” noise sources), 𝑄𝑥,𝑦  are the resonators’ quality factors, 𝛾𝑥,𝑦 are 

nonlinear (Duffing) stiffness coefficients, 𝛼𝑥,𝑦 ≥ 0 are nonlinear damping coefficients 

and 𝜖 is (half) the relative stiffness mismatch one seeks to measure. It is shown in [10] 

that the properties of passively- or actively-coupled resonators are highly amplitude-

dependent. In the case of mutually injection-locked oscillators (MILOs), most relevant to 

the present paper, important “cutoff” amplitudes are the critical Duffing amplitude, 

defined as 

𝐴𝐷𝑢𝑓𝑓 = √
2

3|𝛾|𝑄
,  (A-2) 

and the critical damping amplitude as:  

𝐴𝑑𝑎𝑚𝑝 =
2

√𝛼𝑄
  (A-3) 

https://www.analog.com/media/en/technical-documentation/data-sheets/AD8561.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD8561.pdf


when 𝑄𝑥,𝑦 = 𝑄, 𝛼𝑥,𝑦 = 𝛼, 𝛾𝑥,𝑦 = 𝛾. The expressions of these threshold amplitudes in the 

case of mode-localized oscillators (MOLOs) are obtained by substituting |𝜅| for 1/𝑄 in 

(A-2) and (A-3), where 𝜅 is the (non-dimensional) coupling stiffness of the resonators. 

With these definitions in mind, assuming the two resonators nominally oscillate at the 

same amplitude 𝑋 = 𝑌 = 𝐴 when 𝜖 = 0, the following properties hold: 

- if 𝐴 ≫ 𝐴𝐷𝑢𝑓𝑓  or 𝐴 ≫ 𝐴𝑑𝑎𝑚𝑝 , the parametric sensitivity to relative stiffness 

mismatch 𝜖 of the amplitude ratio 𝑅 = 𝑋/𝑌 and of the phase difference 𝜙 - only 

relevant for MILOs - decrease as 1/𝐴2. 

- if 𝐴𝑑𝑎𝑚𝑝 ≫ 𝐴 ≫ 𝐴𝐷𝑢𝑓𝑓 (dominant stiffness nonlinearity), at most one oscillation 

state is stable, depending on the sign of the Duffing parameter 𝛾, and on another 

system parameter: feedback phase 𝜃 in the case of MILOs, coupling stiffness 𝜅 in 

the case of MOLOs operating near the veering zone. Furthermore, 

o the sensitivity to intrinsic  noise of 𝑅 decreases as 1/𝐴3. 

o the sensitivity to intrinsic noise of 𝜙 decreases as 1/𝐴. 

- if 𝐴 ≫ 𝐴𝑑𝑎𝑚𝑝 (dominant damping nonlinearity), the sensitivity to intrinsic noise 

of 𝜙 decreases as 1/𝐴3. 

These properties are limited to a finite bandwidth of quasi-static fluctuations, and an 

equally finite range of values of 𝜖 close to 𝜖 = 0. They are valid for MILOs and MOLOs 

indifferently, the only difference being the definition of the threshold amplitudes.  

Appendix B 

In the case of a system governed by (A-1), in which coupling is enforced through a digital 

MILO architecture (Fig. 1) with 𝜃 = 45°, the slow dynamics of amplitudes 𝑋(𝑡), 𝑌(𝑡) and 

phase difference 𝜙(𝑡) are governed by:  
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4
+ 𝜙)) + 𝑛𝑐𝑜𝑠𝑥) (B-1-a) 
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where a dot denotes differentiation with respect to time, 𝐹𝑥,𝑦 are the peak values of the 

binary valued force delivered to the resonators, and 𝑛𝑐𝑜𝑠𝑥,𝑦, 𝑛𝑠𝑖𝑛𝑥,𝑦 are quadrature and 

in-phase random fluctuations. The steady-state values of 𝑋, 𝑌 and 𝜙 are found by solving 

(B-1) after cancelling out the time-derivatives terms on the left-hand side and the 

random fluctuations. In the simplest case when 𝑄𝑥,𝑦 = 𝑄, 𝛼𝑥,𝑦 = 𝛼, 𝛾𝑥,𝑦 = 𝛾, 𝐹𝑥,𝑦 = 𝐹 and 



𝜖 = 0, the steady-state verifies 𝑋 = 𝑌 = 𝐴 and 𝜙 = 90°. Perturbation of (B-1) around 

this steady-state yields  

𝛿�̇�

𝐴
= −

1

2
(

1

𝑄
+

3

4
𝛼𝐴2)

𝛿𝑋

𝐴
−

1

4
(

1

𝑄
+

1

4
𝛼𝐴2) 𝛿𝜙 +

1

2𝐴
(𝑛𝑐𝑜𝑠𝑥 +

√2

𝜋
𝛿𝐹𝑥) (B-2-a) 

𝛿�̇�

𝑌
= −

1

2
(

1

𝑄
+

3

4
𝛼𝐴2)

𝛿𝑌

𝐴
+

1

4
(

1

𝑄
+

1

4
𝛼𝐴2) 𝛿𝜙 +

1

2𝐴
(𝑛𝑐𝑜𝑠𝑦 +

√2

𝜋
𝛿𝐹𝑦) (B-2-b) 

𝛿�̇� = −
3

4
𝛾𝐴2 (

𝛿𝑋

𝐴
−

𝛿𝑌

𝐴
) −

1

2
(

1

𝑄
+

1

4
𝛼𝐴2) 𝛿𝜙 − 𝛿𝜖 +

1

2𝐴
(𝑛𝑠𝑖𝑛𝑥 − 𝑛𝑠𝑖𝑛𝑦) (B-2-c) 

where prefix 𝛿 denotes an infinitesimal perturbation of the system’s state and of 

parameters 𝜖 and 𝐹𝑥,𝑦. The transfer functions between fluctuating parameters or noise 

and phase 𝛿𝜙 or amplitude ratio 𝛿𝑅 = (𝛿𝑋 − 𝛿𝑌)/𝐴 are straightforward to derive from 

this set of linear ordinary differential equations, and quasistatic fluctuations of the 

system’s state are obtained by dropping time derivatives from (B-2) altogether. In 

particular, the expressions of the signal transfer functions between fluctuations of 𝜖 and 

output metrics 𝑅 or 𝜙 are:  

𝑆𝑇𝐹𝑅(𝑝) =

1

2
(

1

𝑄
+

1

4
𝛼𝐴2)

𝑝2+(
1

𝑄
+

1

2
𝛼𝐴2)𝑝+

1

2
(

1

𝑄
+

1

4
𝛼𝐴2)(

1

2
(

1

𝑄
+

3

4
𝛼𝐴2)−

3

4
𝛾𝐴2)

,  (B-3-a) 

𝑆𝑇𝐹𝜙(𝑝) = −
𝑝+

1

2
(

1

𝑄
+

3

4
𝛼𝐴2)

𝑝2+(
1

𝑄
+

1

2
𝛼𝐴2)𝑝+

1

2
(

1

𝑄
+

1

4
𝛼𝐴2)(

1

2
(

1

𝑄
+

3

4
𝛼𝐴2)−

3

4
𝛾𝐴2)

. (B-3-b) 


