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‡Large Networks and Systems Group, CentraleSupélec, France, merouane.debbah@centralesupelec.fr

§Department of Electrical Engineering, Princeton University, NJ, poor@princeton.edu

Abstract

This paper investigates the capacity scaling of multicell massive MIMO systems in the presence of spatially
correlated fading. In particular, we focus on the strong spatial correlation regimes where the covariance matrix
of each user channel vector has a rank that scales sublinearly with the number of base station antennas, as the
latter grows to infinity. We also consider the case where the covariance eigenvectors corresponding to the non-zero
eigenvalues span randomly selected subspaces. For this channel model, referred to as the “random sparse angular
support” model, we characterize the asymptotic capacity scaling law in the limit of large number of antennas. To
achieve the asymptotic capacity results, statistical spatial despreading based on the second-order channel statistics
plays a pivotal role in terms of pilot decontamination and interference suppression. A remarkable result is that even
when the number of users scales linearly with base station antennas, a linear growth of capacity with respect to either
signal-to-noise ratio or the number of antennas is achievable under the sparse angular support model. We note that
the achievable rate lower bound based on massive MIMO “channel hardening”, widely used in the massive MIMO
literature, yields rather loose results in the strong spatial correlation regimes and may significantly underestimate
the achievable rate of massive MIMO. This work therefore considers an alternative bounding technique which is
better suited to the strong correlation regimes. In fading channels with sparse angular support, it is further shown
that spatial despreading (spreading) in uplink (downlink) has a more prominent impact on the performance of
massive MIMO than channel hardening.

Index Terms

Large-scale MIMO, asymptotic capacity scaling, multiplexing gain, correlated fading channels.

I. INTRODUCTION

Achieving ever higher spectral efficiency has always been a central problem in wireless networks. To
this end, massive multiple-input multiple-output (MIMO) [1], [2], also referred to as large-scale MIMO, is
a viable technology that avoids centralized processing of multiple base station (BS) sites and yet provides
unprecedented spectral efficiency, provided that every BS has a sufficiently large-scale antenna array and
that uplink/downlink channel reciprocity holds despite hardware impairments. In order to accurately predict
the performance of multicell massive MIMO, it will be important to investigate the asymptotic sum capacity
in the limit of a large number of antennas, when not only channel training cost, channel uncertainty, and
out-of-cell interference but spatial correlation is also taken into account. This work considers particular
regimes where the covariance matrix of each user channel has a rank that scales sublinearly with the
number of BS antennas, M .

For the large-scale antenna array regime, in which typically the number of antennas M per cell is larger
than the number of all users in the homogeneous L-cell network with K users per cell and finite L, we
can characterize the achievable rate of massive MIMO in several ways. For a simple isotropic channel
model with pilot sequence reuse factor 1, where every cells shares the same set of pilot sequences, the
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spectral efficiency of typical massive MIMO networks can be written by following the line of arguments
in [1], [3], [4] as

RM =

(
1− κ1

Tc

)
κ1L log

(
1 +

1

ι(L− 1)

)
+ o(1) (1)

where RM is the asymptotic1 achievable rate as M → ∞, Tc is the number of channel uses of a time-
frequency coherence block, κ1 = min{M,K, bTc/2c}, ι ∈ (0, 1] is a symmetric intercell interference
factor, and o(1) goes to zero as M grows without bound. This result clearly shows performance limits
of massive MIMO due to the pilot contamination effect coming from the reuse of pilot sequences
among different cells. More specifically, the multiplexing gain (or spatial degrees of freedom) defined
by limSNR→∞

C(SNR)
log SNR , where C(SNR) is the capacity of a channel with SNR being equivalent to the

uplink/downlink sum power per cell in this work, vanishes and the power (beamforming) gain is saturated,
no matter how large M is. In order to avoid the pilot contamination problem, one may utilize the globally
orthogonal pilot sequences across the entire network. As a straightforward consequence of [1], [3], [5],
the corresponding massive MIMO network has then the capacity scaling law

CM =

(
1− κ2

Tc

)
κ2 log

(
SNR

M

K

)
+ o(1) (2)

where κ2 = min{M,KL, bTc/2c}, and o(1) follows from the fact that all interference asymptotically
vanishes in the absence of pilot contamination. For finite Tc ≤ 2KL,2 however, the above multiplexing
gain of the L-cell network is approximately limited by Tc

4
even if both M and K grow without bound,

yielding that every cell only gets multiplexing gain of Tc
4L

. Therefore, for fixed Tc with large KL, the
channel training cost immediately turns out to be a critical limiting factor that undermines the performance
gain of MIMO networks [8]. Recently, allocating up to bTc/2c channel uses to pilots was restated by [9]
in the context of massive MIMO along with an analysis of the optimal number of scheduled users in terms
of spectral efficiency. In fact, the scaling law of (2) serves as a lower bound on asymptotic achievable
rate for the globally orthogonal pilot scheme, regardless of channel statistics, whereas it becomes tight
when user channels are isotropic. This implies that for different and more realistic channel models, both
(1) and (2) are not necessarily tight.

Since the use of orthogonal pilot sequences across the entire network is too constraining in terms of the
pilot dimensionality overhead (see (2)) and pilot contamination without a further countermeasure yields
an interference limited system (see (1)), several techniques to tackle the pilot contamination problem have
been proposed in the literature. For instance, [10] proposed multicell cooperative precoding/combining
over the entire network, and blind pilot decontamination was given by [11] to separate signal and
interference subspaces into disjoint supports. Following [12], [13], many pilot decontamination techniques
have exploited the linear independence between the subspaces spanned by the eigenvectors of the
rank-deficient channel covariance matrices of users so that one can find some useful structure of
subspaces with orthogoanl (non-overlapping) angular supports. A joint angle and delay domain based
pilot decontamination was also developed in [14], [15]. In a different line of work, [16] recently proved
that the linear independence of those subspaces is rather surprisingly not a necessary condition for the
elimination of contamination with infinitely many M antennas. The more general sufficient condition
therein is an asymptotic linear independence of the covariance matrices themselves other than that of their
subspaces. This leads to the linear independence of all user channels that is then utilized to eliminate pilot

1In fact, some dependency on M is captured in the o(1) factor, which vanishes in the large M limit.
2In the block-fading channel model, we presume a single channel use per coherence block for channel training. For a desirable channel

estimation performance with noisy observations of realistic (non block-fading) channels, it is common to design an “oversampled” allocation
of pilot symbols across time and frequency grid by a factor of O = 2 or even more, where O is an oversampling factor per time/frequency
domain (e.g, [6], [7]). In this case, the pre-log factor becomes (1− κ′2O2/Tc)κ

′
2 with κ′2 = min{KL, b Tc

2O2 c}, meaning that the condition
Tc ≤ 2KL should be replaced with Tc ≤ 2KLO2.
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contamination through multicell non-cooperative precoding/combining, requiring every cell to estimate all
user channels in the network.

Rather than any explicit pilot decontamination technique, this work focuses on the capacity scaling
law in the massive MIMO network when the randomness and the sparsity of angular supports of channel
covariance matrices are taken into consideration. Different scattering geometries of users located arbitrarily
in a network make the angular support of each user channel random. This randomness also captures the
fact that due to common scatterers, the angular supports of user channels are often partially overlapped.
The sparsity of the angular support means that the number of significant multipaths in angular domain is
much smaller than M . This arises in scenarios of limited scattering geometry, which has been observed
in several channel measurement campaigns even in below 6 GHz bands (see [17], [18] and references
therein), where the number of non-negligible angular components of the user channel is fairly smaller
than M . In this paper, we consider particularly two strong spatial correlation regimes, where the rank
r of channel covariance matrices grows sublinearly with M . For such correlated fading channels in the
homogeneous L-cell network, where every BS has sufficiently large M antennas and serves K users
with common signal-to-noise ratio (SNR) and with the same coherence block size Tc, we show by some
extensions of the method of deterministic equivalents [19]–[22] that the ergodic sum capacity behaves as

CM =

{ (
1− 1

Tc

)
min{M,K}L log

(
SNRM

K

)
+ o(1) under strong spatial correlation(

1− 1
Tc

)
KL log

(
SNR r

K

)
+ o(1) under very strong spatial correlation (3)

where lim supM→∞
K
M
< ∞ and we used (intra-cell) non-orthogonal pilot that consumes only a single

channel use per coherence block across the network as an extreme case. Note that the above scaling law
is asymptotically tight and its prelog factor is indeed the best one can ever expect through a cut-set upper
bound from the perspective of either pilot-aided or non-coherent communication with a single antenna in
block fading [3], whose prelog factor is (1− Tc−1).

The main differences of (3) and the prior work can be summarized as follows:
1) Capacity scaling characterization: To the best of our knowledge, it is not clear in the prior work

how the sum rate scales with respect to any of M,K, Tc, and SNR, except for the simple case
of orthogonal pilots across the whole network as in (2). In particular, as mentioned earlier, the
multiplexing gain of the massive MIMO network is limited by Tc/4 when Tc ≤ 2KL and globally
orthogonal pilots are used, meaning that K ≤ Tc

2L
users per cell can only be served. Otherwise, pilot

contamination eventually suffocates multiplexing gain as in (1). However, the capacity scaling in (3)
is not dominated by Tc any more.

2) Scaling of K with respect to M : Past work has generally assumed limM→∞
K
M

= 0, i.e., K is finite
or at most grows slower than M . For instance, if KL > M , the linear independence of the subspaces
of covariance matrices in [12], [13] is never attainable. Likewise, if lim infM→∞

K
M
> 0, then the

asymptotic linear independence of covariance matrices in [16] does not hold any longer. Therefore,
the results based on the linear independence of the signal subspaces or of the covariance matrices
cannot capture the capacity scaling with respect to the ratio K

M
> 0, as both M and K grow large.

This poses a fundamental methodological question since in reality we are in the presence of a finite
system with given M and K. Which of the following large system analyses will produce the more
meaningful prediction of its behavior: considering finite K and letting M → ∞ [1], [2], [16] or
considering both K and M →∞ with fixed ratio equal to the actual ratio K

M
of the practical finite

system [4], [12], [13]? We claim that the latter methodology yields a more relevant asymptotic.
3) Scaling of Tc with respect to M : The conventional large system analysis (e.g., [4]) implicitly assumes

that the coherence block Tc of the channel scales linearly with K to accommodate the intra-cell
orthogonal pilot sequences consuming K channel uses. Moreover, the semi-blind decontamination
technique [11] can completely remove pilot contamination, provided that M and Tc go to infinity.
However, the channel coherence block depends on Doppler spread due to mobility of users and on
frequency selectivity due to delay spread of multipath channels, irrespectively of M , and hence it
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is finite in practice. In the meanwhile, our large system limits hold in finite Tc since the use of
non-orthogonal pilot turns out to be feasible in strong spatial correlation regimes.

4) Unlimited capacity as M and K grow with K
M
> 0 and finite Tc: The second capacity characterization

in (3) shows that every user can get unlimited spectral efficiency in the very strong spatial correlation
regime with finite Tc, as long as K grows no faster than M and the uplink/downlink per-user transmit
power SNR

K
is not vanishing. It turns out that spatial despreading in uplink (or spreading in downlink)

which acts as statistical spatial filters matched to the angular supports of user channel covariances
makes pilot contamination terms fade away and that an infinite sum of the vanishing contamination
terms still vanishes. Moreover, overlapped angular components between any pair of the channel
covariance matrices of users only occupy a vanishing portion of the total signal space dimension if
their angular supports become sufficiently sparse as M →∞.

5) Beamforming architecture and complexity: Spatial despreading (spreading) is followed by low-
dimensional (i.e., r-dimensional) channel estimation and single-cell combining in uplink (precoding
in downlink), which is asymptotically optimal in the strong correlation regimes even if each BS
only estimates the low-dimensional effective channels of its own users. We will use the low-
dimensional processing to prove the achievability of the large system limits in (3). The low-
dimensional minimum mean-squared error (MMSE) channel estimation and combining/precoding
show a comparable performance to the conventional M -dimensional MMSE processing at finite
M . Furthermore, spatial despreading/spreading is in fact long-term or wideband (i.e., frequency
non-selective) processing, while low-dimensional combining/precoding is short-term or narrowband
(frequency selective) processing. Therefore, they are amenable to the hybrid beamforming architecture
(see [23] and references therein) that is beneficial to realize massive MIMO in practice by saving
hardware cost and channel training/feedback overhead.

Another contribution of this work is an investigation into lower-bounding techniques in terms of massive
MIMO with random sparse angular support. We begin with the fact that the well-known channel hardening
effect in massive MIMO can be undermined by spatial correlation at finite M . In particular, the useful
signal coefficient does not concentrate on its mean when the fading channels are highly correlated. As
a consequence, the widely used non-coherent bound [2] in massive MIMO downlink, which works very
well in the case of channel hardening, may significantly underestimate the achievable rate, depending on
spatial correlation. Furthermore, for finite M , the coherent bounding technique [2] also widely used in
uplink may suffer from channel estimation error due to imperfect CSI at the receiver (CSIR) especially
when non-orthogonal pilot is employed. In this work, we further consider a lesser-known alternative non-
coherent bounding technique given in [24] to better estimate the performance of massive MIMO in the
strong spatial correlation regimes.

The paper is organized as follows: In Sec. II, we describe the system model with two stochastic
spatial correlation models and explain spatial (de)spreading. Sec. III addresses our main results on the
capacity scaling of massive MIMO along with their implication. In Sec. IV, we present an extension of
the deterministic equivalents technique. Sec. V provides the proofs of the main results in Sec. III. Sec.
VI contains some numerical results. We conclude this work in Sec. VII.

II. PRELIMINARIES

A. System Model

We consider an L-cell time-division duplex (TDD) MIMO network where the `-th BS has M antennas
and serves K` single-antenna users. The user channel follows the frequency-flat block-fading model for
which it remains constant during the coherence block of Tc but changes independently every interval,
where Tc is the number of channel uses or the signal dimension in the time-frequency domain. The fading
distribution is known at both the transmitters and the receivers. We do not require any cooperation between
multiple BSs such that there is neither channel state information (CSI), data, scheduling information, nor
pilot allocation information coordinated across the network through backhaul links. Indexing the kth user
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in BS ` by `k, hhh``′k is the uplink channel from user `′k to BS `, and hhhH`′̀ k is the downlink channel from
BS `′ to user `k. Using the Karhunen-Loève transform, the channel vector hhh``′k can be expressed as

hhh``′k = UUU ``′k
Λ``′k

h``′k (4)

where Λ``′k
∈ Cr``′

k
×r``′

k is the diagonal matrix whose elements are the non-zero eigenvalues of the channel
covariance matrix RRR``′k

, UUU ``′k
∈ CM×r``′

k is the eigenvector matrix of RRR``′k
, and h``′k ∈ Cr``′

k ∼ CN (000, III).
Throughout this work, it is assumed that the rank r``′k of RRR``′k

is assumed to be much smaller than M due
to limited scattering environments. Furthermore, BS ` has a prior knowledge on the low-rank covariance
matrices RRR``k of its own users and a sum of low-dimensional covariance matrices of the other-cell user
channels projected by UUU ``′k

, depending on the channel training schemes in Subsection II-D.
In the MIMO uplink, the received signal vector at BS ` can be given by

yyy` =
∑
k

hhh``kx`k +
∑
`′ 6=`

∑
k

hhh``′kx`′k + zzz` (5)

where x`k is the input signal of user `k chosen from a Gaussian codebook and satisfies the equal power
constraint such that E[|x`k |2] ≤ Pul, and zzz` ∼ CN (000, III) is the Gaussian noise at the BS antennas. Since
the noise power per antenna is normalized to be unity, Pul can be regarded as the transmit SNR per user
in uplink. In the meanwhile, the received signal vector at user `k at BS ` in the downlink can be given
by

y`k = hhhH``kppp`kd`k +
∑
k′ 6=k

hhhH``kppp`k′d`k′ +
∑
`′ 6=`

∑
k′

hhhH`′̀ kppp`′k′d`′k′ + z`k (6)

where ppp`k and d`k are the precoding vector and the input signal of user `k satisfying E[‖ppp`kd`k‖
2] ≤ Pdl,`,

respectively, and z`k ∼ CN (0, 1) is the Gaussian noise. We assumed the equal power allocation within
a cell such that Pdl,` = Pdl

K`
, where Pdl is the sum-power constraint per cell, and hence Pdl becomes the

normalized transmit SNR in line with the classical MIMO downlink, which is denoted by SNR in this
paper.

B. Stochastic Spatial Correlation Models
The channel covariance matrix is determined by the propagation geometry, and in particular by the

distribution of the signal power over the angle domain (angular scattering function). It is well known that
the propagation geometry changes on a time-scale much larger than the coherence time of the small scale
fading. This means that the channel can be considered as “locally wide-sense stationary (WSS)”. In other
words, on a relatively large-scale time span, which we call local stationarity interval in this paper, it is
seen as a snapshot taken from a WSS process with given second-order statistics (e.g., [25], [26]). In this
paper, we assume that on each such local stationarity interval, the channel covariance matrices are drawn
at random from a distribution with RRR``′k

= UUU ``′k
Λ``′k

UUUH
``′k

. While the columns of UUU ``′k
span the large-scale

angular domain subspace of multipath components, trΛ``′k
captures the large-scale fading factors such as

path loss and shadow fading, i.e., the channel energy that BS ` receives from user `′k. In the following,
we introduce two stochastic models for the eigenvector matrix UUU ``′k

to capture the randomness of spatial
correlation, which typically arises in wireless channel propagation due to arbitrary user and scattering
geometry.

1) Random partial unitary model: A simple model for UUU ``′k
is a random partial unitary matrix. In this

model, UUU ``′k
is independently and uniformly drawn from a random partial unitary matrix whose column

space is in the Grassmann manifold G(M, r``′k), which is the set of all r``′k-dimensional subspaces in CM .
Hence, the random partial unitary matrices are mutually independent for all (`, `′, k). The ith column of UUU
(denoted by uuui) is a random unit vector uniformly distributed on the M -dimensional complex unit sphere
such that uuui = xxx

‖xxx‖2 with covariance 1
M
IIIM , where xxx ∼ CN (000, IIIM). Notice that the random unit vectors

uuui have i.i.d. entries of zero mean, variance 1/M , and its eighth order moment is order of O( 1
M4 ).
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2) Random partial Fourier model: Another interesting spatial correlation model is a random partial
(subsampled) Fourier matrix, motivated by the typical uniform linear array (ULA) in multiple antenna
systems. Let Fjk denote the (j, k)th entry of the discrete Fourier transform (DFT) matrix FFF ∈ CM×M , as
shown by

Fjk =
1√
M
e2πjk/M , j, k = 0, . . . ,M − 1.

Suppose that UUU ``′k
is composed of r``′k column vectors uniformly drawn at random without replacement

from the Fourier basis functions of FFF so that different users can have common basis elements, taking into
account common scatterers shared by multiple users. The resulting unitary matrix can be represented by

UUU ``′k
= FFFGGG``′k

(7)

where GGG``′k
∈ CM×r``′

k is the random selection matrix that chooses r``′k columns (angular components)
without replacement from M columns of FFF . This correlation model is a reminiscence of the angular
domain representation of MIMO channels [27] widely-used in the literature. In particular, the random
partial Fourier model can be justified by the known asymptotic behavior of channel covariance in massive
MIMO with ULA [13], showing that the eigenvectors of channel covariance matrices are well approximated
by the columns of DFT for large M . Notice that the random partial Fourier model has much less degrees
of freedom (i.e., highly structured or less randomness) than the random partial unitary model. In particular,
the columns of UUU ``′k

in (7) are not statistically independent due to sampling without replacement, even if
they are linearly independent.

It is important to notice that given the above random realizations of the channel covariance matrices
of users, the resulting ergodic achievable rates are conditional to such realizations. Therefore they are
random variables unlike most sum-rate analyses in the massive MIMO literature. One might then be
interested in their distribution, in particular, the outage probability defined by the distribution function of
such ergodic rates conditioned on the covariances. In order to characterize the ergodic capacity scaling
in this work rather than the outage capacity scaling, we make the assumption that the long-term channel
energy captured by the large-scale fading factor trΛ``′k

does not change over user mobility and different
scattering geometries for a given value of M such that

trΛ``′k
= c``′k(M), ∀(`, `′, k) (8)

where c``′k(M) is a positive real constant over local stationarity intervals. Under this deterministic trΛ``′k
,

we will show later in Sec. III-D that the conditional ergodic rates converge to a deterministic limit for
sufficiently large M , meaning that the limit does not depend any longer on a specific covariance realization
but only on the distribution. As a consequence, we will focus on such deterministic limits in our asymptotic
sum-rate analysis.

Our spatial correlation models that capture the random (or diverse) nature of angular components in user
channels allow different angular supports among users as in [12], [13]. We notice here that in some other
works, e.g., [4], [28], antenna correlation was modeled by letting all users to have the same covariance
matrix. Such model is physically less justifiable, since it implies that all users share the same multipath
components with the same strength, i.e., the users are all co-located.

Given the stochastic models on UUU ``′k
, we next make several assumptions on the eigenvalue matrices

Λ``′k
with trΛ``′k

deterministic for the large system analysis in the random covariance matrices RRR``′k
.

Assumption 1. For all (`, `′, k)

lim sup
M→∞

r``′k
M
‖Λ``′k

‖2 <∞ (9a)

lim sup
M→∞

trΛ``′k

M
<∞ (9b)

where ‖AAA‖2 denotes the spectral norm of AAA.
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Fig. 1. Change of coordinates (sparse transform of the channel vector hhh) in uplink.

Assumption 2 (Strong Spatial Correlation Regime). The number r``′k of non-zero eigenvalues of RRR``′k
grows without bound but slower than M such that

r``′k
M

, α``′k −−−−→M→∞
0 (10a)

lim inf
M→∞

trΛ``′k

M
> 0, ∀(`, `′, k). (10b)

First of all, the condition (10a) implies in conjunction with (10b) that the spectral norm3 ‖Λ``′k
‖2 is

not necessarily uniformly bounded with respect to M . The uniform boundedness is a necessary condition
for the method of deterministic equivalents [19], [21], [29], [30]. Hence, under those conditions the
deterministic equivalents technique cannot directly apply any longer. We will extend the technique later
on in IV to address this issue.

Remark 1. The sublinear sparsity assumption in (10a) hinges on the premise that the number of angular
components of each user channel grows without bound, but slower than the number of BS antennas. In
the massive MIMO literature, the angular domain model is categorized into two cases: a large but finite
number of angular components (e.g., [28]) and infinitely many components with a constant ratio of α``′k > 0
(e.g., [4]). The former model is based on the well-known fact [27] that angular resolution of an array is
proportional to the array aperture that should be finite in practice. In contrast, the latter can be justified
for high carrier frequency systems like millimeter wave (mm-Wave), where the angular resolution might
continue to increase proportionally with the carrier frequency fc. In the mm-Wave channels, however,
it was observed (e.g., [31]) that the higher fc, the smaller number of multipaths that can arrive at the
receivers due to higher path loss and blockage. This sparsity of surviving multipath components is also
verified by mm-Wave propagation measurement campaigns [32] and also by [18] even in below 6 GHz ,
meaning that non-negligible eigenvalues of RRR``′k

may be very sparse in the large M limit.4 As a matter
of fact, Assumptions 1 and 2 model the above limited scattering channel environments in the sense that
more energy concentrates upon relatively sparse angular support of RRR``′k

as M increases. Therefore, it is

3For positive semidefinite AAA, it is simply the maximum eigenvalue of AAA
4Although user terminals in mm-Wave systems have multiple or even large-scale antennas, the analog beamforming architecture turns the

MIMO channel into an effective multiple-input single-output channel. Hence, our channel model with sparse angular support can cover the
typical mm-Wave beamforming architecture.
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particularly reasonable to assume the sublinear sparsity when the size of the antenna array does not scale
with M in practice and rather carrier frequency fc scales.

An insufficiency of Assumption 2 is that the large-scale fading factor trΛ``′k
grows at the same speed

as M → ∞, even though the rank r``′k of Λ``′k
grows only sublinearly with M . This means that despite

such a sparse angular support in limited scattering clusters, the channel energy does not dissipate so as
to concentrate upon the r``′k-dimensional subspace spanned by the columns of UUU ``′k

. Therefore, we also
consider another spatial correlation regime, where trΛ``′k

grows no faster than r``′k as M →∞ and spatial
correlation is rather stronger.

Assumption 3 (Very Strong Spatial Correlation Regime). The number of non-zero eigenvalues r``′k grows
without bound but much slower than M such that

r4
``′k

M3
−−−−→
M→∞

0 (11a)

lim sup
M→∞

r2
``′k

M
<∞ (11b)

lim sup
M→∞

trΛ``′k

r``′k
<∞, ∀(`, `′, k). (11c)

This very strong correlation regime is of importance since it captures significant path loss and penetration
loss in high carrier frequency bands like mm-Wave and above. Interestingly, it will be shown later on that
the two correlation regimes lead to different sum-rate scaling laws in terms of the ratio of the number of
users per cell and the number of BS antennas.

C. Spatial Despreading and Spreading

In this subsection, we introduce statistical spatial despreading in uplink (spreading in downlink) based
on channel covariance matrices and explain its implication.
• Sparse transform: Under our spatial correlation models, hhh``′k has a sparse representation and UUU ``′k

serves as a sparse transformation matrix 5 of hhh``′k such that

UUUH
``′k
hhh``′k = Λ

1
2

``′k
h``′k , www``′k (12)

where www``′k ∈ Cr``′
k ∼ CN (000,Λ``′k

) is the projected effective channel vector, whose dimension is
much lower than that of the original vector hhh``′k in CM .

• Energy concentration: In the above transformation, the energy of hhh``′k is preserved and concentrated

on www``′k in (12) since trRRR``′k
= trΛ``′k

, implying UUU⊥``′k
H
hhh``′k = 000, where UUU⊥``′k spans the null space of

UUU ``′k
. The energy concentration is simply due to the classical Parseval theorem implying that the

change of coordinates (basis) preserves inner products (energy).
The sparse transform naturally gives rise to an interesting interpretation of spatial despreading as follows.

One can regard {UUU ``′k
,∀`, `′, k} as “statistical spatial matched filters” or “random spreading sequences”

in the classical uplink CDMA [35] with asynchronous users since the sparse transform (multiplying hhh``′k
by UUUH

``′k
) in uplink and its counterpart (multiplying www``′k by UUU ``′k

) in downlink are a reminiscence of
despreading and spreading, respectively. Hence the sparse transform and its counterpart will be referred
to as spatial despreading and spreading, respectively. Unlike CDMA, the spatial (de)spreading is not
controllable at the cost of bandwidth, but it depends on the propagation channel. In particular, under
the assumptions made before, the channel with limited scattering offers an unbounded spatial spreading

5This is also known as a sparse representation matrix and should not be confused with a sensing (or measurement) matrix in compressed
sensing [33], [34].
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gain (energy concentration) as M → ∞ without incurring any bandwidth cost. Fig. 1 illustrates how
spatial spreading is implicitly conducted by channel propagation and how spatial despreading based on
the second-order channel statistics UUU ``′k

is done by the change of coordinates.
For the homogeneous network where all users have the same r``′k = r, the symmetric spatial spreading

gain is defined as

ζ =
M

r
. (13)

Similar to the uplink CDMA with random spreading signatures, for large M , one can then intuitively
expect that spatial despreading can suppress interference power by the factor ζ in the homogeneous
network. This effect will be addressed later on in (45) of Sec. V.

Once spatial despreading is performed upon the received signal yyy` in (5), the transformed vector yyy`k
for user `k is given by

yyy`k = UUUH
``k
yyy`

= www``kx`k +
∑
k′ 6=k

www`k`k′x`k′ +
∑
`′ 6=`

∑
k′

www`k`′k′x`′k′ + zzz`k (14)

where zzz`k = UUUH
``k
zzz` and

www`k`′k′ = UUUH
``k
UUU ``′k′

www``′k′ , ∀(`, k, `
′, k′). (15)

The subsequent receiver processing applies to the transformed vector yyy`k instead of yyy`. Meanwhile, in
order to leverage the sparsity in spatially correlated fading channels in downlink, we let the BS perform
spatial spreading such that ppp`k = UUU ``kggg`k ,∀`, k, where ggg`k ∈ Cr``k . We can then express (6) as

y`k = wwwH
``k
ggg`kd`k +

∑
(`′,k′) 6=(`,k)

wwwH
`′k′`k

ggg`′k′d`′k′ + z`k . (16)

It should be noted that spatial despreading in uplink (or spreading in downlink) by UUU ``k does not incur
any loss of optimality from the single-user perspective, but it is suboptimal from the perspective of MU-
MIMO because spatial despreading projects the M -dimensional signal space onto the r``k-dimensional
subspace, in which multiuser combining (or precoding) is performed based on {www``k ,www`k`′k′}. As a matter
of fact, it is only asymptotically optimal under Assumption 2 (or 3), which will be shown by the main
capacity scaling result in Theorem 2. Nevertheless, the purpose of representing the uplink/downlink
received signal in the above forms (14) and (15) is three-fold: 1) to explicitly show the role of spatial
spreading/despreading, 2) to separate the effect of channel hardening through www``k and that of spatial
despreading through UUU ``k , and 3) to study the asymptotic performance of the resulting r``k-dimensional
channel estimation and combining/precoding. In particular, the effect of channel hardening arises when
‖www``k‖

2

E[‖www``k‖
2]

a.s.−−→ 1 for sufficiently large r``k as M → ∞. The almost sure convergence can be given by
the well-known trace lemma [19, Lem. 2.7] (see also [21, Thm. 3.4]), although the elements of www``k are
non-identically distributed. Therefore, channel hardening depends directly on the dimension r``k of the
effective channel www``k in our rank-deficient spatial correlation models.

D. Low-Dimensional Channel Estimation

For channel training through uplink pilot signals, we consider both orthogonal pilot per cell and non-
orthogonal pilot over the entire network. In each case, the corresponding MMSE channel estimate is
described in the following.
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1) (Intra-Cell) Orthogonal Pilot Scheme: Let us consider a pilot-aided multicell MIMO system, where
the uplink/downlink system uses a certain amount of channel uses to allow the BSs to estimate their
associated user channel vectors. For the conventional orthogonal pilot scheme [1], [2], users in each cell
send a set of mutually orthogonal pilot sequences, which are shared by L cells in the network, so that
user k in every cell uses the same pilot sequence, resulting in pilot contamination. The received pilot
signal for user k in cell ` can then be expressed as

s̄ss`k =
L∑

`′=1

hhh``′k +
1
√
ρp
zzz` (17)

where ρp = %pPul with %p the power boosting factor (i.e., power gap between the training phase and the
communication phase). This requires the overall training cost of max`K` channel uses in half duplex
TDD, where we assume synchronized cells such that in a given time slot all BSs schedule transmissions
in the same direction to avoid severe inter-cell interference. In general, the maximum number of users
per cell is limited by the uplink pilot dimension in this orthogonal scheme [1]. After spatial despreading
for the same purpose as (14), we will make use of the projected pilot signal sss`k represented as

sss`k = UUUH
``k
s̄ss`k = www``k +

∑
`′ 6=`

www`k`′k +
1
√
ρp
zzz`k . (18)

Given the noisy observation sss`k and the prior knowledge on UUU ` = [UUU ``1 , . . . ,UUU ``K`
] and the sum,∑

`′ 6=`UUU
H
``′k
RRR``′k

UUU ``′k
, of low-dimensional covariance matrices of the other-cell user channels after spatial

despreading by UUUH
``′k

, and conditioned on a realization of UUU = {UUU ``′k
,∀(`, `′, k)}, the MMSE estimate ŵww``k

of the effective channel www``k is given by

ŵww``k = E
[
www``ksss

H
`k

∣∣UUU]E[sss`ksssH`k∣∣UUU]−1
sss`k

= Λ``kΞ``ksss`k (19)

where Ξ``k ,
(
Λ``k +

∑
`′ 6=` R̃RR`k`′k′

+ ρ−1
p IIIr``k

)−1 with R̃RR`k`′k′
, UUUH

``k
RRR``′k′

UUU ``k ∈ Cr``k×r``k being the
covariance of www`k`′k′ . The sum of low-dimensional covariance matrices Ξ``k can rather be estimated by
an empirical covariance matrix based on sss`k instead of the prior knowledge since the fading channel
statistics are ergodic and WSS, as long as the scattering geometry of users remains unchanged over the
local stationarity interval. The distribution of ŵww``k is CN (000,Φ``k), where Φ``k = Λ``kΞ``kΛ``k .

The effective channel www``k of user `k can then be written as

www``k = ŵww``k + nnn``k

where nnn``k ∼ CN (000,NNN ``k) is conditionally independent of ŵww``k given UUU ` by the orthogonality property of
the MMSE estimate and the joint Gaussianity of ŵww``k and nnn``k . From (19), the conditional error covariance
matrix is given by

E
[
nnn``knnn

H
``k
|UUU
]

= E
[
www``kwww

H
``k

]
− E

[
ŵww``kwww

H
``k
|UUU
]

= Λ``k −Λ``kΞ``kΛ``k .

Notice that spatial despreading gives us the r``k-dimensional MMSE channel estimation for www``k rather
than the M -dimensional one. In fact, spatial despreading (spreading) is implicitly done in the full-
dimensional MMSE channel estimation and combining (precoding) based on s̄ss`k in (17). The following
result shows that the low-dimensional channel estimate ŵww``k after spatial despreading is asymptotically
equivalent to the full-dimensional channel estimate based on s̄ss`k .

Lemma 1. Under Assumption 2, sss`k in (18) is an asymptotically sufficient statistic conditioned on UUU ` to
estimate the effective channel www``k from s̄ss`k as M →∞.

Proof: Refer to Appendix B.
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2) (Intra-Cell) Non-Orthogonal Pilot Scheme: It is known [3], [8] that the conventional orthogonal
pilot scheme may significantly limit the sum-rate performance of MU-MIMO systems unless max`K` is
smaller than Tc/2. To overcome this limiting factor, we also consider the non-orthogonal pilot scheme.
This pilot signal sss′`k is non-orthogonal over intra cell as well as inter cell such that it consumes a single
channel use6 per L-cell network per coherence block, given by

sss′`k = www``k +
∑

(`′,k′)6=(`,k)

www`k`′k′ +
1
√
ρp
zzz`k . (20)

Similar to the orthogonal pilot scheme, we have the MMSE channel estimate of www``k given sss′`k as follows.

w̌ww``k = Λ``kΞ
′
``k
sss′``k (21)

where Ξ′``k ,
(
Λ``k +

∑
(`′,k′)6=(`,k) R̃RR`k`′k′

+ ρ−1
p IIIr``k

)−1. The distribution of w̌ww``k is given by CN (000,Φ′``k),
where Φ′``k = Λ``kΞ

′
``k

Λ``k . As in Lemma 1, one can show that sss′``k is an asymptotically sufficient statistic
to estimate the effective channel www``k from sss′` under Assumption 2.

A natural question arises on how we estimate channel covariance matrices in the non-orthogonal pilot
scheme. While non-orthogonal pilot can give a better sum-rate performance by reducing the training
overhead for the estimation of effective channels when Tc is relatively small, extra “long-period” orthogonal
pilot would be necessary for the channel covariance estimation. As Tc is typically much smaller than the
local stationarity interval over which the channel process is WSS [25, Chap. 4], the corresponding training
overhead for channel covariances will be rather small relative to “short-period” orthogonal pilot sss`k . In the
practical scenario that one should estimate channel covariance matrices from contaminated pilot sequences,
[15] proposed algorithms that exploit sparse angle-delay supports between users to separate the covariance
estimates of the different users of interest.

E. Low-Dimensional Multiuser Combining and Precoding

We will only describe single-cell MMSE combining and precoding vectors based on the channel
estimates ŵww``k in (19) for the orthogonal pilot scheme, not requiring cell ` to estimate the effective
channels www``′k′ of users k′ in other cells `′ 6= `. Replacing ŵww``k with w̌ww``k in (21), we can get MMSE
combining and precoding vectors for non-orthogonal pilot.

1) Uplink: Spatial despreading in (14) indicates that we restrict the full-dimensional linear combining
vector to UUU ``kvvv`k ∈ CM , where vvv`k is the r``k-dimensional combining vector for user `k. Given ŵww` =
[ŵww`1 , . . . , ŵww`K` ] and letting ŵww`k`′k′ , UUUH

``k
UUU ``′k′

ŵww``′k′ ,∀(`
′, k′), the single-cell MMSE combining vector can

be written as

vvvmmse
`k

= Υ`kŵww``k (22)

where

Υ`k =

(
ŵww``kŵww

H
``k

+
∑
k′ 6=k

ŵww`k`k′ŵww
H
`k`k′

+ zzz`k + Pul
−1IIIr``k

)−1

where zzz`k is a system design parameter and typically defined as zzz`k =
∑

`′ 6=`
∑

k Ξ``′k
+
∑

`′,k′NNN `k`′k′
. The

above low-dimensional vector vvvmmse
`k

is given based on the received vector yyy`k in (14), to which spatial
despreading of UUUH

``k
applied.

6For more general non-orthogonal pilot design, one may use Welch bound equality frames [36], where the cross-correlation coefficient
between pilot sequences shared by different cells in the network is non-zero but the same. We can then design non-orthogonal pilot sequences
with training cost K′ such that 1 ≤ K′ < max`K` (e.g., see [37] in the context of massive MIMO).
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2) Downlink: For downlink, the low-dimensional MMSE precoding vector can be written as

gggmmse
`k

=

(
ŵww``kŵww

H
``k

+
∑
k′ 6=k

ŵww`k′`kŵww
H
`k′`k

+ZZZ ′``k + Pdl,`
−1IIIr``k

)−1

ŵww``k (23)

where ZZZ ′``k =
∑

`′ 6=`
∑

k

(
Λ``′k

+
∑

`′ 6=`Λ`′k′`k
+ ρ−1

p IIIr``k

)−1
+
∑

`′,k′NNN `′k′`k
. The final precoding vector is

followed by spatial spreading such that ppp`k = UUU ``kggg
mmse
`k

.
By the data processing inequality, the performance of the above r``k-dimensional combining (or

precoding) vector is upper-bounded by that of the typical (M -dimensional) MMSE combining (precoding)
vector (e.g., see [4, Eqn. (11)]) based on yyy` in (5) (y`k in (6)). We will see that the performance of vvvmmse

`k
is asymptotically equivalent to the large-dimensional MMSE combining vector as M → ∞, although
vvvmmse
`k

shows a performance degradation at finite M . This is also the case with gggmmse
`k

in downlink.

III. MAIN RESULTS

In this section, we provide capacity scaling results in massive MIMO under the system model and
assumptions in Sec. II. To this end, we consider three lower bounds on the achievable uplink rate based
on an extension of the deterministic equivalents technique [19]–[22], [29], [30]. While the first lower
bound is based on coherent demodulation and decoding, the others are non-coherent. The results are then
extended to downlink.

A. Uplink Capacity Scaling in the Strong Spatial Correlation Regime
1) Coherent Lower Bound: We first consider the standard lower bound on the achievable rate proposed

by Hassibi and Hochwald [38], based on the worst-case uncorrelated additive noise lemma. This lemma
has been widely used for coherent detection with imperfect CSI in the vast literature of limited feedback
single/multiple-user MIMO systems (e.g., see [39] and reference therein). In this paper, the channel
estimate of either (19) or (21) is available at the BS for coherent detection in the uplink.

Using the above bounding technique and the channel estimate in (19), the ergodic achievable rate of
user `k is lower-bounded by

R(1)
ul,`k = E

log

1 +
|vvvH`kŵww``k |

2

E
[
|vvvH`knnn``k |

2 +
∑

(`′,k′) 6=(`,k) |vvvH`kwww`k`′k′ |
2 + 1

Pul
|vvvH`kzzz`k |

2
∣∣ ŵww`,UUU]

 ∣∣∣∣∣ UUU
 (24)

where ŵww`. Notice that the above outer expectation is taken over {www``′k ,∀(`, `
′, k)} conditioned on UUU ,7

implying that R(1)
ul,`k is a random variable conditional to a particular covariance realization of UUU since

it is a function of UUU , which is itself random. As mentioned earlier, it will be shown that such ergodic
rates R(1)

ul,`k converge to a deterministic limit under the stochastic spatial correlation models in Sec. II-B.
The derivation of (24) follows from the MMSE decomposition of the useful signal channel and from
the worst-case uncorrelated additive noise argument. In this subsection, it is assumed that K` is a finite
constant or scales sublinearly with M such that limM→∞

K`
M

= 0 for all `, as usual in the massive MIMO
literature. We will address the case where lim supM→∞

K
M
<∞ in Sec. III-C. Using (24), we obtain the

following lower bound on the asymptotic capacity with respect to M .

Theorem 1. For large M with limM→∞
K
M

= 0 and Assumptions 1 and 2 with the orthogonal pilot
scheme, the ergodic sum capacity of MIMO uplink is lower-bounded by

Cul
M ≥

L∑
`=1

κ3∑
k=1

(
1− κ3

Tc

)
log(PultrΛ``k) + o(1). (25)

7One might take the outer expectation also over UUU . In order to attain the ergodicity with respect to the channel covariances, we will need
codewords that span hundreds of local stationary intervals much longer than small-fading coherence block. However, this is not very realistic
in practical systems.
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where κ3 = min{max`K`, bTc2 c}.

Proof: Refer to Sec. V-A.

For the above large system analysis, we extended the standard technique of deterministic equivalents
in a few aspects in Appendix A: 1) the unbounded spectral norm of channel covariance matrices with
respect to M and 2) the partial random Fourier correlation model for which the trace lemma in [19],
crucial for deterministic equivalents, is not applicable. The latter is due to the fact that the entries of the
columns of UUU ``′k

are not i.i.d. any longer and that the column vectors are also not independent of each
other.

Suppose the homogeneous network such that

K` = K, Pul = Pdl,` =
SNR

K
, r``′k = r, ∀(`, `′, k). (26)

In this homogeneous network, it follows from (25) that the coherent lower bound yields the multiplexing
gain per user of 1− κ1

Tc
. Also multiplexing gain per cell is given by

(
1− κ1

Tc

)
κ1 for the typical (orthogonal)

pilot scheme. Accordingly, an intriguing question arises: Is the sum-rate scaling law with the multiplexing
gain of (25) optimal in massive MIMO under Assumption 2? Such multiplexing gain per cell is indeed
limited by Tc

4
when K ≥ Tc

2
for relatively small Tc [8]. To answer this question, we need to consider the

non-orthogonal pilot sss′`k in Subsection II-D, whose training cost is only a single channel use across the
L-cell network. In this case, unfortunately, the lower bound R(1)

ul,`k in (24) is not amenable to large system
analysis because the trace lemma [19, Lem. 2.7] is not applicable. Furthermore, this coherent bound is
expected to suffer from significant channel estimation error in the non-orthogonal pilot scheme. We thus
turn our attention to non-coherent bounding techniques.

2) Non-Coherent Lower Bound: Marzetta [40] proposed a non-coherent bound based on separating the
useful signal coefficient into a deterministic part and a random fluctuation part, not requiring the coherent
detection. The bounding technique may be traced back to Médard [41]. Following this technique, [42]
developed a lower bound on the achievable rate of the MIMO downlink, where the fading distribution is
assumed to be known, but the channel estimates are unavailable at the receivers unless additional dedicated
downlink pilots are provided. Although this bound is accordingly very natural to use in downlink, it is
applicable in uplink as well (e.g., [43]), where the uplink pilot is used to only construct the coherent
combining vector vvv`k rather than coherent demodulation. Using this bounding technique, we have the
ergodic achievable rate

R(2)
ul,`k = log

(
1 +

∣∣E[vvvH`kwww``k |UUU ]
∣∣2

1
Pul

+ var[vvvH`kwww``k |UUU ] +
∑

(`′,k′)6=(`,k) E
[
|vvvH`kwww`k`′k′ |

2|UUU
]) . (27)

We can then obtain the following main result of this work.

Theorem 2. For large M with limM→∞
K
M

= 0 and Assumptions 1 and 2 with the non-orthogonal pilot
scheme, the sum capacity of MIMO uplink behaves as

Cul
M =

(
1− T−1

c

) L∑
`=1

K∑̀
k=1

log(PultrΛ``k) + o(1). (28)

Proof: Refer to Sec. V-B.
The factor PultrΛ``k in the right-hand side (RHS) of (28) represents the post-processing SNR in uplink.

For the homogeneous network in (26) with trΛ``k = M and trΛ``′k
= ιM for all (`, `′, k), the first scaling

law in (3) directly follows from (28). Compared to (1) and (2), this scaling function shows multiplexing
gain is not limited any longer by Tc

4
for Tc ≤ 2LK in the strong correlation regime. This capacity scaling

is asymptotically tight, as mentioned in the introduction, and shows the maximum multiplexing gain of
(1− Tc−1)LK from the perspective of either pilot-aided or non-coherent communications.
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The lower bound R(2)
ul,`k predicts well the achievable rate of massive MIMO when the useful signal

coefficient vvvH`kwww``k hardens, i.e., behaves almost deterministically. However, in fading channels with strong
spatial correlation, where the dimension r``k of the effective channel www``k could be much smaller than M
(i.e., lack of channel hardening), R(2)

ul,`k suffers from the self-interference due to the non-negligible variance
term var[vvvH`kwww``k |UUU ] in (27) unless r``k becomes sufficiently large. As a consequence, the non-coherent
bound R(2)

ul,`k may substantially underestimate the sum-rate performance of massive MIMO, which will
be examined through numerical results in Sec. VI. This is also particularly evident in the large but finite
antenna regime.

3) Alternative Non-Coherent Lower Bound: We consider another non-coherent bounding technique very
recently derived in [24] for the single-cell downlink scenario. The bound can be traced back to a mutual
information decomposition given in the tutorial paper by Biglieri, Proakis, and Shamai [44, Eqn. 3.3.27] to
study non-coherent block fading channels. Assuming Gaussian inputs, linear combining/precoding vector,
and treating interference as noise, we have the following upper bound on the ergodic achievable rate [24]

Rub
ul,`k = E

[
log

(
1 +

∣∣vvvH`kwww``k∣∣2
1
Pul

+
∑

(`′,k′) 6=(`,k) |vvvH`kwww`k`′k′ |
2

)∣∣∣∣ UUU
]

(29)

which is a max-min bound such that the maximum is over the coding/decoding strategy of user `k and
the minimum is over all input distributions of the other users. The third lower bound used in this work
is given by [24]

R(3)
ul,`k = Rub

ul,`k −
1

Tc

∑
(`′,k′)6=(`,k)

log
(

1 + Pulvar
[
vvvH`kwww`k`′k′

∣∣UUU]). (30)

The second term in the RHS of (30) consists of the prelog factor
∑
`K`−1

Tc
and the variances of coherent

interference var[vvvH`kwww`k`′k′ |UUU ] multiplied by the transmit power Pul inside the logarithm. On one hand,
this bound comes very close to the max-min upper bound when coherence block is sufficiently large or
coherent interference is limited. The latter is the case with our main scenario under the sublinear sparsity
assumption, where interference is significantly suppressed by spatial despreading. On the other hand, a
negative feature of this bound is that when the first term Rub

ul,`k is interference limited at finite M , Pul

grows to infinity, and/or Tc does not scale well with M , the bound goes to even below zero. Therefore,
another lower bound with a complementary behavior can be found in [24, Lemma 4]. One can prove that
the non-coherent lower bound R(3)

ul,`k achieves the same capacity scaling as Theorem 2. A sketch of the
proof will be given in Sec. V-C.

B. Downlink Capacity Scaling in the Strong Spatial Correlation Regime

Unless we employ downlink dedicated (precoded) pilot signals consuming additional K` channel uses
for the communication phase, the useful signal coefficient necessary for coherent detection is unknown so
that we cannot use R(1)

ul,`k for downlink. On the contrary, we can utilize both non-coherent bounds R(2)
ul,`k

and R(3)
ul,`k for downlink as well to derive the capacity scaling result under sparse angular support models.

Given the downlink received signal in (16) and conditioned on UUU , the lower bounds are given by

R(1)
dl,`k = log

(
1 +

∣∣E[wwwH
``k
ggg`k |UUU ]

∣∣2
1

Pdl,`
+ var[wwwH

``k
ggg`k |UUU ] +

∑
(`′,k′) 6=(`,k) E

[
|wwwH

`′k′`k
ggg`′k′ |

2|UUU
]) (31)

R(2)
dl,`k = E

[
log

(
1 +

∣∣wwwH
``k
ggg`k
∣∣2

1
Pdl,`

+
∑

(`′,k′)6=(`,k) |wwwH
`′k′`k

ggg`′k′ |
2

)∣∣∣∣ UUU
]
− 1

Tc

∑
(`′,k′)6=(`,k)

log
(

1 + Pdl,`var[wwwH
`′k′`k

ggg`′k′ |UUU ]
)
.

(32)
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Using the above bounds under Assumptions 1 and 2 with the orthogonal pilot scheme, we can first derive
the achievable ergodic sum rate in MIMO downlink

Cdl
M ≥

L∑
`=1

κ3∑
k=1

(
1− κ3

Tc

)
log(Pdl,`trΛ``k) + o(1) (33)

where Pdl,`trΛ``k is the post-processing SNR of user `k in the downlink. The above sum-rate characteri-
zation follows from the same footsteps in the proof of Theorem 1. Similar to Theorem 2, we also have
the following result.

Theorem 3. For large M with limM→∞
K
M

= 0 and Assumptions 1 and 2 with the non-orthogonal pilot
scheme, the sum capacity of MIMO downlink behaves as

Cdl
M =

(
1− T−1

c

) L∑
`=1

K∑̀
k=1

log(Pdl,`trΛ``k) + o(1). (34)

In order to prove the above result, it suffices to use either R(1)
dl,`k or R(2)

dl,`k with the transmit maximal
ratio (or conjugate) precoding, i.e., ggg`k = w̌ww``k . The proof is omitted for the sake of brevity, but follows
the footsteps and arguments in the proofs of Theorems 1 and 2. A main difference is that we sometimes
use Lemmas 7 and 9 instead of Lemmas 6 and 8, respectively. As expected, under the channel model
assumptions of this paper the downlink has the same capacity scaling of the uplink.

C. Very Strong Spatial Correlation Regime

It is important to notice that in order to get (28) (or the first scaling law in (3)) in Theorem 2 and
(34) in Theorem 3 in the strong correlation regime, we have assumed that L is finite and K is also
finite or limM→∞

K
M

= 0, which is implicit in the massive MIMO literature [1], [2], [4], [16], together
with Tc growing linearly with K. Rather, we will see that under the very strong correlation regime in
Assumption 3, the linear sum capacity scaling with respect to M at finite SNR can still be achieved as
long as lim supM→∞

K
M
< ∞, i.e., K does not grow faster than M , even though the coherence block

size Tc does not scale with K. To show this, we will use Rub
ul,`k in (29) and the naive channel estimate

sss′`k in (20) based on non-orthogonal pilot instead of the MMSE estimate w̌ww``k for the sake of exposition,
since the former channel estimate essentially captures the pilot contamination term and the inter/intra-cell
interference term. With vvv`k = sss′`k (ignoring normalization), the overall interference term in (29) for user
`k in uplink is given by

1

M2

∑
(`′,k′)6=(`,k)

|vvvH`kwww`k`′k′ |
2 =

1

M2

∑
(`′,k′)6=(`,k)

∣∣∣∣(www``k +
∑

(j,m)6=(`,k)

www`kjm +
1
√
ρp
zzz`k

)H
www`k`′k′

∣∣∣∣2. (35)

We investigate the asymptotic behaviors of three main terms in the above equation.
• Coherent pilot contamination term ((j,m) = (`′, k′)): In the limit of M , we can derive the following

almost sure convergence

‖www`k`′k′‖
2

M
=

∣∣wwwH
``′k′
UUUH
``′k′
UUU ``kUUU

H
``k
UUU ``′k′

www``′k′
∣∣2

M

a.s.−−→ r

M2
trΛ``′k′

(36)

where www`k`′k′ is given in (15). The convergence follows from Lemma 5 since
‖www``′k′ ‖

2

M

a.s.−−→ 1
M

trΛ``′k′
by

the trace lemma and UUUH
``′k′
UUU ``kUUU

H
``k
UUU ``′k′

a.s.−−→ r
M
IIIr by Lemma 6 (or 8) for the random partial unitary

correlation model (or the random partial Fourier model). Note that the latter convergence shows the
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role of spatial despreading in uplink, which is more crucial than the former (channel hardening) to
obtain the capacity scaling results in this paper. Using the dominated convergence theorem, we have

1

M2

∑
(`′,k′)6=(`,k)

∣∣wwwH
`k`′k′

www`k`′k′
∣∣2 a.s.−−→ LK

M
·
r2trΛ2

``′k′

M3
(37)

which vanishes under Assumption 3 as long as lim supM→∞
K
M
<∞ and L is finite.

• Inter/intra-cell interference term: Although interference does not matter in the conventional massive
MIMO because of finite K and the law of large number in the limit of M , this is not necessarily
the case with lim supM→∞

K
M

< ∞. For the residual interference term after spatial despreading,
|wwwH

``k
www`k`′k′ |

2 = |wwwH
``k
UUUH
``k
UUU ``′k′

www``′k′ |
2,∀(`′, k′) 6= (`, k), “common” angular components between the

channel covariance matrices of any pair of users are relatively very small such that limr→∞
∆`k,`

′
k′

r
= 0,

where ∆`k,`′k′
is the number of the similar angular components shared by users `k and `′k′ at BS `.

Specifically, UUUH
``k
UUU ``′k′

a.s.−−→ 1√
M
JJJr as a straightforward corollary of Lemma 6 (or 8), where JJJr is

the r-dimensional all-ones matrix, and
|hH
``k

h``′k′
|2

r2
a.s.−−→ 0 by Lemma 4, where h``′k′ is defined in (4).

Similar to (37), we get

1

M2

∑
(`′,k′)6=(`,k)

∣∣wwwH
``k
www`k`′k′

∣∣2 a.s.−−→ LK

M
·
r2trΛ``k trΛ``′k′

M2
·
|hH
``k

h``′k′ |
2

r2
(38)

which also vanishes under Assumption 3, particularly, (11b) and (11c).
• Noncoherent pilot contamination term ((j,m) 6= (`′, k′)): Although the amount of these terms
|wwwH

`kjm
www`k`′k′ |

2 = |wwwH
`jm
UUUH
`jmUUU ``kUUU

H
``k
UUU ``′k′

www``′k′ |
2 is extremely large due to non-orthogonal pilot, the

infinite sum of quickly vanishing terms eventually goes to zero under our channel models and
assumptions.

Note that since the deterministic approximation of the normalized signal power
‖www``k‖

2

M
as well as (37)

and (38) depends on realizations of {trΛ``′k
}, the resulting SINR of user `k is conditional to random

channel covariance matrices of all users in the network. Under the deterministic trΛ``′k
assumption in (8),

however, the conditional SINR converges to a deterministic limit by Lemma 5 for sufficiently large M ,
thus allowing the ergodic rate analysis in this work. Using the same argument as the above derivations,
we have the following corollary of Theorems 2 and 3.

Theorem 4. For large M with lim supM→∞
K
M
<∞ under Assumptions 1 and 3 with the non-orthogonal

pilot scheme, the sum capacities of massive MIMO uplink and downlink asymptotically behave as (28)
and (34), respectively. For downlink, the sum power Pdl is assumed to scale linearly with K.

Using the homogeneous network in (26) with trΛ``k = r and trΛ``′k
= ιr for all (`, `′, k) in the very

strong correlation regime, the second scaling law in (3) immediately follows from the above result. For
the consistency (or duality) with uplink, where the uplink per-user transmit power Pul is fixed and the
uplink total power automatically scales with K, we assumed that the downlink sum power Pdl also scales
with K. Otherwise, the post-processing SNR Pdl

K
trΛ``k will vanish as K →∞.

D. Interpretation of Main Results

Let us consider the homogeneous network in (26) with ι = 1. The main results in Theorems 2 and 3 show
the role of spatial despreading and spreading in strong spatial correlation regimes because the achievability
proof is based on the corresponding low-dimensional channel estimation and combining/precoding. We
have not invoked any explicit pilot decontamination technique such as covariance-aided coordination with
non-overlapping angular supports [12], semi-blind estimation [11], or multicell precoding and combining
[9], [10]. As a matter of fact, our assumptions on strong correlation regimes are rather restrictive or
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favorable in the sense that each covariance matrix occupies a vanishing fraction of dimensions with
respect to the total signal space dimensions M so that a sort of coordination based on covariances is
implicitly achieved without information exchange among cells. Accordingly, our asymptotic results in this
paper may be regarded as a direct consequence of the channel models and their assumptions. However,
since we leverage the asymptotic sum-rate scaling law only as a tool to provide insight into the role of
spatial spreading and despreading in terms of M , K, Tc, and r, it is important to see if our asymptotic
results are translated into a good prediction in the performance behavior of finite systems with strong
spatial correlation. To this end, the linear sum-rate scaling of our results with respect to either SNR or
M (equivalently, K for fixed K

M
> 0) in (25) will be shown valid through numerical examples in Figs.

3 and 4 for moderate values of r with respect to finite M , as the large system analysis in general works
quite precisely even for rather small system dimensions [4], [5]. It is also pointed out that any advanced
precoding technique like block diagonalization [13], [45] over channel covariances is not required to
realize the sum-rate performance predicted by the asymptotic capacity scaling under our channel models.
We have shown that single-cell linear precoding (combining) based on spatial spreading (despreading) is
sufficient to achieve the optimal capacity scaling laws (3) in the limit of M , although multicell precoding
can significantly outperform single-cell processing at finite M .

Theorem 4 indicates that every user can get unlimited spectral efficiency in multicell massive MIMO
even when the number of users per cell scales linearly with the number of BS antennas. The result is
only achievable under the very strong correlation regime, which stipulates a much larger value of M
for r to be sufficiently large relative to the strong correlation regime, e.g., to guarantee the asymptotic
orthogonality of |hH

``k
h``′k′ |

2/r2 in the RHS of (38). We also used the non-orthogonal pilot scheme whose
training overhead is in general much less than Tc, no matter how large K is. This somewhat surprising
argument may appear counterintuitive, since it has been presumed in the literature that each data stream
requires at least one orthogonal pilot dimension within its own cell, in order to allow the receiver (uplink)
or the transmitter (downlink) to separate the streams and provide an interference-free channel. Therefore,
the common intuition suggests that the number of data streams is upper-bounded by min{M,K, Tc/2}.
While this is indeed the case for isotropic fading or, more in general, for channel covariances with rank
r = αM , with fixed α > 0, it is not the case under the strong correlation regimes, where r grows without
bound but slower than M so that α vanishes in the limit of M , thus making non-orthogonal pilot based
channel training feasible.

Finally it deserves to mention the assumption on the downlink sum power Pdl in Theorem 4. Due to
limited downlink transmit power per cell in practice, the scaling of Pdl with respect to K makes the
downlink system power-limited for large K. Consequently, the second scaling law in (3) is more feasible
in uplink rather than in downlink. Furthermore, the result does not mean that spatial multiplexing per cell
is represented by (1− Tc−1)K since we only have log(αSNR) with α vanishing in the limit of M .

IV. AN EXTENSION OF DETERMINISTIC EQUIVALENTS

As mentioned earlier, it is essential to extend Theorem 1 in [20], [22] to the case of (9a) and (10a),
where the spectral norm of Λ``k grows without bound as M → ∞. In this section, we develop the
following extension of deterministic equivalents based on Corollary 2 in Appendix A.

Theorem 5. Let

BBBN = XXXNXXX
H
N +AAAN (39)

where
1) N,N1, . . . , Nn, n, and M0, . . . ,Mn grow with ratios a0 = N/n, ai = N/Ni, and bi = N/Mi,

respectively, such that 0 < lim infN ai ≤ lim supN ai < ∞ and 0 ≤ lim infN bi ≤ lim supN bi ≤ 1,∀i,
and 0 < lim infN

bi
bj
≤ lim supN

bi
bj
<∞,∀i 6= j;

2) XXXN ∈ CN×n has independent columns xxxi = Ψiyyyi, where yyyi ∈ CNi has either i.i.d. entries of zero
mean, variance 1

N
, and 4+ε moment of order O( 1

N2+ε/2 ), or uncorrelated entries of zero mean, variance
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1/n, |yn,i|2 = 1/n, where yn,i is the ith entry of yyyn and i = 1, . . . , n, and eighth order moment of
order O( 1

n4 );
3) Ψi ∈ CN×Ni are deterministic and the spectral norm of Θi = ΨiΨ

H
i is not necessarily uniformly

bounded with respect to N , but there exist Mi ≥ N, i = 1, . . . , n satisfying

lim sup
N→∞

‖biΘi‖2 <∞,∀i;

4) AAAN ∈ CN×N is non-negative Hermitian;
5) and let QQQN ∈ CN×N be non-negative Hermitian with not necessarily uniformly bounded spectral norm

with respect to N , but there exist M0 ≥ N satisfying lim supN→∞ ‖b0QQQN‖2 <∞.
Define

mN(z) ,
1

N
tr QQQN

(
BBBN − zIIIN

)−1

and βi , Mi

Mmax
with Mmax = mini=0,1,...,nMi.

For z ∈ C \ R+, as N →∞ with ratios ai, bi, and βi,∀i, we have

1

β0

mN(z)− 1

β0N
tr QQQNTTTN(z)

a.s.−→ 0 (40)

where

TTTN(z) =

(
1

N

n∑
j=1

Θj

1 + eN,j(z)
+AAAN − zIIIN

)−1

(41)

and eN,1(z), . . . , eN,n(z) form the unique functional solution of

eN,i(z) =
1

βiN
tr ΘiTTTN(z) (42)

which is the Stieltjes transform of a nonnegative finite measure on R+ and given by eN,i(z) =

limt→∞ e
(t)
N,i(z) where e(0)

N,j(z) = −1
z

and for t ≥ 1

e
(t)
N,i(z) =

1

βiN
tr Θi

(
1

N

n∑
j=1

Θj

1 + e
(t−1)
N,j (z)

+AAAN − zIIIN

)−1

. (43)

Proof: See Appendix C.
It is clear that if all the related matrices have uniformly bounded spectral norm, the above result

reduces to Theorem 1 in [20], [22]. The contribution of our result is that we relax the condition of
uniformly bounded spectral norms into the more general conditions 1) and 3). Accordingly, the method of
deterministic equivalents is still valid and hence we could obtain the capacity scaling law in the previous
section.

It is pointed out that, similar to Theorem 5, we can naturally extend other results requiring random or
deterministic matrices with uniformly bounded spectral norm in large random matrix theory. For instance,
a generalization of [4, Thm. 2] (see also [22, Thm. 2]) is given next and will be used in this work.

Theorem 6. Let ΩN ∈ CN×N be non-negative Hermitian with not necessarily uniformly bounded spectral
norm with respect to N , but there exist Mc ≥ N satisfying lim supN→∞ ‖ NMc

ΩN‖2 < ∞, and also let
ϑ , M0Mc

M2
max

and ϑjk ,
MjMk

M2
max

. Under the same conditions as in Theorem 5, we have

1

ϑN
tr QQQN

(
BBBN − zIIIN

)−1
ΩN

(
BBBN − zIIIN

)−1

− 1

ϑN
tr QQQNTTT

′
N(z)

a.s.−−−→
N→∞

0 (44)
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where TTT ′N(z) is defined as

TTT ′N(z) = TTTN(z)ΩNTTTN(z) + TTTN(z)
1

N

n∑
j=1

Θje
′
N,j(z)

(1 + eN,j(z))2
TTTN(z)

with eee′(z) = [e′N,1(z), . . . , e′N,n(z)] is given by

eee′(z) =
(
IIIn − JJJ(z)

)−1
vvv(z)

where JJJ(z) and vvv(z) are defined as

[JJJ(z)]jk =
1

ϑjkN

tr ΘjTTTN(z)ΘkTTTN(z)

N(1 + eN,j(z))2
,∀j, k

[vvv(z)]j =
1

ϑN
tr ΘjTTTN(z)ΩNTTTN(z),∀j.

Finally, the above result directly applies to the random partial Fourier model, in which i.i.d. sequences
are replaced with uncorrelated constant modulus sequences defined in Corollary 1.

V. PROOFS OF MAINS RESULTS

We first derive a deterministic equivalent of the SINR γmmse
ul,`k of the low-dimensional MMSE combining

in uplink. Our analysis is based on (14) to highlight the role of spatial despreading. Based on Theorems
5 and 6, the deterministic equivalent γ̄mmse

ul,`k of the SINR γmmse
ul,`k of the MMSE detector is given by the

following result.

Lemma 2. Under Assumption 1 and the orthogonal pilot scheme in Subsection II-D1, we have
γmmse

ul,`k −−−−→M→∞
γ̄mmse

ul,`k , where γ̄mmse
ul,`k is given by

γ̄mmse
ul,`k =

δ2
`k

1
PulM

µ`k +
∑

`′ 6=` α
2
``k
|ν``′k |

2 + 1
M

∑
`′ 6=`,k′ 6=k µ`k`′k′

(45)

with δ`k = 1
M

tr Φ``kTTT `k , µ`k = 1
M

tr Φ``kTTT
′
`k
, ν``′k = 1

r``kM
tr Λ``′k

Ξ``kΛ``kTTT `k , µ`k`′k′ =
trΛ``′k′
M

µ`k , where

1) TTT `k = TTTN( 1
Pulr``k

) are given by Theorem 5 with N = r``k , Mk = M, bk = 1
M

(i.e., βk = 1), QQQN =

r``kΦ``k , Θk = r``kΦ``k , AAAN = 1
r``k

zzz`k , and ek = δ`k ,∀i;
2) TTT ′`k = TTT ′N( 1

Pulr``k
) is given by Theorem 6 with ΩN = IIIr``k ,∀i.

Proof: A high-level sketch of the proof is as follows. Given the random realization of {UUU ``′k
}, the

SINR γmmse
ul,`k converges to a conditional random variable that does not depend on the particular realization

of effective channels {www``′k} in the limit of M . Using Lemma 5, we can show that the conditional random
variable in fact converges to a deterministic limit independent of the specific covariance realization under
the distributions of UUU ``′k

in Section II-B. For the details, see Appendix D.
Notice that γ̄mmse

ul,`k is a limiting value that does not depend on the particular realization of small-scale
fading channels {www``′k} in the limit of M , but conditional to the random realization of {UUU ``′k

} through
Ξ``k defined in (19) and also through Φ``k .

Using the standard technique in the literature [4], [19]–[22], [29], [30] and some new tools herein, the
above result can be naturally extended to other cases such as other lower bounds and receive algorithms
like the multicell MMSE detector. We skip the details because our focus is the asymptotic capacity scaling
of massive MIMO rather than deterministic approximation of different receive algorithms.



19

A. Proof of Theorem 1

We begin with the brief derivation of (24) using the standard arguments in [38], [39], [41], [46]. Given
sss` = [sss`1 , . . . , sss`K` ] in the training phase and conditioned on a realization of UUU on the channel second-order
statistics of all users in the network, the individual rate Rul,`k of user `k can be lower-bounded by

Rul,`k = I(x`k ;yyy`, sss`|UUU)

≥ h(x`k)− E
[

log
(
πe E

[
|x`k − ξvvvH`kyyy`k |

2
∣∣ ŵww`,UUU])]

where we used the data processing inequality, the independence of x`k and (ŵww`,UUU), and the fact that
Gaussian distribution maximizes the conditional distribution for a given covariance.

The received signal vector yyy`k in (14) of user `k can be rewritten as

yyy`k = ŵww``kx`k + nnn``kx`k +
∑

(`′,k′) 6=(`,k)

www`k`′k′x`k`′k′ + zzz`k .

Based on the fact that ŵww``kx`k and zzz′``k = nnn``kx`k +
∑

(`′,k′) 6=(`,k)www`k`′k′x`k`′k′ + zzz`k are uncorrelated, the
worst-case uncorrelated noise argument [38], [46] implies that the worst-case zzz′``k is Gaussian with variance
of E[zzz′``kzzz

′
``k

H]. Letting ξvvvH`kyyy`k equal to the linear MMSE estimate of x`k given vvvH`kyyy`k and (ŵww`,UUU) to
minimize E

[
|x`k− ξvvvH`kyyy`k |

2
∣∣ ŵww`,UUU] and using the orthogonality principle, for any vvv`k , the achievable rate

of user `k is lower-bounded by (24).
For the MMSE detector in (22), we now use the deterministic equivalent of the corresponding SINR

in Lemma 2. Let ϕul = PulM < ∞. As M → ∞, we have N = r``k , Mk = M, bk = 1
M

(i.e., βk = 1),
QQQN = r``kΦ``k , Θk = r``kΦ``k , AAAN = 1

r``k
zzz`k , and ek = δ`k ,∀i. Based on Lemma 5, we can further get

the following asymptotic equivalence

Ξ``k '
(
Λ``k +

(∑
`′ 6=`

trΛ``′k

M
+ ρ−1

p

)
IIIr``k

)−1

' Λ−1
``k

(46)

where the first step follows from Lemmas 6 and the second step is due to Assumption 2 (i.e., the
eigenvalues of Λ``k grow without bound as M →∞) with finite L and M .

From (41), we have

TTT−1
`k

=
1

r``k

K∑̀
j=1

r``jΦ``j

1 + δ``j(ϕ
−1
ul )

+
1

r``k
zzz`k − ϕ−1

ul IIIr``k

(a)
' Φ``k

1 + δ`k(ϕ
−1
ul )

+
1

r``k
zzz`k − ϕ−1

ul IIIr``k

(b)
' Λ``k

1 + δ`k(ϕ
−1
ul )

+
1

r``k
Λ−1
``k
− ϕ−1

ul IIIr``k

(c)
' ϕ−1

ul IIIr``k (47)

where (a) follows from the fact that Φ``j = Λ`j`kΞ``jΛ`j`k ' 0 as α``j → 0 for j 6= k by Lemma 6,
where Λ`j`k is defined in (19), (b) follows from (46), and in (c) we used δ`k(ϕ

−1
ul ) ' Pul

r``k
tr2Λ``k through

(43). Similarly, we can get

TTT ′`k = TTT `kTTT `k + TTT `k
1

r``k

K∑̀
j=1

r``jΦ``jδ
′
``j

( 1
Pulr``j

)

(1 + δ``j(
1

Pulr``j
))2

TTT `k ' ϕ2
ulIIIr``k . (48)
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Substituting (46)–(48) into (45), it immediately follows under Assumption 2 that

γ̄mmse
ul,`k '

(
ϕul
M

trΛ``k

)2

ϕul
M

trΛ``k+
∑

`′ 6=` α
2
``k

(
ϕul
M

trΛ``′k

)2
+ 1
M

∑
`′,k′

ϕul
M2 trΛ``′k

trΛ``k

' ϕul

M
trΛ``k

= PultrΛ``k . (49)

The corresponding ergodic achievable rate Rul,`k of user `k is given by

Rul,`k ≥ E
[

log
(
1 + γmmse

ul,`k

)∣∣UUU] (50)

' log
(
1 + γ̄mmse

ul,`k

)
where the expectation is over {www``′k}, and we used the dominated convergence theorem. Although the
RHS of (50) is conditional to the realization of UUU , Rul,`k eventually converges to the deterministic limit
by Lemma 5. The prelog factor in (25) of scheduled users is simply given by finding κ′ that maximizes
multiplexing gain in the quadratic function (1− κ′

Tc
)κ′ for cell `. This completes the achievability.

Remark 2. One can make an important observation from (49) on the role of spatial despreading. The
coherent pilot contamination term eventually approximated as a non-zero finite deterministic value ν``′k
multiplied by the ratio α``k vanishes under the sublinear sparsity in Assumption 2. Regardless of α``k ,
the interference term completely disappears through spatial despreading. Therefore, spatial despreading
plays the central role to eliminate pilot contamination and interference. This is even prominent when one
cannot take advantage of channel hardening due to small r``′k , as will be also shown through numerical
results in Sec. VI.

B. Proof of Theorem 2

It suffices to consider the matched filter (MF) receiver to derive the asymptotic capacity scaling in (28),
although the MF would perform inferior to the MMSE receiver at finite M . This is because the effect
of spatial despreading remains essentially the same regardless of MF and MMSE. We accordingly set
vvv`k = w̌ww``k , where w̌ww``k is given by (21), and denote the resulting SINR by γMF

ul,`k .
For the MF receiver, it is straightforward to show that

1

M2

∣∣E[w̌wwH
``k
www``k

∣∣UUU ]
∣∣2 (a)
'
(

1

M
trΦ′``k

)2

1

M2
var[w̌wwH

``k
www``k

∣∣UUU ] ' 0

where (a) follows from Corollary 2 and Lemma 4. In what follows, we first consider the random
partial unitary model for UUU ``k and focus on the dominating components in the interference power term∑

(`′,k′) 6=(`,k)
1
M2E

[
|w̌wwH

``k
www`k`′k′ |

2
∣∣UUU] that incur the effect of pilot contamination. From

E
[
|w̌wwH

``k
www`k`′k′ |

2
∣∣UUU] = E

[∣∣∣(www``k +
∑

(j,m) 6=(`,k)

www`kjm + ρp
−1/2zzz`k

)H
Ξ′``kΛ``kwww`k`′k′

∣∣∣2∣∣∣UUU]
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we extract the pilot contamination component (i.e., (j,m) = (`′, k′)), which leads to

E
[
|wwwH

`k`′k′
Ξ′``kΛ``kwww`k`′k′ |

2
∣∣UUU] = E

[
|wwwH

``′k′
UUUH
``′k′
UUU ``kΞ

′
``k

Λ``kUUU
H
``k
UUU ``′k′

www``′k′ |
2
∣∣UUU]

(a)
' 1

M2
E
[∣∣tr(Ξ′``kΛ``k

)
wwwH
``′k′
UUUH
``′k′
UUU ``′k′

www``′k′
∣∣2∣∣UUU]

' 1

M2
E
[∣∣tr(Ξ′``kΛ``k

)
wwwH
``′k′
www``′k′

∣∣2]
(b)
' 1

M2

(
trΛ``′k′

)2(
trΞ′``kΛ``k

)2

= r2
``k

( 1

M
trΛ``′k′

1

r``k
trΞ′``kΛ``k

)2

= M2α2
``k
ψ2
`′k′

(51)

where ψ`′k′ = 1
r``kM

trΛ``′k′
tr Ξ′``kΛ``k . In (a), we used the independence of UUU ``k and UUU ``′k′

and the direct

consequence of Lemma 6 that UUU ``kΞ
′
``k

Λ``kUUU
H
``k

=
trΞ′``kΛ``k

M
IIIM , and (b) follows from the trace lemma.

We can see that 0 < lim infM→∞ ψ
2
`′k′
≤ lim supM→∞ ψ

2
`′k′
<∞ under Assumption 1.

Neglecting the interference components vanishing in the limit of M , under Assumptions 1 and 2, we
have

γMF
ul,`k

a.s.−−−−→
M→∞

γ̄MF
ul,`k

where

γ̄MF
ul,`k =

( 1
M

trΞ′``k)
2

1
PulM

1
M

trΞ′``k +
∑

(`′,k′)6=(`,k) α
2
``k
ψ2
`′k′

. (52)

The above pilot contamination term
∑

(`′,k′) 6=(`,k) α
2
``k
ψ2
`′k′

goes to zero under Assumption 2 because K`,
L, and ψ`′k′ are all finite. Similar to (46), we can then get a deterministic approximation of Ξ′``k and
eventually have

γ̄MF
ul,`k ' PultrΛ``k . (53)

For the random partial Fourier model, it suffices to use a direct combination of Corollaries 1 and 2 and
then Lemma 8 instead of Lemma 6.

For the converse proof, we use a simple cut-set upper bound [47] on the sum rate of the pilot-aided
MIMO uplink, where a cut divides the BSs from the users. Inspired by [3], the work in [8] provided
the capacity upper bound of a pilot-aided single-cell FDD MIMO downlink system, in which the BS
perfectly obtains CSIT through a delay-free and error-free feedback channel. Likewise, assuming that
CSIR is perfectly acquired by the BS through a contamination-free and noise-free uplink training channel,
the per-user (or per-link) achievable rate is upper-bounded by the full CSI capacity of SIMO channel with
a single channel training cost over the coherence block Tc such that

Rul,`k ≤
(

1− 1

Tc

)
E
[

log
(
1 + Pulhhh

H
``k
hhh``k

)]
=
(

1− 1

Tc

)
logPultrΛ``k + o(1). (54)

This completes the converse for (28). Following the above footsteps and using the non-coherent
communication technique in [3], one can easily show the same capacity scaling as (28).
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C. Sketch of Achievability Proof of R(3)
ul,`k

Following along the lines and arguments of Thoerems 1 and 2, and noticing (36), it is straightforward
to show that Rub

ul,`k in (29) behaves as (1− Tc−1) logPultrΛ``k + o(1) . Since the first term Rub
ul,`k in (30)

is the upper bound of all three lower bounds in this paper as in (36), we only need to see if

var[vvvH`kwww`k`′k′ |UUU ] = E
[
|vvvH`kwww`k`′k′ |

2
∣∣UUU]− ∣∣E[vvvH`kwww`k`′k′ |UUU ]

∣∣2 −−−−→
M→∞

0. (55)

With vvv`k = w̌ww``k , the deterministic approximation of E
[
|w̌wwH

``k
www`k`′k′ |

2
∣∣UUU] is given in (51). Following the

same steps as (51) and using that

wwwH
`k`′k′

Ξ′``kΛ``kwww`k`′k′ = wwwH
``′k′
UUUH
``′k′
UUU ``kΞ

′
``k

Λ``kUUU
H
``k
UUU ``′k′

www``′k′

' 1

M
tr
(
Ξ′``kΛ``k

)
wwwH
``′k′
www``′k′

where we used Lemma 6 (or 8) for the random partial unitary model (or partial Fourier model), we get
w̌wwH
``k
www`k`′k′

a.s.−−→ Mα``kψ`′k′ . Applying the continuous mapping theorem and the dominated convergence
theorem gives rise to (55). This concludes that R(3)

ul,`k achieves the scaling law in (28).

VI. NUMERICAL RESULTS

For numerical examples in this section, we only consider the homogeneous scenario that has L cells
serving K users each with inter-cell interference factor ι = 0.2 and use the single-cell MMSE combining
or precoding. The symmetric geometry of users is assumed such that we normalize channel covariance
matrices to satisfy trRRR``′k

= M for all (`, `′, k) and r``k = r for all (`, k). We assume that the number
r``′k of non-zero eigenvalues of the covariance matrices of channels from other cells `′ 6= ` is equal
to r/2 to take into account the fact that spatial correlation depends on the distance between sender and
receiver. The larger the distance, the smaller multipath components survive after several specular reflections
and diffusion. We used pilot power gap (boosting) of %p = 2 (i.e., 3 dB). The random partial Fourier
correlation model in Sec. II-B is only considered. Under the random partial unitary correlation model, the
sum-rate performance shows degradation compared to the Fourier model, since the eigenmodes of channel
covariance matrices of different users are not orthogonal but linearly independent of each other. We further
point out that the sum-rate behaviors in this section are also valid in the one-ring channel model [13]
with moderate angular spread, but omitted for the sake of brevity. In what follows, we evaluate all uplink
and downlink lower bounds in this paper for finite M and SNR to verify the asymptotic sum-rate scaling
results.

In Fig. 2, we investigate the lower bound on the per-cell achievable rate in (32) of different MMSE
precoding schemes in downlink, where r = 8. While the ‘full-dimensional MMSE’ represents the
conventional M -dimensional MMSE channel estimation and precoding scheme based on s̄ss`k in (17)
without spatial (de)spreading, the ‘low-dimensional MMSE’ is given by (19) and (23), where d indicates
the number of Fourier coefficients used out of r ones under the Fourier correlation model for spatial
(de)spreading. The 8-dimensional (d = 8) channel estimation and precoding are shown to cause only
graceful performance degradation, compared to the 100-dimensional vector operation. However, significant
performance loss is observed when we only utilize d(< r) Fourier coefficients uniform randomly chosen
from the r elements of angular support that have equal path gain. This implies that one should make
use of as many dominant elements of angular support as possible for spatial (de)spreading in practical
systems to realize the capacity scaling.

Fig. 3 shows how strong spatial correlation we need to achieve linear sum-rate scaling with respect to
SNR (dB) in terms of the number of non-zero eigenvalues (or multipath components in angular domain)
of channel covariance matrices in uplink. We used the orthogonal pilot sequences. R(1)

ul,`k (‘lower bound
1’) in (24) and R(3)

ul,`k (‘lower bound 3’) in (30) turn out to yield a linear growth of the ergodic sum rate
with SNR (dB) for both orthogonal and non-orthogonal pilot schemes. In contrast, R(2)

ul,`k (‘lower bound
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Fig. 2. Sum-rate curves of different precoding schemes versus SNR (dB) in MIMO downlink, where M = 100, L = 4,K = 5, r = 8, Tc =
500. The random partial Fourier model in (7) was used for channel covariance matrices. For low-dimensional MMSE precoding, we used
(23).
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Fig. 3. The impact of spatial despreading on sum-rate scaling of MIMO uplink with respect to the sparsity of angular support (r), where
M = 200, L = 4,K = 10, Tc = 500. The max-min bound is given by (29). While ‘Lower bound 1’ is the coherent bound in (24), ‘Lower
bound 2’ and ‘Lower bound 3’ indicate the noncoherent ones in (27) and (30), respectively. While r = 100, 60, 10, 20, 50, 30, 40 from top
to bottom for Lower bound 2, r = 10, 20, 30, 40, 50, 60, 100 for the rest. The asymptotic capacity scaling is given by (25) with o(1) = 0.
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Fig. 4. The impact of spatial spreading on sum-rate scaling with respect to M in MIMO downlink with the ratios M
K

= 5 and ζ = M
r

fixed, where the ‘Lower bound’ is given by (32).

2’) in (27) does not show linear growth due to lack of hardening of the effective channels www``k , whose
dimension is r. The coherent lower bound suffers from channel estimation error represented by the parallel
shift of capacity versus SNR curves, also known as power offset. It can be further seen that almost the
same multiplexing gain as (25) is achievable up to r = 30. At low SNR, both interference suppression and
pilot decontamination effects of spatial despreading are diluted by noise, and the sum-rate performance
depends more on channel hardening of www``k than spatial despreading of UUU ``k . Hence, the larger r turns
out rather beneficial in the low SNR regime.

Fig. 4 verifies the scalability of the sum-rate scaling of MIMO downlink in (33) with respect to M
with the ratios M

K
and ζ = M

r
fixed, where M is in the linear scale, and L = 7. At SNR = 10 dB, we

observe that given the fixed ratios of M,K, r, the sum rate scales almost linearly with M . This implies
that the effect of spatial spreading scales well with respect to both K and r as well as M , although r is
not much smaller than M . Furthermore, this linear growth is observed even for M < KL.

In Fig. 5, we see that the non-orthogonal pilot scheme in Subsection II-D2 that consumes only a single
channel use per network per coherence block can be beneficial in terms of the per-cell sum rate in uplink,
even though the network is dense such that L = 7 and K = 20 for M = 100. For small coherence block
size of Tc = 50, the non-orthogonal pilot helps only in fading channels with strong spatial correlation.
As mentioned earlier, R(3)

ul,`k has a shortcoming of sum-rate underestimation for this small Tc unless r is
sufficiently small. Fig. 6 shows the impact of the coherence block size Tc in the strong spatial correlation
cases of r = 4, 8. For r = 4, the non-orthogonal pilot scheme turns out useful in a small to moderate
range of Tc. In addition, the coherent lower bound R(1)

ul,`k widely used in uplink suffers from considerable
channel estimation error due to imperfect CSIR in case of non-orthogonal pilot. A general non-orthogonal
pilot scheme based on Welch bound equality frames is expected to outperform the naive scheme in (20).

VII. CONCLUSION

Channel hardening has been traditionally considered as an essential source of massive MIMO gain.
This is not necessarily the case with strong spatial correlation under the random sparse angular support
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Fig. 5. The performance of the non-orthogonal pilot scheme with respect to r for small coherence block size Tc = 50, where M = 100, L = 7,
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models. Rather, one can observe that the effect of spatial (de)spreading is indeed central to achieve the
ultimate capacity scaling laws in (3). Although the exact capacity scaling of massive MIMO is achieved
under the sublinear sparsity assumption in this work, the effect of spatial (de)spreading is shown to be
still valid at finite M with not-so-sparse angular support. Some important implications of this work can
be summarized as follows.

• Once the multiple antenna channels in the network satisfy a certain sparsity level of angular support,
one can incorporate spatial (de)spreading into system designs such as non-orthogonal pilot and low-
dimensional channel estimation and precoding (or combining) instead of orthogonal pilot and full-
dimensional MMSE processing to realize the very promising sum-rate performance of massive MIMO.

• The potential of serving as many users as the number of large-scale BS antennas through interference-
free links in strong spatial correlation regimes would be of importance particularly in uplink, where
the per-cell sum power scales linearly with the number of users. Our results have shown that one
may simultaneously provide “super-massive connectivity” and very high per-user data rate for the
next-generation wireless network with very high carrier frequencies, where meeting the uplink data
requirement is sometimes more challenging than downlink.

• The three lower bounds on the achievable rate of multicell MU-MIMO we considered show mutually
complementary behaviors. In order to better understand and predict the performance of massive
MIMO, therefore, one should carefully select a proper bound, depending on the channel and system
parameters such as sparsity of angular support, coherence block size, and orthogonal/non-orthogonal
pilot sequences.

• Finally, our large system analysis holds true in finite coherence block and even when the number of
users per cell scales linearly with the number of BS antennas.

For further study, we are investigating the performance behavior of low-dimensional precod-
ing/combining based on spatial spreading/despreading in more realistic spatial correlation models based on
arbitrary angle of arrivals of users, whose subspaces are not mutually orthogonal but linearly independent
of each other with high probability. In particular, inspired by the observation from Fig. 2, an impact
of directional beamforming on the mm-Wave system performance, the resulting system architecture, and
beam acquisition/management will be addressed in a follow-up paper.

APPENDIX A
USEFUL LEMMAS

We collect here some known or new lemmas to be used throughout this work. Silverstein and Bai
derived the following well-known result in large random matrix theory, which is pivotal in the method of
deterministic equivalents.

Lemma 3. (Trace Lemma [19, Lem. 2.7], [21, Thm. 3.4]) Let xxx1,xxx2, . . . , with xxxn ∈ Cn, be random
vectors with i.i.d. entries of zero mean, variance 1/n, and eighth order moment of order O( 1

n4 ). Let
AAA1,AAA2, . . . , with AAAn ∈ Cn×n, be a series of matrices with uniformly bounded spectral norm with respect
to n, independent of xxxn. Then

xxxHnAAAnxxxn −
1

n
trAAAn

a.s.−→ 0 (56)

as n→∞.

In this paper, we provide a direct generalization of the above result for the two cases: one is the case
where xxx1,xxx2, . . . , are infinite sequences whose entries are uncorrelated with each other and not necessarily
identically distributed; the other is that the spectral norm of AAAn is not necessarily uniformly bounded.
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Corollary 1. Let yyy1, yyy2, . . . , with yyyn ∈ Cn, be random vectors with uncorrelated entries of zero mean,
variance 1/n, |yn,i|2 = 1/n, where yn,i is the ith entry of yyyn and i = 1, . . . , n, and eighth order moment
of order O( 1

n4 ). With AAA1,AAA2, . . . , in Lemma 3, we have

yyyHnAAAnyyyn −
1

n
trAAAn

a.s.−→ 0 (57)

as n→∞.

Proof: It follows from the Markov inequality that for every ε > 0

Pr

(∣∣∣yyyHnAAAnyyyn − 1

n
trAAAn

∣∣∣ > ε

)
≤

E
[∣∣yyyHnAAAnyyyn − 1

n
trAAAn

∣∣4]
ε4

. (58)

In order to show that E
[∣∣yyyHnAAAnyyyn − 1

n
trAAAn

∣∣4] ≤ C1

n2 , where C1 > 0 is a constant independent of n and
AAAn, following the footsteps in [29, Lem. 3.1] and [21, Thm. 3.4], we begin with

E
[∣∣∣yyyHnAAAnyyyn − 1

n
trAAAn

∣∣∣4] ≤ 8

(
E
[∑

i

An,ii(|yn,i|2 − n−1)
]4

+ E
[∑
i 6=j

An,ijy
∗
n,iyn,j

]4
)

= 8

(
E
[∑
i 6=j

An,ijy
∗
n,iyn,j

]4
)

= O
( 1

n2

)
(59)

where we used |yn,i|2 = 1/n,∀i. The last equality follows from the facts: 1) each term in the sum is finite
since yn,i has eighth order moment of order O( 1

n4 ) and AAAn has uniformly bounded norm, and 2) such
terms amount to O(n2) since the nonzero contribution to the sum arises if yn,i appears an even number
of times due to E[y∗i yj] = 0,∀i 6= j. Plugging (59) into (58), we have

∞∑
n=1

Pr

(∣∣∣yyyHnAAAnyyyn − 1

n
trAAAn

∣∣∣ > ε

)
<∞.

The almost sure convergence in (57) immediately follows from the first Borel-Cantelli lemma [48].
Although the above constant modulus requirement of |yn,i|2 is a strong condition, some popular

structured random matrices like random partial Fourier and Hadamard matrices [49], [50] satisfy the
condition.

Corollary 2. Let xxx1,xxx2, . . . be as in Lemma 3. Let AAA1,AAA2, . . . , with AAAn ∈ Cn×n, be a series of matrices
independent of xxxn. If there exists mn ≥ n such that

lim sup
n→∞

n

mn

‖AAAn‖2 <∞ (60)

then
n

mn

xxxHnAAAnxxxn −
1

mn

trAAAn
a.s.−→ 0 (61)

as n→∞.

Proof: Even though the spectral norm of AAAn is not uniformly bounded across n, one may find a
sequence mn ≥ n to satisfy (60), which implies that the spectral norm of n

mn
AAAn is uniformly bounded

with respect to n. In this case, mn and n increase at the ratio n
mn

, where mn may grow faster than n such
that n

mn
→ 0. By noticing n

mn
xxxHnAAAnxxxn = xxxHnBBBnxxxn, where BBBn = n

mn
AAAn, and by Lemma 3, for any ε > 0,

there exists n0 such that for all n ≥ n0,
∣∣xxxHnBBBnxxxn − 1

n
trBBBn

∣∣ < ε.
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We can also combine the above two corollaries so as to make the trace lemma still valid in the more
general case where xxx1,xxx2, . . . , are uncorrelated random vectors with constant modulus and/or the spectral
norms of AAA1,AAA2, . . . , are not necessarily uniformly bounded. The following lemma is a generalization of
[21, Thm. 3.7].

Lemma 4. Let xxxn ∈ Cm and yyyn ∈ Cn, be two independent random vectors whose entries satisfy the
conditions in either Lemma 3 or Corollary 1, with a constant ratio m

n
as p→∞, where p = min(m,n).

Also let AAA ∈ Cm×n, independent of xxxn and yyyn. As p goes to infinity, we have

xxxHAAA yyy
a.s.−→ 0. (62)

Proof: Following the line of arguments in [29, Lem. 3.1] and [21, Thm. 3.7], it is not difficult to
show that E

[
|xxxHAAA yyy|8

]
< c

p4
for some c > 0 independent of p. Then, (62) follows from the Markov

inequality, Borel-Cantelli lemma, and the Tonelli theorem [48], [51].
The following lemma is about the convergence of a mixture of two independent random measures with

the distributions considered in this paper.

Lemma 5. Let xxx1,xxx2, . . . , with xxxn ∈ Cn, be random vectors whose entries satisfy the conditions in either
Lemma 3 or Corollary 1. Let Λ1,Λ2, . . . , with Λn ∈ Cn×n, be a series of random matrices with uniformly
bounded spectral norm with respect to n, independent of xxxn and convergent such that Λn − Λ̊n

a.s.−→ 0.
Then as n→∞

xxxHnΛnxxxn −
1

n
trΛ̊n

a.s.−→ 0. (63)

Proof: It suffices to show that

Pr
(

lim
n
xxxHnΛnxxxn =

1

n
trΛ̊n

)
≥ Pr

(
lim
n
xxxHnΛnxxxn =

1

n
trΛ̊n, lim

n
xxxHnΛ̊nxxxn =

1

n
trΛ̊n

)
= Pr

(
lim
n
xxxHn
(
Λn − Λ̊n

)
xxxn = 0, lim

n
xxxHnΛ̊nxxxn =

1

n
trΛ̊n

)
(a)

≥ Pr
(

lim
n

Λn − Λ̊n = 0, lim
n
xxxHnΛ̊nxxxn =

1

n
trΛ̊n

)
= 1 (64)

where (a) follows from the continuous mapping theorem since xxxHn
(
Λn − Λ̊n

)
xxxn is a linear function of

vec(Λn − Λ̊n) and also xxxn and Λn − Λ̊n are independent, and the second event in Pr(·) in the RHS of
(64) is almost sure by Lemma 3 and Corollary 1. Then the almost sure convergence in (63) immediately
follows due to the fact that the intersection of two almost sure events is also almost sure.

Notice that the continuous mapping theorem does not directly apply to the above lemma since xxxn does
not converge to a random vector. In what follows, we derive some matrix analogs of the trace lemma for
random matrices XXX rather than random vectors xxx. For the first results, we use the random partial unitary
model in II-B.

Lemma 6. Let UUU ∈ Cp×m and VVV ∈ Cp×n be independent partial unitary matrices, where p > max(m,n),
and have i.i.d. entries of zero mean, variance 1/p, and eighth order moment of order O( 1

p4
). Also let

DDD ∈ Cn×n be an arbitrary matrix with lim supp→∞ ‖DDD‖2 < ∞, independent of UUU and VVV . Then, as p
grows without bound, we have

UUUHVVVDDDVVV HUUU − trDDD
p

IIIm
a.s.−→ 0. (65)

Proof: We denote the ith columns of UUU and VVV as uuui and vvvi, respectively. Since uuui and vvvi have i.i.d.
entries of zero mean, variance 1/p, and eighth order moment of order O( 1

p4
), respectively, we can apply

Lemmas 3 and 4. The matrix multiplication UUUHVVVDDDVVV HUUU unfolds as

[UUUHVVVDDDVVV HUUU ]k,` =
n∑
i=1

n∑
j=1

dijuuu
H
kvvvivvv

H
j uuu`, ∀(k, `).
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The diagonal and off-diagonal entries can be written respectively as∑
i,j

dijuuu
H
kvvvivvv

H
j uuuk =

∑
i

dii|vvvHi uuuk|2 + uuuHk

(∑
i 6=j

dijvvvivvv
H
j

)
uuuk

∑
i,j

dijuuu
H
kvvvivvv

H
j uuu` = uuuHk

(∑
i

diivvvivvv
H
i

)
uuu` + uuuHk

(∑
i 6=j

dijvvvivvv
H
j

)
uuu`. (66)

For k = `, we have ∑
i

dii|vvvHi uuuk|2 + uuuHk

(∑
i 6=j

dijvvvivvv
H
j

)
uuuk

(a)
' tr

∑
i diivvvivvv

H
i

p
+

tr
∑

i 6=j dijvvvivvv
H
j

p

=

∑
i diivvv

H
i vvvi

p
+

∑
i 6=j dijvvv

H
j vvvi

p

=
trDDD
p

where (a) follows from Lemma 3. For k 6= `, we get by Lemma 4

uuuHk

(∑
i

diivvvivvv
H
i

)
uuu` + uuuHk

(∑
i 6=j

dijvvvivvv
H
j

)
uuu` ' 0

which yields (71).
For finite dimensional matrices UUU,VVV ,DDD, we can have the following similar result.

Lemma 7. Let UUU ∈ Cp×m and VVV ∈ Cp×n be independent random partial unitary matrices, where p ≥
max(m,n). Also let DDD ∈ Cn×n be a random matrix, independent of UUU and VVV . Then we have

E
[
UUUHVVVDDDVVV HUUU

]
=

trE[DDD]

p
IIIm. (67)

Proof: Notice that uuui and vvvi are two independent random unit vectors uniformly distributed on the
2p-dimensional complex unit sphere such that uuui = xxx

‖xxx‖2 with covariance 1
p
IIIp, where xxx ∼ CN (000, IIIp),

and so vvvi is, and that |vvvHi uuuk|2 is a Beta-distributed random variable with parameter (1, p − 1). By the
independence assumption on UUU,VVV ,DDD and the law of total expectation, the proof of (67) immediately
follows similar to Lemma 6.

For the random partial Fourier model for UUU in II-B, we have the following two results analogous to
the above lemmas.

Lemma 8. Let UUU ∈ Cp×m and VVV ∈ Cp×n be independent random orthonormal matrices whose columns
have the same entries as yyyn in Corollary 1, where p ≥ max(m,n). Also let DDD ∈ Cn×n be an arbitrary
matrix with lim supp→∞ ‖DDD‖2 <∞, independent of UUU and VVV . Then we have

UUUHVVVDDDVVV HUUU − trDDD
p

IIIm
a.s.−→ 0. (68)

Proof: The proof immediately follows from the same footsteps in the proof of Lemma 6 using
Corollary 1 and Lemma 4.

Note that sampling without replacement in the random partial Fourier model guarantees the orthonor-
mality between columns so that the above result holds for the channel covariance model.
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Lemma 9. Given the same UUU,VVV ,DDD as Lemma 8, we have

E
[
UUUHVVVDDDVVV HUUU

]
−→ trE[DDD]

p
IIIm. (69)

Proof: Following the same reasoning and procedure as the proofs of Lemmas 6 and 8, it suffices to
be aware of the distribution of the binary random variable∣∣vvvHi uuuk∣∣2 =

{
1 if vvvi = uuuk
0 otherwise .

We can see that |vvvHi uuuk|2’s are i.i.d. Bernoulli with 1/p, thus yielding E
[
|vvvHi uuuk|2

]
= 1/p. Using the

independence assumption and the law of total expectation again, we have

E
[∑

i

dii|vvvHi uuuk|2
]

= E

[
E
[∑

i

dii|vvvHi uuuk|2
∣∣∣DDD]] =

E[trDDD]

p
.

Noticing that the expectation of the remaining terms in (66) equals to zero, we get (69).

APPENDIX B
PROOF OF LEMMA 1

Let w̃ww``k denote the MMSE estimate of www``k from s̄ss`k instead of sss`k given the knowledge of UUU `. We only
prove the random partial unitary correlation model and omit the random partial Fourier model because
one can follow the same footsteps. The estimate w̃ww``k is given by

w̃ww``k = Λ``kUUU
H
``k

(
RRR``k +

∑
`′ 6=`

RRR``′k
+ ρ−1

p IIIM

)−1

s̄ss`k . (70)

Letting RRR−` ,
∑

`′ 6=`RRR``′k
, we get(

ρ−1
p IIIM +RRR``k +RRR−`

)−1
=
(
IIIM +

(
ρ−1
p IIIM +UUU ``kΛ``kUUU

H
``k

)−1
RRR−`

)−1(
ρ−1
p IIIM +RRR``k

)−1

(a)
=
(
IIIM +

(
ρpIIIM − ρpUUU ``k(Λ

−1
``k

+ ρpIIIr``k )−1ρpUUU
H
``k

)
RRR−`

)−1(
ρ−1
p IIIM +RRR``k

)−1

(b)
'
(
IIIM + ρpRRR−`

)−1(
ρ−1
p IIIM +RRR``k

)−1

(c)
'
∏
`′ 6=`

(
IIIM + ρpRRR``′k

)−1(
ρ−1
p IIIM +RRR``k

)−1 (71)

where (a) follows from the matrix inversion lemma, (b) follows from the fact that UUUH
``k
RRR−` =

UUUH
``k

∑
`′ 6=`UUU ``′k

Λ``′k
UUUH
``′k
' 000 by Lemma 4 as M → ∞, and we also used UUUH

``k
UUU ``k = IIIr``k . In

(c), we repeated the same decomposition upon
(
ρ−1
p IIIM + RRR`jk + RRR−{`,j}

)−1 for all j 6= `, where
RRR−{`,j} ,

∑
`′ 6={`,j}RRR``′k

.
Substituting (71) into (70), we have

w̃ww``k ' Λ``kUUU
H
``k

∏
`′ 6=`

(
IIIM + ρpRRR``′k

)−1(
ρ−1
p IIIM +RRR``k

)−1
s̄ss`k

(a)
' Λ``kUUU

H
``k

(
ρ−1
p IIIM +RRR``k

)−1
s̄ss`k

(b)
' Λ``k

(
ρ−1
p IIIr``k + Λ``k

)−1
sss`k

(c)
' ŵww``k
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where (a) follows from the matrix inversion lemma and Lemma 4, (b) follows from the matrix inversion
lemma again. In (c), we applied Lemma 6 to R̃RR`k`′k′

in (19) to get

R̃RR`k`′k′
−

trΛ``′k

M
IIIr``k

a.s.−→ 0

and then R̃RR`k`′k′
vanishes as in (46). The desired result then follows from the well-known fact that the

MMSE estimate w̃ww``k is a sufficient statistic for the estimation of www``k (equivalently, hhh``k) from s̄ss`k (e.g.,
see [52]).

APPENDIX C
PROOF OF THEOREM 5

The complete proof is lengthy but somehow straightforward after realizing that all the assumptions in
[20, Thm. 1] and [22, Thm. 1] except the uniformly bounded spectral norm assumption apply to our case.
For compactness, therefore, we only describe some essential parts without all the details.

Let Ψ̃i =
√
biΨi, and Θ̃i = Ψ̃iΨ̃

H

i = biΘi. To make sure that the random variable mN(z) converges
to its deterministic equivalent, we need the generalized trace lemma in Corollary 2 to hold. Following
the same line of arguments in [20, Thm. 1] and [22, Thm. 1], we arrive at obtaining an asymptotic
approximation of yyyHi Ψ

H
i

(
BBB[i]−zIIIN

)−1
Ψiyyyi, where BBB[i] =

(
BBBN −Ψiyyyiyyy

H
i Ψ

H
i

)−1. Although the ΨH
i

(
BBB[i]−

zIIIN
)−1

Ψi may not have a uniformly bounded spectral norm, we can see that lim supN→∞ ‖Ψ̃
H

i

(
BBB[i] −

zIIIN
)−1

Ψ̃i‖ < ∞ due to assumption 3) and the fact that BBB[i] is Hermitian and z ∈ C \ R+. Then, it
immediately follows from Corollary 2 that

yyyHi Ψ̃
H

i

(
BBB[i] − zIIIN

)−1
Ψ̃iyyyi −

1

N
tr Θ̃i

(
BBB[i] − zIIIN

)−1 a.s.−→ 0. (72)

For z ∈ C \ R+, we further get by the rank-1 perturbation lemma [30, Lem. 2.1]
1

N
tr Θ̃i

(
BBB[i] − zIIIN

)−1 − 1

N
tr Θ̃i

(
BBBN − zIIIN

)−1 a.s.−→ 0.

Notice that the rank-1 perturbation lemma does not depend on the asymptotic properties of the perturbation
so that Ψiyyyiyyy

H
i Ψ

H
i may even have a large Euclidean norm.

It is important to guarantee that the fixed-point algorithm in (43) converges. We already showed that
1
N

tr Θ̃i

(
BBBN − zIIIN

)−1
<∞,∀i,. For some finite constant b∗ > 0, therefore, 1

N
tr Θ̃i

(
b∗BBBN − b∗zIIIN

)−1 is
further required not to trivially go to zero as well. Letting CCC = Θ̃i and DDD =

(
b∗BBBN − b∗zIIIN

)−1, we get
1

N
tr Θ̃i

(
b∗BBBN − b∗zIIIN

)−1
=

1

N
tr CCCDDD

(a)

≥ 1

N

N∑
i=1

λi(CCC)λN−i+1(DDD)

≥ 1

N

N∑
i=1

λi(CCC)λN(DDD)

=
trCCC
N
λN(DDD)

where (a) follows from [53, H.1.h.]. To make sure that 1
N

tr Θ̃i

(
b∗BBBN − b∗zIIIN

)−1
> 0, we just need to

let b∗ = bmin (equivalently, βi = bmin
bi

), where bmin = mini∈N bi with N = [1 : n], by noticing that

λ1(DDD−1) = bminλ1

( ∑
j∈N\i

xxxjxxx
H
j +AAAN − zIII

)
≤
∑
j∈N\i

λ1(bminxxxjxxx
H
j ) + λ1(bminAAAN)− bminz <∞
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where the first inequality follows from [54], and the last step comes from the fact that
bmin maxj∈N λ1(xxxjxxx

H
j ) < ∞ due to Corollary 2 and assumption 3). Then, one can show by the same

arguments in [20, Thm. 1] and [22, Thm. 1] that (43) converges to a fixed point.
It should be further noticed that 1

N
tr QQQN

(
BBBN − zIIIN

)−1 may trivially go to zero or infinity. This can be
similarly avoided by appropriate scaling for QQQN under assumption 5). The remainder of the proof then
follows from the steps in [20], [22], and we eventually get (40).

APPENDIX D
PROOF OF LEMMA 2

In what follows, we will derive the deterministic equivalents of each term in (24) for the MMSE detector
with vvv`k = vvvmmse

`k
in (22) conditioned on UUU . In the sequel, the superscript mmse is omitted for notational

convenience. For channel covariance, we consider only the random partial unitary model in Sec. II-B; A
proof for the random partial Fourier model is straightforwardly given by using Corollary 1 and Lemma
4 and Lemma 8 instead of Lemmas 3, 4, and 6.

A. Signal Power

For the asymptotic approximation of |vvvH`kŵww``k |
2, we begin with

vvvH`kŵww``k = ŵwwH
``k

Υ`kŵww``k

(a)
=

ŵwwH
``k

Υ−``kŵww``k

1 + ŵwwH
``k

Υ−``kŵww``k

(b)
'

1
r``k

tr Φ̃``kΥ̃`k

1 + 1
r``k

tr Φ̃``kΥ̃`k

(c)
' δ`k

1 + δ`k
(73)

where Υ−``k =
(
Υ−1
`k
− ŵwwH

``k
ŵww``k

)−1, Φ̃``k =
r``k
M

Φ``k , Υ̃`k = MΥ`k , and ' denotes the almost sure
convergence such that, for sequences an and bn, an − bn

a.s.−→ 0. (a) follows from the matrix inversion
lemma [29, Eq. (2.2)], (b) is from Corollary 2 and the rank-1 perturbation lemma [30, Lem. 2.1], and (c)
is from Theorem 5. In (b), we used the fact that the spectral norm of Φ̃``k is always uniformly bounded,
whereas Φ``k is not necessarily the case, and that lim infM→∞

1
r``k

Υ`k > 0 and lim supM→∞
1
r``k

Υ`k <∞.
Notice that the step (b) is invalid for the case of the non-orthogonal pilot sss′`k in (20) over the network
since w̌ww``k in (21) and Υ−``k , where ŵww``k is replaced with w̌ww``k , are not independent any longer. This is
also the case with the remaining terms including Υ−``k .

It follows from (73) and the continuous mapping theorem [55, Thm. 2.3] that, for any ε > 0, there exists
r0 > 0 such that, for all r``k ≥ r0,

∣∣∣|vvvH`kŵww``k |2 − δ2`k
(1+δ`k )2

∣∣∣ < ε. Then, using the dominated convergence
theorem [48, Thm. 16.4], we obtain

|vvvH`kŵww``k |
2 −

δ2
`k

(1 + δ`k)
2
−−−−→
M→∞

0. (74)
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B. Noise Term
Noticing that E

[
|vvvH`kzzz`k |

2
∣∣ ŵww`] = ‖vvv`k‖2

2 and applying [29, Eq. (2.2)] twice and Theorem 6, we have

‖vvv`k‖2
2 =

ŵwwH
``k

Υ2
−``kŵww``k(

1 + ŵwwH
``k

Υ−``kŵww``k
)2

'
1

r``kM
tr Φ̃``kΥ̃

2

`k(
1 + 1

r``k
tr Φ̃``kΥ̃`k

)2

' µ`k
M(1 + δ`k)

2
. (75)

For the channel estimation error, we have

vvvH`knnn``k =
ŵwwH
``k

Υ−``knnn``k

1 + ŵwwH
``k

Υ−``kŵww``k
' 0

which follows from [29, Eq. (2.2)] and Lemma 4. Applying the continuous mapping theorem and the
dominated convergence theorem again leads to

E
[
|vvvH`knnn``k |

2
∣∣ ŵww`] −→ 0. (76)

C. Pilot Contamination and Interference Terms
It follows from [29, Eq. (2.2)] that∣∣vvvH`kwww`k`′k′ ∣∣2 =

ŵwwH
``k

Υ−``kwww`k`′k′www
H
`k`′k′

Υ−``kŵww``k

1 + ŵwwH
``k

Υ−``kŵww``k
(77)

where www`k`′k′ is given by (15). Since only the effective channels having the same user (pilot) index k are
correlated with each other in our setting, we address the following two cases for the numerator in the
RHS of (77).

Let us first consider the case of `′ 6= ` and k′ = k, which takes the major portion of pilot contamination
and causes a nonvanishing8 interference power in the limit of large M . We can get

ŵwwH
``k

Υ−``kwww`k`′k =

(
www``k +

∑
j 6=`

www`kjk +
1
√
ρp
zzz`k

)H

Ξ``kΛ``kΥ−``kwww`k`′k

(a)
' wwwH

`k`
′
k
Ξ``kΛ``kΥ−``kwww`k`′k

= wwwH
``′k′

UUUH
``′k′
UUU ``kΞ``kΛ``kΥ−``kUUU

H
``k
UUU ``′k′︸ ︷︷ ︸

(b)
' 1

M
tr
(
Ξ``k

Λ``k
Υ−``k

)
Ir``′k′

www``′k′ (78)

(c)
' 1

M2
trΛ``′k

tr Ξ``kΛ``kΥ̃`k

(d)
' r``k

M
ν``′k

= α``kν``′k (79)

where (a) follows from Lemma 4 for j = `′, (b) from Lemma 6, and (c) from Corollary 2. As a
matter of fact, we used the almost sure convergence in Lemma 5 to get (c) since (78) is a mixture
of random vector www``′k′ and random matrix product UUUH

``′k′
UUU ``k independent of each other. For the rest

8More precisely, the pilot contamination component is nonvanishing unless α``k → 0.
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of this work, we use Lemma 5 in the same kind of mixtures of random variables. Noticing that
lim supM→∞max

{
1
M

trΛ``′k
, ‖Υ̃`k‖2,

1
r``k

trΞ``kΛ``k

}
<∞ by Assumption 1 and using the trace inequality

[56] that trAAABBB ≤ ‖AAA‖2trBBB for positive semidefinite matrices AAA and BBB and also the fact that the spectral
norm is a submultiplicative norm, we have lim supM→∞ ν``′k <∞. Similarly, lim infM→∞ ν``′k > 0. In (d)
we used Theorem 5.

For the residual interference term, where k′ 6= k, we can rewrite by Corollary 2 the numerator in the
RHS of (77) as

ŵwwH
``k

Υ−``kwww`k`′k′www
H
`k`′k′

Υ−``kŵww``k

' 1

r``kM
tr Φ̃``kΥ̃`kwww`k`′k′www

H
`k`′k′

Υ̃`k

= wwwH
`k`′k′

Υ`kΦ``kΥ`kwww`k`′k′ . (80)

Let Υ−`kk′ =
(
Υ−1
−``k − ŵww`k`k′ŵww

H
`k`k′

)−1, then by [4, Lem. 2] we get

Υ−``k = Υ−`kk′ −
Υ−`kk′ŵww`k`k′ŵww

H
`k`k′

Υ−`kk′

1 + ŵwwH
`k`k′

Υ−`kk′ŵww`k`k′
.

We can further rewrite (80) as

wwwH
`k`′k′

Υ`kΦ``kΥ`kwww`k`′k′ = wwwH
`k`′k′

Υ−`kk′Φ``kΥ−`kk′www`k`′k′

+
|ŵwwH

`k`k′
Υ−`kk′www`k`′k′ |

2 ŵwwH
`k`k′

Υ−`kk′Φ``kΥ−`kk′ŵww`k`k′

(1 + ŵwwH
`k`k′

Υ−`kk′ŵww`k`k′ )
2

− 2Re

{
ŵwwH
`k`k′

Υ−`kk′www`k`′k′www
H
`k`′k′

Υ−`kk′Φ``kΥ−`kk′ŵww`k`k′

1 + ŵwwH
`k`k′

Υ−`kk′ŵww`k`k′

}
. (81)

We can further have the asymptotic approximations

wwwH
`k`′k′

Υ−`kk′Φ``kΥ−`kk′www`k`′k′
(a)
'

trΛ``′k′

M2

1

r``k
tr Φ̃``kΥ̃

2

`k

=
1

M
µ`k`′k′

where (a) follows from Lemma 6, and

ŵwwH
`k`k′

Υ−`kk′www`k`′k′

' wwwH
`k′`
′
k′
Ξ`k′

Λ`k′
UUUH
`k′
UUU ``kΥ−`kk′www`k`′k′

' 1

M
tr UUUH

``k
UUU `′k′

Λ``′k′
UUUH
`′k′
UUU `k′︸ ︷︷ ︸

(a)−−→
a.s.

000

Ξ`k′
Λ`k′

UUUH
`k′
UUU ``k︸ ︷︷ ︸

(b)−−→
a.s.

000

Υ−`kk′ ' 0 (82)

where (a) and (b) follow from a direct consequence of Lemma 6 due to the fact that UUU ``k and UUU `k′

are mutually independent. It is important to note that this beneficial effect of interference elimination is
enabled by spatial despreading. Combining the above asymptotic approximations into (81) yields

wwwH
`k`′k′

Υ`kΦ``kΥ`kwww`k`′k′ '
1

M
µ`k`′k′ . (83)
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Plugging (79) and (83) into (77) and noticing that (77) is bounded away from infinity, we get by the
dominated convergence theorem∑

(`′,k′)6=(`,k)

∣∣vvvH`kwww`k`′k′ ∣∣2 '∑
`′ 6=`

(r``k
M

)2 |ν``′k |
2

(1 + δ`k)
2

+
∑

`′ 6=`,k′ 6=k

1

M

µ`k`′k′
(1 + δ`k)

2
. (84)

Combining all the results in (74) and (76) into (84), we arrive at (45).
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