
HAL Id: hal-02001737
https://centralesupelec.hal.science/hal-02001737

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wireless Networks Design in the Era of Deep Learning:
Model-Based, AI-Based, or Both?

Alessio Zappone, Marco Di Renzo, Merouane Debbah

To cite this version:
Alessio Zappone, Marco Di Renzo, Merouane Debbah. Wireless Networks Design in the Era of
Deep Learning: Model-Based, AI-Based, or Both?. IEEE Transactions on Communications, 2019,
�10.1109/tcomm.2019.2924010�. �hal-02001737�

https://centralesupelec.hal.science/hal-02001737
https://hal.archives-ouvertes.fr

1

Wireless Networks Design in the Era of Deep
Learning: Model-Based, AI-Based, or Both?

Alessio Zappone, Senior Member, IEEE, Marco Di Renzo, Senior Member, IEEE, Mérouane Debbah, Fellow,
IEEE

(Invited Paper)

Abstract—This work addresses the use of emerging data-driven
techniques based on deep learning and artificial neural networks
in future wireless communication networks. In particular, a key
point that will be made and supported throughout the work is
that data-driven approaches should not replace traditional design
techniques based on mathematical models. On the contrary,
despite being seemingly mutually exclusive, there is much to be
gained by merging data-driven and model-based approaches.

To begin with, a detailed presentation is given for the reasons
why deep learning based on artificial neural networks will be an
indispensable tool for the design and operation of future wireless
communications networks, as well as a description of the recent
technological advances that make deep learning practically viable
for wireless applications. Our vision of how artificial neural
networks should be integrated into the architecture of future
wireless communication networks is presented, explaining the
main areas where deep learning provides a decisive advantage
over traditional approaches.

Afterwards, a thorough description of deep learning method-
ologies is provided, starting with presenting the general machine
learning paradigm, followed by a more in-depth discussion about
deep learning. Artificial neural networks are introduced as the
peculiar feature that makes deep learning different and more
performing than other machine learning techniques. The most
widely-used artificial neural network architectures and their
training methods will be analyzed in detail. Moreover, bridges
will be drawn between deep learning and other major learning
frameworks such as reinforcement learning and transfer learning.

After introducing the deep learning framework, its application
to wireless communication is addressed. This part of the work
first provides the state-of-the-art of deep learning for wireless
communication networks, and then moves on to address several
novel case-studies wherein the use of deep learning proves
extremely useful for network design. In particular, the connection
between deep learning and model-based approaches is empha-
sized, proposing several novel techniques for cross-fertilization
between these two paradigms. For each case-study, it will be
shown how the use of (even approximate) mathematical models
can significantly reduce the amount of live data that needs
to be acquired/measured to implement data-driven approaches.
For each application, the merits of the proposed approaches
will be demonstrated by a numerical analysis in which the
implementation and training of the artificial neural network used
to solve the problem is discussed.

Finally, concluding remarks describe those that in our opinion
are the major directions for future research in this field.

A. Zappone and M. Debbah are with the Large Networks and Sys-
tems Group, CentraleSupelec, Université Paris-Saclay, 3 rue Joliot-Curie,
91192 Gif-sur-Yvette, France,(alessio.zappone@l2s.centralesupelec.fr, mer-
ouane.debbah@l2s.centralesupelec.fr). M. Debbah is also with the Mathe-
matical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France
(merouane.debbah@huawei.com)

M. Di Renzo is with the Laboratory of Signals and Systems (CNRS -
CentraleSupelec - Univ. Paris-Sud), Université Paris-Saclay, 3 rue Joliot-Curie,
91192 Gif-sur-Yvette, France, (marco.direnzo@l2s.centralesupelec.fr).

I. INTRODUCTION AND VISION

All past and present generations of wireless communication
networks are based on mathematical models, that are either
derived from theoretical considerations, or from field mea-
surement campaigns. Mathematical models are at the heart
of all phases of network design, describing in quantitative
terms the effect that each system component has on the overall
performance. Mathematical models are used for initial network
planning and deployment, for network resource management,
as well as for network maintenance and control. Based on
underlying models, infrastructure nodes are statically deployed
to cover and manage fixed geographical areas, and traditional
optimization theory is used to optimize the network perfor-
mance through the centralized allocation of the available sys-
tem resources. However, this traditional approach to network
design has at least two drawbacks:

1) Depending on the complexity of the scenario, an accurate
mathematical model might not be available. Moreover,
even if available, every model is inherently an approx-
imation, and a trade-off exists between the accuracy of
the model and its complexity. Accurate models can be
too complex to handle, whereas simple models can just
be not accurate enough.

2) Static infrastructure deployment might not be flexible
enough to adapt to heterogeneous service requirements
and randomly evolving environments, with unpredictable
on-demand connectivity requests.

The relevance of these two issues mostly depends on the
complexity of the scenario in which the communication net-
work must operate and on the performance level that must be
guaranteed. In other words, the issues above can be ignored
if the scenario allows the derivation of a mathematical model
which is both accurate and tractable enough to meet the desired
performance requirements. This has been the case for the past
and present generations of wireless networks, from 1G to
4G systems. However, future networks (5G and beyond) are
anticipated to witness an exponential complexity increase, due
to the dramatic growth of connected devices as well as to the
the rise of innovative vertical services with heterogeneous and
stringent performance requirements.

Indeed, our society is undergoing a digitization revolution,
with a dramatic increase of both Internet users and connected
devices. It is forecasted that by 2020 over one billion people
and more than 26 billion devices will be connected to the
Internet, raising the number of connected devices by more

2

than 10 billion compared to 2015. This will exponentially
increase global IP traffic, that is expected to grow at 22%
Compound Annual Growth Rate (CAGR) in the time frame
from 2015 to 2020 [1]. In this context, the lion’s share will be
for wireless communications, which are forecasted to account
for 78% of Internet traffic already by 2020, with smartphones
broadband connections representing alone 30% of total IP
traffic, through both cellular and WiFi links [1]. However, for
this vision to come true, wireless communications will have
to surpass the performance of current fixed-line broadband
connections, and this requires ubiquitous connectivity, 1000x
higher data-rates, 2000x higher bit-per-Joule energy efficiency
compared to today’s levels [2]. In order to meet these re-
quirements, innovative communication technologies are being
developed and will be most likely implemented in future
wireless networks, such as infrastructure densification, antenna
densification, use of frequency bands in the mmWave range,
energy-efficient network management, and so on [3]–[5]. It is
widely believed that the joint use of these novel technologies
makes 5G capacity and energy targets theoretically achievable,
but on the other hand, their integration in future networks adds
to the overall network complexity, leading to higher OPEX
and CAPEX, which are already a major challenge in present
wireless networks [6]. In addition, besides the communication
performance requirements mentioned above, another critical
challenge for future wireless networks is the heterogeneity of
the services to provide. Future wireless networks will have to
support many innovative vertical services, each with its own
specific requirements [7], e.g.

• 1 ms end-to-end latency and reliability higher than
99.999% for Ultra Reliable Low Latency Communica-
tions (URLLC).

• Terminal densities of 1M terminal per square kilometer
for massive Internet of Things (mIoT) applications.

• Per-user data-rate larger than 50 Mb/s for mobile broad-
band (mBB) applications.

• Terminal location accuracy of the order of 0.1 m for
Vehicular-to-X (V2X) communications.

The integration of such diverse vertical services into the
same network architecture calls for an extremely flexible and
adaptive architecture, but this is in sharp contrast with the
traditional ”one-size-fits-all” approach adopted in present net-
works, where the control and data plane are bundled inside the
network nodes. It is clear that just deploying more performing
communication technologies does not ensure the flexibility
required to accomodate diverse classes of users with extremely
heterogeneous service requirements. Instead, new architectural
and management solution are required.

A recently-proposed approach to tackle this issue is the
network slicing paradigm, which proposes to logically separate
the control and data plane, thus effectively slicing the physical
network into multiple virtual networks co-existing over a
common shared physical infrastructure. Each network slice
constitutes a logically separate virtual network that can be
customized to meet the specific requirements of different
vertical services, by using techniques like Software Defined
Networking (SDN) [8] and Network Function Virtualization

(NFV) [9]. Network slicing applies to both the core and access
network segments and paves the way for a new generation
of programmable and software-oriented wireless networks,
able to support flexible and on-demand network resources
provisioning. Network slicing allows service providers to tailor
resource use to the specific needs of the different classes of ser-
vices to be provided. Moreover, parallel to software flexibility
through slicing and reprogrammability, the physical network
infrastructure will also be made flexible by using flying base
stations implemented through drones and unmanned aerial
vehicles that can be redeployed based on heterogeneous traffic
conditions to support on-demand connectivity requests [10].

On the other hand, in order to fully exploit the potential
of re-configurable and re-deployable wireless networks, it is
necessary to overcome critical challenges related to network
management and operation. In order to provide end-users
with a perceived seamless and limitless connectivity, the re-
configuration of network resources and/or the re-deployment
of network nodes in response to new data demands, as well as
to connectivity problems and/or failures of hardware compo-
nents, must be prompt and timely. To this end, it is necessary
to make the network fully self-organizing, automating all
management, operation, and maintenance tasks, limiting direct
human intervention as much as possible. The concept of Self-
Organzing Networks (SON) is not new to wireless networks.
It was introduced by the Next Generation Mobile Networks
(NGMN) alliance, and then standardized by 3GPP for LTE
networks. However, despite having garnered much attention
since its inception, SON failed to achieve the expected end-
goal of fully automated networks, being used primarily for
specific Radio Access Network (RAN) applications, but with-
out providing a true end-to-end solution. In our opinion, the
main reason why SON failed to deliver on its expectations is
due to the lack of intelligence and cognition in past and present
networks. In order to unlock the true advantages of SON and
make future networks truly self-organizing, it is necessary
to pair the SON paradigm with self-aware network nodes,
capable of autonomous and intelligent behavior by sensing the
surrounding environment and processing the acquired data. An
automated network infrastructure with self-configuration and
self-healing capabilities is expected reduce CAPEX and OPEX
by a factor 5 relative to 2010 levels [11].

On the other hand, while intelligent software networks
appear as the most promising approach for future wireless
communication systems, they also pose strict security and
privacy concerns, since all management processes are auto-
mated and carried out without close human supervision. In
legacy mobile communications networks, telecom operators
were responsible for user authentication only as far as network
access is concerned, while the authentication between user and
services was not provided by the network. Instead, in future
networks, security and privacy are regarded as additional
services to be provided by the network itself, which requires a
cooperation between operators and vertical service providers
to ensure a proper security management [12].

Summing up, the direction towards which future wireless
communications are moving leads to an unprecedented level
of complexity, which requires a radical paradigm shift in

3

the way networks are designed and operated, as far as both
transmission technology and architecture are concerned. New
transmission technologies and software-oriented architectures
can help up address the resource crunch, (e.g. capacity, spec-
trum, energy shortage) of present wireless communications
networks, but they come with a complexity crunch issue
that must be overcome by future wireless communication
networks. In other words, we are rapidly reaching the point at
which the quality and heterogeneity of the services we demand
of communication systems will exceed the capabilities and
applicability of present approaches and models.

Our vision to overcome this situation is to resort to a data-
driven paradigm for network design, in which the best policy
to use does not only come from the analysis of a mathematical
model, but also from the study and processing of previous
communication data. In other words, based on the performance
obtained by given policies during previous communication
sessions, one should be able to decide what is the best policy
to use at present. A framework that goes in this direction is
that of machine learning and the focus of this work is on a
specific machine learning approach, i.e. deep learning, which
is the most widely-used learning technique in many fields of
science, but which has started being brought to the attention
of the communication community only very recently. Before
introducing and further motivating the use of deep learning
for communications, we should stress one important point.
Although the main reason for using machine learning tools
is to reduce the reliance of network design and operation
on mathematical models, our vision is not for data-driven
approaches to completely replace mathematical modeling and
analysis. On the contrary, we believe that in order to overcome
the complexity crunch, a cross-fertilization between model-
based and data-drive approaches is necessary. Our vision, that
will be supported throughout this work, is for deep learning
and mathematical modeling to complement each other.

A. Deep Learning in Communications: Why Now?

As the name suggests, machine learning is a framework that
aims at endowing computers with the ability to learn from data
instead of being explicitly programmed [13]. Machine learning
techniques are not new to communication systems, and indeed
several machine learning approaches have been developed
and proposed to aid the design and operation of communi-
cation systems, e.g. support vector machines, decision-tree
learning, Bayesian networks, genetic algorithms, rule-based
learning, and inductive logical programming, among others.
Detailed surveys and tutorials about machine learning and
its applications to wireless networks have appeared in [14]–
[18], and its use to enable SON networks has been proposed
in [19]. However, the focus of this work is on a specific
machine learning technique, deep learning [20]–[22], that has
started being envisioned for wireless communications only
very recently.

Deep learning is a particular machine learning technique
that implements the learning process elaborating the data
through Artificial Neural Networks (ANNs). In the last few
years, deep learning has become the most rapidly advancing

component of machine learning, exhibiting far superior perfor-
mance than other machine learning schemes, and is expected
to become soon by far the most widely used machine learning
method and the largest driver of revenue in the whole Artificial
Intelligence (AI) field. Deep learning has been recognized as
the first among the top ten AI technology trends for 2018 [23]
and is already the leading machine learning technique in many
scientific fields such as image recognition, text recognition,
speech recognition, audio and language processing, robotics.
Surprisingly, its use in communications systems has been
envisioned only very recently [24], and its applications to
wireless networks are almost unexplored. In our opinion, this
is mainly due to the fact that, unlike other fields of science,
communication engineers could always rely on mathematical
models for system design. However, as we have described
so far, this fundamental postulate is going to be significantly
weakened in the near future, which puts forth the need for deep
learning in communication system design. Moreover, there
are also several recent technological advancements that make
deep learning a viable technology for future communication
networks:

• In order to gain the most out of deep learning algorithms,
it is necessary to process large datasets. At present, ex-
actly the exponential increase of wireless devices results
in a corresponding growth of available data that can
be used to this end [25]–[27]. The availability of large
datasets is also considered an enabler for the implemen-
tation of the SON paradigm [25].

• Modern advancements in computing capacity makes it
possible to execute larger and more complex algorithms
much faster. In particular, Graphics Processing Units
(GPUs) can repurposed to execute deep learning al-
gorithms at speeds many times faster than traditional
processor chips.

• The rise of the Blockchain technology provides an ef-
ficient way of guaranteeing the accuracy of data for a
number of AI applications, both for feeding data into AI
systems and for recording results from them [28]. More-
over, the Blockchain technology provides a distributed
database that can be shared by all parties in a network
[29]. This can be used to reduce the complexity of
training the neural network, either by deploying dedicated
computational centers which perform training tasks and
then feedback only the resulting configuration parameters
to the users, or by distributing the training complexity
over the network nodes [30].

In our opinion the main question is not whether deep learning
will be integrated in future wireless networks, but rather how
and when this integration will take place. This statement is
supported by the positions recently taken by several leading
telecommunication companies, e.g. [31], [32], and by the fact
that initial steps towards the standardization of intelligent
wireless communication systems have already been taken. For
example, in February 2017 the European Telecommunications
Standards Institute (ETSI) activated an Industry Specification
Group named Experiential Network Intelligence. Its purpose is
to define a cognitive network management architecture capable

4

of using AI techniques and context-aware policies to adjust
offered services based on changes in user needs, environmental
conditions, and business goals. Such a paradigm is referred
to as the observe-orient-decide-act control paradigm and rep-
resents the first standardization step towards the definition
of an experiential system, i.e. a system that learns from
previous experience to improve its knowledge of how to act
in the future. This is anticipated to help operators automate
their network configuration and monitoring processes, thereby
reducing their operational expenditure and improving the use
and maintenance of their networks.

Before concluding this section, we should emphasize that
machine learning is a anticipated to be a game-changing
technology not only for mainstream wireless communication
networks, but also for emerging communication technolo-
gies that are being investigated as a way to complement
traditional wireless approaches in specific scenarios. Among
others, we mention here optical communications [33], [34],
which promise very high data-rates by communicating over
the visible spectrum, and molecular communications, which
dispense with electromagnetic waves, relying on chemical
signals as information carriers, thus enabling communication
through media where electromagnetic signals do not propagate
well, such as water or inside the walls of buildings [35], [36].
The interest in both technologies is rapidly increasing in recent
years, but one main drawback is the difficulty of developing
accurate models for such complex scenarios. Clearly, data-
driven approaches might provide a decisive contribution to the
practical implementation of optical and molecular communi-
cation systems. As a example, [37] employs deep learning to
solve Schrödinger equations in fiber-optic communications.

B. Novelty and Organization

The vast majority of survey contributions on machine learn-
ing focus on different fields than wireless communication
networks [13], [16], [20]–[22], [38], [39]). As far as wire-
less communications are concerned, most previous surveys
consider other machine learning techniques [14], [17], [18],
[40]–[42]), without discussing deep learning in detail. Only
a few very recent overview works focus specifically on deep
learning and ANNs for wireless communications [24], [43],
[44]. All these three previous contributions envision the use
of deep learning in future wireless networks, identifying AI
as the key technology of the future and identifying many use-
cases and scenarios in which deep learning has the potential
of simplifying the design and improving the performance. On
the other hand, compared to these previous efforts, our work
provides the four major novelties (N.1-N.4), described below.

(N.1) The contributions in [24], [43], [44] focus on deep learn-
ing, but do not address how to use mathematical models
to improve deep learning techniques. Instead, our work is
the first to analyze the connection between model-based
and data-driven methodologies. A systematic framework
is developed for cross-fertilization between these two
paradigms, by embedding the prior knowledge contained
in available mathematical models into deep learning tech-
niques.

(N.2) The contributions in [24], [43], [44] describe many po-
tential and relevant applications of ANNs to wireless
communications, but do not provide any quantitative
analysis of how to practically use ANNs in these use-
cases, and of the resulting performance. Instead, our work
is the first to not only describe several wireless scenarios
where deep learning proves useful, but also to provide, for
each considered application, a mathematical formulation
of the considered problem, the ANN architecture to be
used and its training algorithm, plus a numerical analysis
of the resulting performance.

(N.3) The contributions in [43], [44] provide a comprehensive
survey of deep learning approaches to wireless communi-
cations, but do not tackle the mathematical theory of deep
learning. More contribution in this sense can be found in
[24], where a brief overview of ANNs architectures and
training methods is presented. Instead, our work provides
a solid and self-contained description of the theoretical
fundamentals of deep learning, the most relevant ANNs
architectures and training methods, and their fine-tuning
for improved performance.

(N.4) The contributions in [24], [43], [44] do not describe in
detail the relation between deep learning and other major
learning frameworks, such as reinforcement learning and
transfer learning. Instead, we provide a dedicated analysis
of both deep reinforcement learning and deep transfer
learning. Moreover, we also describe the approach of
deep unfolding, that has been proposed as a way to map
iterative algorithms to ANNs architectures.

The rest of this section explains our vision about how deep
learning should be integrated into future networks with refer-
ence to all major phases of the design of a wireless commu-
nication network. Next, the remaining sections are organized
as follows:

• Section II discusses in deeper detail the connection
between machine learning and deep learning. First, the
fundamental paradigms of supervised learning, unsuper-
vised learning, and reinforcement learning are introduced,
and then the position of deep learning and ANN in this
general framework is explained.

• Section III addresses Novelties N.3 and N.4, providing
a theoretical description of deep learning, introducing
the basic components of ANNs, the most widely-used
ANN architectures and training methods and explaining
the connection between deep learning and reinforcement
learning and transfer learning, as well as the deep unfold-
ing approach.

• Novelties N.1 and N.2 are addressed in Section IV. First,
a detailed overview of the applications and research con-
tributions of deep learning for wireless communications is
provided. Next, several concrete examples and use-cases
are presented, in which the joint use of mathematical
models and deep learning methods provide huge gains
compared to state-of-the-art approaches. For each use-
case, a quantitative analysis is explicitly carried out,
describing the design of an ANN to tackle the problem
and discussing the resulting performance.

5

Figure 1. Current networks vs. a smart radio environment (or smart wireless).

• Finally Section V provides concluding remarks, outlining
the major challenges to be overcome to fully enable
the rise of deep-learning-based wireless communication
networks.

C. Deep Learning for Network Deployment and Planning

Future wireless networks will be more than allowing people,
mobile devices, and objects to communicate with each other
[45]. Future wireless networks will be turned into a distributed
intelligent wireless communications, sensing, and computing
platform, which, besides communications, will be capable of
sensing the environment to realize the vision of smart living
in smart cities by providing them with context-awareness
capabilities, of locally storing and processing information in
order to accommodate the time critical, ultra-reliable, and
energy efficient delivery of data, of accurately localizing
people and objects in environments and scenarios where the
global positioning system is not an option. Future wireless
networks will have to fulfill the challenging requirement of
interconnecting the physical and digital worlds in a seamless
and sustainable manner [46], [47].

To fulfill these challenging requirements, we think that it
is not sufficient anymore to rely solely on wireless networks
whose logical operation is software-controlled and optimized
[48]. The wireless environment itself needs to be turned
into a software-reconfigurable entity [49], whose operation is
optimized to enable uninterrupted connectivity. Future wireless
networks need a smart radio environment, i.e., a wireless
environment that is turned into a reconfigurable space that
plays an active role in transferring and processing information.
We refer to this emerging wireless future as “smart radio
environment”.

To better elucidate our notion of reconfigurable and
programmable wireless environment, let us consider the block
diagram illustrated in Fig. 1. Conceptually, the difference
between current wireless networks and a smart radio
environment can be summarized as follows. According to
Shannon [50], the system model is given and is formulated in
terms of transition probabilities (i.e., Pr {y/x}). According to
Wiener [51], the system model is still given, but its output is
feedback to the input, which is optimized by taking the output
into account. For example, the channel state is sent from a
receiver back to a transmitter for channel-aware beamforming.
In a smart radio environment, the environmental objects are
capable of sensing the system’s response to the radio waves
(the physical world) and feed it back to the input (the digital
world). Based on the sensed data, the input signal and the
response of the environmental objects to the radio waves
are jointly optimized and configured through a software

Figure 2. Current cellular networks operation.

Figure 3. Cellular networks operation in a smart radio environment.

controller, respectively. For example, the input signal is
steered towards a given environmental object, which reflects,
by employing some optimized phase shifts, it towards a given
receiver that is, in turn, steered towards it.

Different solutions towards realizing the vision of smart
radio environments are currently emerging [52]- [53]. Among
them, the use of reconfigurable metasurfaces constitutes a
promising and enabling solution to fulfill the challenging
requirements of future wireless networks [54]. Metasurfaces
are thin metamaterial layers that are capable of modifying
the propagation of the radio waves in fully customizable
ways [55], thus owing the potential of making the transfer
and processing of information more reliable [56]. Also, they
constitute a suitable distributed platform to perform low-
energy and low-complexity sensing [57], storage [58], and
analog computing [59]. In [53], in particular, the authors have
put forth a network scenario where every environmental object
is coated with reconfigurable metasurfaces, whose response to
the radio waves is programmed in software by capitalizing
on the enabling technology and hardware platform currently
being developed in [60].

An example of using reconfigurable metasurfaces in a
cellular network scenario is sketched in Figs. 2 and 3. In Fig.
2, a mobile terminal (M) wants to connect to the Internet via
a cellular network. In the absence of environmental objects

6

(O1, O2, O3), BS1 is the base station that provides the best
signal to M. Due to the blocking object O1, however, the
received signal from BS1 is not sufficiently strong, and M
connects to the Internet via BS2, while BS1 is kept active
to serve other users. Since BS2 is far from M, its received
signal is not sufficient enough for high rate transmission.
Because of the refractive object O2, the signal emitted by BS1
generates strong interfering signals in other locations. Also,
the reflective object O3 generates a strong reflected signal
towards a malicious user (E) that can intercept the signal
from BS1. In Fig. 3, by contrast, we illustrate the operation
of cellular networks in a smart radio environment. The objects
O1, O2, O3 are now coated with reconfigurable metasurfaces
that modify the radio waves according to the generalized
laws of reflection and refraction [55]. Figure 3 shows how
the operation of wireless networks changes fundamentally.
The link BS1-M is still obstructed by O1. The responses of
the reconfigurable metasurfaces on O2 and O3 are, however,
appropriately controlled and optimized: O2 refracts the signal
from BS1 towards M and avoids interfering other users. O3
reflects the signal towards M and protects BS1 against E. In
contrast to Fig. 2, the reflected and refracted signals at M allow
it to reliably connect to the Internet. Now, BS2 serves other
users at, e.g., a higher speed.

Current research efforts towards realizing the vision of smart
radio environments are primarily focused on implementing
hardware testbeds, e.g., reflect-arrays and metasurfaces, and
on realizing point-to-point experimental tests [52]- [53]. To the
best of the authors knowledge, on the other hand, there exist
no theoretic and algorithmic methodologies that provide one
with the ultimate performance limits of this emerging wireless
future, and with the algorithms and protocols for achieving
those limits. We argue, in addition, that the design of smart
radio environments is unlike to be possible by relying solely on
conventional methods. We believe, on the other hand, that deep
learning and artificial intelligence will play a major role in this
context. In the following two sections, we will first discuss
in deeper details the difference and potential advantages of
smart radio environments against current wireless network
solutions, and then discuss the importance of deep learning
in this context.

1) Current Networks vs. Future Smart Radio Environments:
To better elucidate the difference and significance of smart
radio environments with respect to the most advanced tech-
nologies employed in wireless networks at present, let us
consider, as an example, a typical cellular network.

The distinguishable feature of cellular networks lies in the
users’ mobility. The locations of the base stations cannot,
in general, be modified according to the user’s locations.
Some exceptions, however, exist [61], [62], and we will
elaborate on this below. The mobility of the users throughout
a location-static deployment of base stations renders the user
distribution uneven throughout the network, which results in
some base stations to be severely overloaded and some others
to be under-utilized. This is a well-known issue in cellular
networks, and is tackled in different ways, among which load
balancing methods [63] and the densification of base stations
(ultra-dense networks). Network densification is certainly a

promising approach, but has its own limitations [64], [65].
It is known, e.g., that network densification increases the
network power consumption as the number of base stations
per square kilometer increases. This is exacerbated even more
with the advent of the Internet of Things (IoT), where the
circuit power consumption increases with the number of
users per square kilometer [66], [67]. Ultra-dense network
deployments, in addition, enhance the level of interference,
which needs to be appropriately controlled in order to achieve
good performance. Furthermore, each base station necessitates
a backhaul connection, which may not always be available.
Other solutions based on massive Multiple-Input-Multiple-
Output (MIMO) schemes could be employed, but they usually
necessitate a large number of individually controllable radio
transmitters and advanced signal processing algorithms [68].
Their performance, in addition, is determined by the existence
of favorable propagation conditions, which may not always be
fulfilled in cellular networks. Similar comments (i.e., power
consumption, hardware complexity, blocking of links, etc.)
apply to using millimeter-wave communications [69], [70]. It
is worth mentioning that millimeter-wave systems can take
advantage of the presence of reconfigurable metasurfaces as
a source of controllable reflectors that can overcome non-
line-of-sight propagation conditions, and enable the otherwise
impossible communication between the devices [71]. Without
pretending to be exhaustive, other relevant solutions that
are typically employed in wireless encompass retransmission
methods that negatively impact the network spectral efficiency,
the optimized deployment of specific network elements, e.g.,
relays, which increase the network power consumption as they
are made of active elements (e.g., power amplifiers), and that
either reduce the achievable link rate if operate in half-duplex
mode or are subject to severe self-interference if operate in
full-duplex mode [72]- [73].

Metasurfaces-enabled smart radio environments are fun-
damentally different. The metasurfaces are made of low-
cost passive elements that do not require any active power
sources for transmission [47]. Their circuitries can be powered
with energy harvesting modules as well [74]. They do not
apply any sophisticated signal processing algorithms (coding,
decoding, etc.), but primarily rely on the programmability and
re-configurability of the metasurfaces and on their capability of
modifying the radio waves impinging upon them [75]. They
can operate in full-duplex mode without significant or any
self-interference, and do not need any backhaul connections to
operate. Even more importantly, the metasurfaces are deployed
where the issue naturally arises: Where the environmental
objects, which, in current wireless networks, reflect, refract,
distort, etc. the radio waves in undesirable and uncontrollable
ways, are located. Since the input-output response of the meta-
surfaces is not subject to conventional Snell’s laws anymore,
the locations of the objects that assist a pair of transmitter and
receiver to communicate, and the functions that they apply on
the received signals can be chosen to minimize the impact
of multi-hop-like signal attenuation. In addition, the phase
of the many atomic elements that constitute the metasurfaces
can be optimized to coherently focus the waves towards the
intended destination, thus obtaining a substantial beamforming

7

gain without using active elements. These functionalities, in
addition, are transparent to the users, as there is no need to
change the hardware and software of the devices. Furthermore,
the number of environmental objects can potentially exceed the
number of antennas at the endpoint radios, which implies that
the degrees of freedom for system optimization can potentially
exceed that of current wireless network deployments [76]. The
freedom of controlling the response of each metasurface and
choosing their location via a software-programmable interface
makes, in addition, the optimization of wireless networks
agnostic to the underlying physics of wireless propagation and
metamaterials. Despite the practical challenges of deploying
robotic (terrestrial) base stations capable of autonomously
moving throughout a given region [61], [62], experimental
results conducted in an airport environment, where the base
stations were deployed on a rail located in the ceiling of a
terminal building [77], showed promising gains. The possi-
bility to deploy mobile reconfigurable metasurfaces is, on the
contrary, practically viable. The metasurfaces can be easily at-
tached to and removed from objects (e.g., facades of buildings,
indoor walls and ceilings, advertising displays), respectively,
thus yielding a high flexibility for their deployment. The
position of small-size metasurfaces on large-size objects, e.g.,
walls, can be adaptively optimized as an additional degree of
freedom for system optimization: Thanks to their 2D structure,
the metasurfaces can be mechanically displaced, e.g., along a
discrete set of possible locations (moving grid) on a given
wall. It is apparent, therefore, that the concept of smart
radio environment can potentially impact wireless networks
immensely.

2) The Need for Deep Learning: In summary, the concept
of smart radio environment is a fundamental paradigm shift
with respect to the design of current wireless networks. In
current wireless networks, broadly speaking, the environment,
i.e., the set of physical objects that alter the propagation of
radio waves, is not controllable. The environment ignores the
underlying process of transferring and processing information,
and is perceived, in addition, as an adversary to the communi-
cation process, i.e., it has usually a negative effect that needs
to be counteracted by the transmitters and receivers [78]. The
advent of reconfigurable metasurfaces, reconfigurable reflect-
arrays, reconfigurable large-intelligent surfaces, etc. challenges
this status quo, but asks for new methods for modeling,
analyzing, and optimizing wireless networks.

The design of wireless networks, in fact, relies either
on analytical models or on system-level simulations. The
use of models has the advantage of yielding deep insight
into the system behavior and of allowing one to formulate
optimization problems that can often be solved in a com-
putationally efficient manner and that often lead to system
designs with proved optimality properties. In general, however,
analytical models are seldom sufficient for accurate system
design and optimization in complex wireless networks. For
example, cellular networks are often modeled by relying on
the abstraction model based on Poisson point processes [79],
[80]. This approach is analytically tractable, but it may not be
sufficiently accurate to capture important details in practical
cellular network deployments. It is known, on the other hand,

that using spatial models different from Poisson leads to
complicated utility functions that are often difficult to interpret
and to optimize [81], [82]. The use of system-level simulators
usually leads, by contrast, to accurate system designs, but it of-
fers limited insight into identifying optimal deployments, and
developing optimal algorithms and protocols. The optimization
of complex (large-scale) networks based solely on brute-force
numerical methods may, in addition, be prohibitive due to the
very large number of variables to optimize.

By direct inspection of Fig. 1, smart radio environments
are, without any doubts, an emerging network architecture
that is much more difficult to optimize than current wireless
networks, and whose ultimate performance limits are unknown
to date. In a smart radio environment, the operation of each
environmental object may be optimized besides the operation
of the transmitter and receiver (the end points of the network).
Accurately modeling such an emerging network scenario and
optimizing it in real time and at a low complexity is an open
issue. As far as the modeling is concerned, it is very challeng-
ing to devise a model that is sufficiently accurate to account for
customizable reflections, refractions, blocking, displacements
of the surfaces, etc. As far as the optimization is concerned,
event if such a model could be developed, it would be very
unlikely amenable for optimization due to the large number
of variables to optimize and the complexity of the resulting
utility functions. Compared with current network models, in
addition, Fig. 1 highlights that smart radio environments need
much more context-aware information for configuring and
optimizing the operation of all the environmental objects,
which results in a larger feedback overhead that has a strong
impact in applications with high mobility. This implies that
optimizing smart radio environments based only on empirical
data, i.e., data-driven approach, may not be, in general, a
practically affordable solution.

Motivated by these considerations, we argue that the optimal
design of smart radio environments need to be tackled by
taking the benefits of both model-based and data-driven (or
simulation-driven) approaches, by leveraging the concept of
transfer learning [83]. In simple terms, our idea consists
of first optimizing the network using a mismatched, but
simpler for optimization, model, and then refining the result
with (fewer) empirical data. We believe that this approach
constitutes an enabler for recovering the model mismatch
that originates from the difficulty of accurately modeling the
system, and, at the same time, the difficulty of collecting a
large amount of empirical samples for data-driven optimization
because of the associated overhead, e.g., for reporting large
amounts of sensed data from the metasurfaces to the network
controller in charge of optimizing the network.

In the sequel, we will elaborate on the concept of transfer
learning, and we will provide some examples of application
towards the design and optimization of wireless networks,
which synergistically leverage model-based and data-driven
methods taking the best of both worlds.

D. Deep Learning for Network Resource Management
The goal of resource management is to allocate the avail-

able network resources in order to maximize one or more

8

performance metrics. Transmit powers, beamforming vectors,
receive filters, frequency chunks, computing power, memory
space, etc., can be scheduled among the network terminals
based on traffic demands, propagation channel conditions, ter-
minals requirements, so as to optimize the network throughput,
the communication latency, the energy efficiency, while at the
same time ensuring that all end-users experience the guaran-
teed quality-of-service (QoS). Formally speaking, denoted by
f the performance function to maximize and by x ∈ S the
resource to allocate, with S the set containing the admissible
values of x, the resource allocation problem can be cast as the
optimization program

max
x∈S

f(x) . (1)

Thus, the conventional approach to resource management is
based on the use of traditional optimization theory techniques.
However, as already mentioned, this approach only works if
one is able to come up with a suitable mathematical model
of the problem, i.e. with tractable, but accurate, formulas
describing the objective f and the feasible set S. Moreover,
even assuming that this can be done, the optimal resource
allocation will inevitably depend on the system parameters,
e.g. the users’ positions, the number of connected users, slow-
fading or fast fading channel realizations. Anytime one of
these parameters changes, which happens quite frequently in
mobile environments, the optimization problem needs to be
solved anew. This causes a significant complexity overhead,
that limits the real-time implementation of available optimiza-
tion frameworks, especially in large and complex systems like
future wireless communication networks.

The use of deep learning techniques based on ANNs
provides a novel approach to tackle this issue and enable
true online resource management in wireless communication
networks. The idea is that the general resource allocation
problem in (1) can be regarded as an unknown function
mapping from the ensemble of all network parameters of
interest, denoted by c ∈ RN , with N the number of system
parameters of interest, to the corresponding optimal resource
allocation x∗ ∈ S. Formally, we can view Problem (1) as the
non-linear map

F : c ∈ RN → x∗ ∈ S ⊆ RN . (2)

Thus, we have converted Problem (1) into learning the un-
known map (2), a task that ANNs are able to tackle. Indeed,
as it will be discussed in deeper detail in Section II, ANNs
are, under very mild assumptions, universal approximators,
i.e., if properly trained, they are able to learn the input-
output relation between the system parameters and the desired
resource allocation to use, thus emulating the function F in
(64). This means that we can optimize a desired performance
function for given system parameters without explicitly having
to solve any optimization problem, but rather letting an ANN
compute the resource allocation for us. A detailed analysis of
this approach will be presented in Section IV.

At this point, the natural question is how to integrate ANN-
based resource management into the topology and architecture
of a wireless network. Where should we store the data required

by the ANN tasked with network resource management, and
where should the related computations be executed? Ideally,
the optimal approach would be to have a cloud-based approach
in which an ”artificial brain” placed in a single point oversees
all tasks related to resource management across the whole
network or at least a network segment. All available data
should be stored in this artificial brain which is tasked with
executing all required computations and with feeding back the
resulting resource allocation to all other network terminals.
Unfortunately, such a centralized approach is not compatible
with future wireless networks due to at least three major
reasons:

1) Latency. Some vertical sectors of future wireless net-
works, e.g. URLLC, require a strict end-to-end commu-
nication latency, lower than a millisecond. Thus, for these
applications, it is not possible to wait for the cloud to
perform the computations and then feed back the results.
Instead, the computations should be performed locally by
each user equipment.

2) Privacy. Unlike previous wireless networks generations,
future wireless networks will not be simply about having
a faster mobile network or richer functions in smart-
phones. The integration of innovative vertical services
aims at making the vision of the ”everything connected
world” true, but this comes with critical privacy and
security requirements. Accordingly, for some vertical
applications it is not desirable to share information with
the cloud, which makes cloud-based deep learning not a
viable approach.

3) Connectivity. Future wireless networks promise ubiqui-
tous service delivery. This means that a user terminal
should be able to operate also in areas or times in which
a poor connection to the cloud exists. This requirement is
not compatible with a pure cloud-based implementation,
but instead each user device should have some ”local
intelligence” to be able to operate in these scenarios, too.

Therefore, in order to make deep learning compatible with fu-
ture wireless communication networks, the intelligence can not
be concentrated only in a centralized network brain. Instead,
some intelligence should be distributed across the network
mobile devices, implementing a Mobile AI architecture. It
is interesting to observe that this approach resembles the
way in which human knowledge is developed: like human
societies in which there is a collective intelligence that belongs
to everybody, and an individual intelligence, the mobile AI
paradigm envisions both a cloud intelligence, which every
node of the network can access by connecting to the cloud,
and a device intelligence specific to each network device.

In order to implement this mobile AI paradigm, a first
natural approach that we put forth is to regard each device
in the network as a rational and independent decision-maker,
which acquires its own local dataset and uses it to build its
own local ANN model. This techniques does not require any
interaction between the network infrastructure and the edge
users, as far as data sharing and processing are concerned,
and has the potential of enabling the 5G vision of distributed,
self-managing networks true. On the other hand, due to limited

9

storage and processing capabilities, mobile devices might not
be able to develop accurate models on their own and the
resulting performance gap must be analyzed. Moreover, the
self-organizing nature of the devices poses questions about
reaching a stable network operating point and about the
efficiency of such point. The Noble-prize-winner framework
of game theory appears as the natural way to answer at
least the last points, as it provides sophisticated mathematical
tools to analyze the interactions among independent decision-
makers [84]–[86]. Game theory has been already extensively
used for resource management in wireless communication
networks [18], [87], [88], although never in connection with
deep learning.

A second approach that we envision is based on the use
of the so-called federated learning technique [89], [90]. The
main idea of federated learning is to distribute the data and
computation tasks among a federation of local devices that are
coordinated by a central server. The server owns a global ANN
model that is built by integrating the local models from the
devices, which are developed based on local datasets. Thus,
what is uploaded to the server is only the update to the global
model, but not the local datasets themselves. By this approach,
the individual intelligence owned by each device contributes to
the collective intelligence of the whole federation of devices,
which is maintained by the server. As a refinement of this
approach, [91] proposes to exchange not the updates to the
model, but rather the updates to the algorithm that is used
to compute the model. In other words, each local model is
computed by processing the local dataset by some algorithm,
and what the devices communicate to the server is not the
model itself, but instead an update of the parameters of the
algorithm that is used to compute the global model.

E. Deep Learning for Network Operation and Maintenance

Maintenance and operation of a wireless network is a
broad field that involves many different tasks, such as users’
localization, channel estimation, quality-of-service monitoring,
fault and anomaly detection, hand-over execution, intrusion
detection, etc. Although seemingly quite diverse, operation and
maintenance tasks have a common denominator, all involving
the acquisition of some measurable data, from which the
desired information must be extracted. Formally speaking, all
above tasks can be formulated as the task of guessing the
realization of some random vector x based on the observation
of another random vector y, that is somehow correlated to x,
i.e. that was generated from x through some unknown transfor-
mation. Such a problem can be cast into the framework of clas-
sical decision and estimation theory, but classical detection and
estimation methods require the conditional distribution f(x|y)
and the prior distribution f(x), whose availability is strongly
related to the availability of a tractable model for the specific
problem at hand. Even in present wireless applications, this
is an unrealistic assumption for several operation and mainte-
nance tasks. A notable example is that of hand-overs of users
moving along the boundary of two cells, a crucial problem
in cellular networks. This is typically heuristically handled
by comparing the users’ signal-to-noise ratio (SNR) towards

the neighboring cells over a given time window. However,
deriving a statistical model for this scenario that accounts for
the users’ mobility patterns is quite challenging, and indeed
the optimization of the thresholds for hand-overs is an open
problem even in present cellular communications. Given the
foreseen complexity increase in future wireless communication
networks, statistical approaches will become less and less
practical.

A suitable way of coping with the lack of models and
statistical information as to the random vectors x and y
is represented by machine learning. Indeed, operation and
maintenance is probably the field of wireless communica-
tions in which machine learning approaches have been used
first. Recent surveys on applications of machine learning for
maintenance tasks have appeared in [92]–[95], showing how
machine learning approaches perform well even without any
statistical distribution information. Specifically, they assume
that a training set containing examples of correct matches
between the realizations of x and y is available, which can
be built off-line by simply observing and storing previous
traffic data. By elaborating the training set, machine learning
methods are able to devise a rule for learning the value of x
corresponding to yet unobserved values of y.

As far as the integration of deep learning for network
maintenance into future wireless architectures is concerned,
it is our opinion that it could be carried out following a
more centralized approach than for the resource management
scenario described in Section I-D. Indeed, most operation and
maintenance tasks (e.g. fault and anomaly detection, hand-
overs, intrusion detection) are inherently centralized in the
sense that all computations are executed by network infras-
tructure nodes and do not require any specific information
exchange with edge-users. On the other hand, in case of very
large datasets and very demanding computations to perform,
we envision the use of a distributed or federated approach,
but only among dedicated network nodes. More in detail, a
suitable approach appears to share storage and computation
tasks among a cluster of fixed infrastructure nodes connected
by high-speed links and deployed in different points of the
network. Then, each node of the cluster could either be tasked
with operating and maintaining only a specific part of the
network, or the data and computing power of each cluster
node could be jointly exploited in a federated approach.

II. MACHINE LEARNING AND DEEP LEARNING: WHAT IS
NEW?

The term machine learning broadly refers to algorithmic
techniques able to perform a given task without running a
fixed computer program explicitly written and designed for
the problem at hand, but instead processing available data and
progressively learning from it. Formally speaking, a computer
program is said to learn from experience E with respect to a
task T and performance measure P, if its performance at task
T, as measured by P, improves with experience E [96].

The tasks that can be solved by machine learning are
very diverse. In general, machine learning techniques prove
extremely useful for all tasks for which no explicit and/or

10

viable programming approach exists to date, e.g. classification,
regressions, pattern recognition, automatic language transla-
tion, anomaly detection, etc. As diverse as the task to perform
may be, a machine learning algorithm can be mathematically
described as the map

F : x ∈ X ⊆ Rn → y ∈ Y ⊆ Rm , (3)

wherein x is a data vector whose components are the features
describing the task to be solved, y is the output produced by
the machine learning algorithm representing the answer to the
problem at hand, X and Y are the sets in which x and y may
vary. It is important not to confuse the task performed by a
machine learning technique with the action of learning. The
former is the final objective of the algorithm, while the latter
is the method that is used to carry out the task.

In order to evaluate the ability of a machine learning algo-
rithm to solve the assigned task, i.e. to produce output vectors
close to the desired ones, a performance criterion P must be
defined. Several performance measures can be considered and
typically the best choice is application-dependent. However,
two general performance functions can be identified, namely:
• The mean square error (MMSE) between the output
y1, . . . ,yN produced by the algorithm for some input
points x1, . . . ,xN , and the corresponding desired output
y?1, . . . ,y

?
N .

• The cross entropy between the output produced by the
algorithm y1, . . . ,yN for some input points x1, . . . ,xN ,
and the desired output y?1, . . . ,y

?
N . The justification of

this performance function stems from the fact that it
is equal, up to the entropy of the desired output, to
the Kullback-Leibler divergence between the algorithm
output and the desired output.

The last component of a machine learning algorithm to
be introduced is the experience E, i.e. the knowledge and
data that the algorithm can exploit to carry out the task.
Machine learning algorithms typically experience a set of data
points STR, called training set. Depending on the information
contained in S, machine learning algorithms can be grouped
into two main categories:
• Unsupervised learning: the experienced data training

set STR contains only input features, i.e. STR =
{x1, . . . ,xN}. Based on STR, the machine learning algo-
rithm must be able to extrapolate the statistical structure
of the input or any other information needed to carry out
the desired task.

• Supervised learning: the experienced data training set
STR contains both input features and the corresponding
desired outputs, referred to as labels or targets, i.e. S =
{(x1,y1), . . . , (xN ,yN)}. Thus, in supervised learning,
the training set provides a series of examples to instruct
the algorithm how to behave when some specific inputs
are considered.

In both supervised and unsupervised learning, the available
dataset is fixed. This models a scenario in which the algo-
rithm does not directly interact with the environment where
it operates. Instead, a different machine learning paradigm
that does not fall in the categorization above is that of

reinforcement learning [97]. The approach of reinforcement
learning is to enable a feedback loop between the algorithm
and the environment, allowing the algorithm to experience a
dataset that changes over time as a result of the interaction
with the surrounding environment. The focus of this work
will be primarily on supervised learning, which is the typical
approach in deep learning. Reinforcement learning will also
be considered, primarily considering its integration with deep
learning tools, which leads to the recently introduced paradigm
of deep reinforcement learning [98], [99].

Before continuing, it is important to remark that, while the
setting described above bears some resemblance to the general
problem of classical decision/estimation theory, a fundamental
difference exists. Classical decision/estimation theory assumes
that the probability distributions of the output vector given the
input p(y|x) and that of the input vector p(x) are known.
Instead, machine learning does not need this assumption and is
able to operate based only on some realizations of the under-
lying distributions, even though the distributions themselves
are not known.

A. Overfitting and Underfitting

We have seen how a machine learning algorithm experiences
a training set STR which, in any case, contains some input
features x1, . . . ,xN . In the supervised scenario, each input
feature is also accompanied by the corresponding desired
output. While this information is essential to configure the
learning scheme, the key problem of any machine learning
algorithm is to perform well on previously unseen inputs. This
means that the algorithm should be able to grasp from STR a
general rule to produce a suitable output y also when x̃ /∈ X .
This is referred to as the algorithm generalization capability.
During the training phase, the information in the training set is
used to set the algorithm parameters in order to minimize any
desired performance metric. As it will be seen in the sequel,
this basically amounts to solving an optimization problem, but
what makes machine learning fundamentally different from
optimization theory, is that the ultimate goal is to make the
algorithm able to generalize well to new data inputs. In order
to evaluate its generalization capability, after the algorithm has
been designed as a result of the training phase, its performance
is tested over a new set of different inputs ST , called the test
set. For any given error measure, the error evaluated over the
test set is called generalization error or test error. Similarly,
the error evaluated over the training set is called the training
error. Clearly, in order for the algorithm to generalize well, the
data samples in the training set STR and in the test set ST need
to be drawn from the same distribution, called data generating
distribution, even though they should be drawn independently
with each other. Clearly, the expected generalization error will
be larger than the expected training error, and the gap between
the two is called the generalization gap. Thus, minimizing the
training error can be regarded as a necessary but not sufficient
condition to obtain also a low generalization error. A machine
learning algorithm is said to be:
• Underfitting if it is not able to make the error over the

training set small.

11

• Overfitting if it is not able to make the gap between the
training and test error small.

The factor that controls whether overfitting or underfitting
occurs is the capacity of the algorithm, i.e. the ability of the
algorithm to properly fit the training set. Intuitively, the ca-
pacity of the algorithm is related to the degrees of freedom or
parameters that can be chosen when designing the algorithm.
Clearly, if the algorithm does not have enough free parameters,
it will not have enough degrees of freedom to capture the
structure of the training set and the algorithm will underfit.
Instead, the overfitting scenario is more subtle. One may think
that increasing the number of free parameters will always lead
to better performance, and that an upper limit is represented
only by the computational complexity that we are prepared
to sustain. Actually, this is not the case. If the algorithm has
too many degrees of freedom, it will learn the structure of
the training set too well, memorizing specific properties that
are peculiar only to the training set, but that do not hold in
general. As a result, there is an optimal capacity that a machine
algorithm should have to minimize the generalization gap.

Underfitting Overfitting

Algorithm Capacity

Training Error

Test Error

Figure 4. Typical behaviors of the training and test errors.

As shown in Fig. 4, the training error decreases with the al-
gorithm capacity, asymptotically reaching its minimum value.
Instead, the test error has a U-shaped behavior, following the
training error up to a capacity value, and then increasing,
thereby originating the generalization gap. Fundamental results
from statistical learning theory have established that the gen-
eralization gap is bounded from above, with the upper bound
increasing for larger model capacity, and decreasing for larger
training sets [100]–[103]. On the other hand, a lower-bound
to both the training and test error is given by the well-known
Bayes error, i.e. the error obtained by an oracle with access
to the true underlying distribution sampling from which the
training and test set are obtained.

Another way to interpret the phenomenon of overfitting
is to observe that any finite training set will also contain
atypical realizations of the underlying distribution, that should
be overlooked or given little importance when adjusting the
algorithm parameters. However, having too many parameters
to design, the algorithm will try to perfectly fit the complete
training set, thus originating the overfitting phenomenon. This
concept is illustrated in the example shown in Fig. 5, where
it is assumed that a machine learning classifier must output
a decision boundary to separate objects belonging to two
different classes. It can be seen how a linear decision boundary

is not able to properly separate the samples in the training set,
thus causing underfitting. On the other hand, having enough
degrees of freedom, one can design a complex boundary to
perfectly separate the samples in the training set, even those
samples that happen to be surrounded by samples of the other
class. However, this leads to including in both decision regions
areas that are likely to contain samples from the wrong class,
thus causing overfitting. Instead, the curved, but more regular,
decision region in the middle better captures the structure of
the underlying distribution.

Underfitting Overfitting

Algorithm Capacity

Training Error

Test Error

Underfitting OverfittingSuitable Capacity

Figure 5. Three possible decision boundaries for a classification problem.
The left and right figures show the underfitting and overfitting scenarios. The
middle figure shows classifier with the proper capacity.

It is interesting to observe that choosing the decision bound-
ary in the middle illustration of Fig. 5 is in agreement with
the Occam’s razor principle, stating that among different and
equally motivated explanations of a phenomenon, one should
choose the simplest one. Of course one should also be careful
not to oversimplify the model, ending up in the underfitting
regime.

As mentioned above, one of the fundamental features that
distinguishes machine learning theory from classical decision
theory is the fact that the distribution underlying the task
to perform is not known. This could lead to the belief that
machine learning algorithms are universal, in the sense that
the attainable performance depend only on how the parameters
of the algorithm are set and on the size of the training set, but
not on the properties of the underlying distribution, and, thus,
on the task to perform. Unfortunately, this belief is disproved
by a fundamental result of machine learning, known as the
no free lunch theorem, basically stating that the test error of
any machine learning algorithm is the same when averaged
over all possible underlying distributions. This means that
there exists no machine learning algorithm that outperforms
any other algorithm at every possible task. Instead, different
algorithms will achieve different performance when applied
to tackle different tasks, i.e. when the underlying distribution
varies.

B. Hyperparameters and Validation Set

Parallel to the parameters that are to be optimized by the
training procedure, machine learning algorithms also have
hyperparameters, i.e. parameters that are not directly set during
the training phase, either because they are difficult to optimize,
or because they should not be learnt from the training set. The
latter is the case with all parameters that directly affect the
capacity of the model. Indeed, if a parameter that affects the
model capacity should be tuned based only on the training set,

12

the result will be that the parameter should be set in order to
minimize the training error as much as possible. However, we
have seen how this would lead to a poor generalization error,
due to overfitting.

To be more specific, anticipating some notions about ANN
to be discussed in deeper detail in the next section, an ANN
is composed of several nodes whose input-output relationship
is defined by some weights and bias terms, which are the
parameters to be tuned during the training phase. On the other
hand, the total number of nodes in the network and the way in
which the nodes are interconnected are hyperparameters that
are considered fixed while the training algorithm is executed.
Besides the difficulty to optimize these discrete parameters, a
critical to problem is that the number of nodes in an ANN
is directly related to the capacity of the network, since more
nodes imply more degrees of freedom. Therefore, if we set this
parameter based on the training set, the answer will be to use
as many nodes as physically possible, thus causing overfitting.

On the other hand, it is also not possible to use the test set to
perform hyperparameter tuning, because all choices pertaining
to the algorithm to be designed must be independent of the
data set that is used to assess the algorithm performance.
Otherwise, the estimation of the generalization error will be
biased. This means that we need a third data set for the purpose
of hyperparameter tuning, the validation set. The validation
set is typically obtained by partitioning the training data into
the training set and the validation set. The training procedure
fixes some values of the hyperparameters and optimizes the
network parameters based only on the training set. Afterwards,
an estimate of the generalization error obtained with the
considered hyperparameter configuration is obtained through
the validation set. This procedure is repeated for different
hyperparameter configurations to identify the best model to
use. After both the parameters and hyperparameters have been
set, the true generalization error is computed using the test
set. The main steps of the whole procedure are summarized
in Algorithm 1.

Algorithm 1 Hyperparameter and parameters tuning
while Error on validation set not satisfactory do

Choose a set of hyperparameters;
Given the chosen hyperparameters run

the learning procedure for parameter
optimization using the training set;

Evaluate the error on the validation
set;
end while

While Algorithm 1 provides a systematic way for training
a machine learning algorithm, it does not address how to
update the hyperparameter configuration in each loop. In
general, there is no simple, algorithmic way to do this, and
indeed hyperparameter tuning is more an art than a science.
In particular, manual hyperparameter tuning is specific to the
task to carry out and some guidelines will be discussed for the
specific case of deep learning in Section III-C2. Nevertheless,
three systematic approaches for automated hyperparameter

selection, that are general enough for many machine learning
techniques, can be identified as follows:
• If the complexity of running the training procedure for

a given hyperparameter configuration allows it, hyperpa-
rameters can be learnt by means of a grid search.

• As a variation of the grid search, a random search has
been shown to provide good performance, while at the
same time significantly reducing the overall complexity
[104].

• A nested learning procedure can be used, in which a
second machine learning algorithm is wrapped around
the algorithm to be trained, with the task of learning the
best hyperparameters for the inner algorithm.

C. Beyond classical machine learning

So far, the general principles at the basis of machine learn-
ing have been introduced, and some well-established machine
learning algorithms have been mentioned. The rest of this
section discusses their inherent limitations, motivating why a
different approach is needed, especially when the complexity
of the task increases.

As discussed, the main challenge of machine learning is
to learn how to generalize to previously unseen inputs. One
could think that in order to reduce the generalization error
one just needs to train the algorithm over a larger amount
of data. In fact, increasing the size of the training set is
surely helpful, but clearly there is a limit, both in terms of
computation and storage capacity, to the amount of data we
can process. Therefore, an essential feature to be concerned
with, is the rate at which the performance of our machine
learning algorithm improves as the training set size grows.
The concept of deep learning will be formally introduced in
the coming section, but Fig. 6 already anticipates how deep
learning is able to improve the performance at a much faster
rate than other machine learning techniques, as the dimension
of the training data increases.

Amount of Training Data

Performance

Deep Learning

Classical Learning

Figure 6. Classical and Deep learning vs. training set size.

It should also be stressed that, instead, for small-to-medium
training set sizes, the relation among deep learning and other

13

machine learning techniques is not well-defined, and in many
cases it turns out that classical machine learning can slightly
outperform deep learning.

How can we explain the behavior of Fig. 6? The key
phenomenon to consider is the so-called curse of dimension-
ality, which refers to the fact that the number of distinct
configurations of a set increases exponentially with the number
of variables describing each element of the set. Recalling the
formal description of a learning algorithm as the map in (3),
it is to be remarked that the dimensionality here does not
directly refer to the dimension of the training set, but instead
to the number of features n describing each element x in
the set of possible inputs X . Nevertheless, it is clear that as
n increases, we need more training samples to successfully
learn the structure of X , thus devising a map F that is
able to achieve low generalization error. The approach of
other machine learning methods to cope with the curse of
dimensionality is based on two main points:

• Assuming prior beliefs about the structure that a good
function F should have, such as the smoothness prior,
i.e. assuming that the function F will not change dras-
tically when evaluated for two neighboring points x1

and x2. However, in high-dimensional spaces even a
very smooth function can vary at a different scale along
different dimensions. Moreover, even assuming that all
the derivatives of the function are similar in the different
directions, the smoothness assumption is reasonable only
when the points x1 and x2 are sufficiently close to each
other. Depending on the magnitude of the derivatives this
might require an unfeasible amount of training data.

• Incorporating task-specific assumptions to perform man-
ual feature selection, i.e. deciding which components
of x are relevant to the specific problem at hand and
performing a customized processing of these features.
However, this process requires the analysis of a realistic
mathematical model for the problem at hand, which might
not be available. Moreover, the settings used for one task
are not general in the sense that they may not apply to
other problems.

Deep learning adopts quite a different approach. It assumes
that the data has been generated by a composition of factors
with a hierarchical order and develops a learning method
that is able to automatically understand the structure of the
underlying distribution, extracting directly from the data the
features which are important to devise a good map F . In
other words, deep learning assumes that some correlations
exist among the behavior of F over different regions of space,
as a result of the structure of the underlying distribution
of the data. This is clearly a more general assumption than
the smoothness prior, which constraints the local behavior
of F in the neighborhood of each point. This has been
shown to enable deep learning to generalize non-locally [105].
Moreover, deep learning is able to understand the structure
of the underlying distribution, without requiring task-specific
assumptions, thus enabling more general-purpose algorithms.
These improvements are possible thanks to the use of ANNs,
which represent the tool used by deep learning techniques to

implement the learning process, as discussed in detail next.

III. DEEP LEARNING BY ARTIFICIAL NEURAL NETWORKS

As anticipated at the end of the previous section, ANNs are
the enablers of deep learning [39], [106], thanks to their ability
to learn complex input-output relationships and statistical
structures directly from the observed data. Following the deep
learning approach, ANNs are organized hierarchically in layers
of elementary processing units, called neurons. More in detail,
a ANN is characterized by:
• An input layer, which forwards the input data to the rest

of the network.
• One or more hidden layers, which process the input data.
• An output layer which applies a final processing to the

data before outputting it.
• Weights and bias terms that model the strength of the

connections among neurons.
If the network has only one hidden layer, it is referred to as
a shallow network, whereas if it has more than one hidden
layer, it is referred to as a deep network, hence the name
deep learning. As discussed in Section III-A, deep networks
are preferred, since they usually require a lower number of
neurons to achieve a given accuracy. It is probably the use
of deep architectures in which multiple neurons process the
information and propagate the result that has motivated the
analogy between ANNs and natural neural networks, i.e. the
human brain, which is also composed of a network of elemen-
tary processing units, the neurons, that elaborate information
and then propagate the results to other neurons.

A first broad classification of ANNs is based on how the
information flows from input to output. Specifically:
• Feed-forward Neural Networks (FNN) are neural net-

works in which each neuron is connected only to the
neurons in the following layer and thus the input data
can only propagate forward, from the input layer to the
output layer, without the possibility of any feedback loop.

• Recurrent Neural Networks (RNN) are neural networks
in which feedback loops are allowed, and the output of
a neuron can become again an input of the same neuron,
as well as of other neurons in the same or in a previous
layer.

It should be mentioned that several neural networks architec-
tures exist within each of the two main categories introduced
above. A notable example is that of Convolutional Neural
Networks (CNNs), to be described in Section III-A1, and
that have been extensively used for image processing and
pattern recognition [107]. Nevertheless, in this work, we have
decided to adopt the broad classification above, because the
distinctions among other neural networks architectures are
somewhat blurry, since different kinds of layers can co-exist in
the same neural network. Instead, a more specific classification
can be made by considering the type of layers composing the
ANN. The most common kinds of layers are the following:
• Fully-connected layer. It is the typical layer to be found

in FFNs and is characterized by the fact that each neuron
of the layer receives an input from all neurons of the
preceding layer, and is connected to all neurons of the

14

Hidden layerInput layer Output layer

Figure 7. Scheme of a deep ANN with L hidden layers and N` units in layer
`, for all ` = 1, . . . , L.

following layer. The input data is linearly processed,
passed through a non-linearity, and then propagated to
the following layer.

• Convolutional layer. It is another kind of layer used in
FFNs, and more precisely in CNNs. Similarly to a fully-
connected layer, it filters the input by a linear operation,
namely a convolution, applies a non-linearity, and then
forwards the result. However, one neuron need not be
connected to all neurons in the preceding and following
layer.

• Pooling layer. It is a layer normally used in CNNs which
operates by dividing the input data into blocks, and then
selecting either the maximum element of each block, or
computing the average of the elements within each block.

• Recurrent layer It is the typical layer of RNNs. After
performing again an affine combination of the input and
passing it through a non-linearity, the output is not just
propagated forward, but a feedback loop is also present.

More details on the operation of the different kinds of layers
are provided in the rest of this section.

A. Feedforward Neural Networks

Here the focus will be on FFNs with fully-connected layers,
which is the quintessential ANN architecture. Instead, convo-
lutional layers will be discussed in detail in Section III-A1.

The general structure of a FFN is depicted in Fig. 7. An N0-
dimensional input vector x0 is fed to the network through the
N0 neurons of the input layer. Afterwards, it passes through
L so-called hidden layers, with Layer ` having N` neurons.
Finally, the (NL+1)-dimensional output is retrieved from the
NL+1 neurons of the output layer. To elaborate, let us denote
by x`−1 the input to the `-th layer of the network. Then, for
all ` = 1, . . . , L + 1 and n = 1, . . . , N`, the output x`(n) of
neuron n in layer ` is obtained as:

x`(n) = fn,`(zn,`) , zn,` = wT
n,`x`−1 + bn,` , (4)

wherein wn,` ∈ RN`−1 with wn,`(k) being the weight of the
link between the k-th neuron in layer `−1 and the n-th neuron
in layer `, bn,` ∈ R is the bias term of neuron n in layer `,
while fn,` is the so-called activation function of neuron n in
layer `. Thus, the processing done by each neuron can be seen
as a two-step procedure in which first an affine combination of

the inputs is computed with weights wn,` and bias term bn,`,
yielding the intermediate term zn,`. Then, the final output is
obtained by applying the activation function fn,` to zn,`.

As for the choice of the activation functions, over the years
several functions have been considered. The first choice was
to use sigmoidal functions

σ(zn,`) =
1

1 + e−zn,`
, (5)

or hyperbolic tangent functions

tanh(zn,`) =
ezn,` − e−zn,`
ezn,` + e−zn,`

. (6)

The sigmoid function is able to produce feasible probability
values, being limited between zero and one, and for this
reason nowadays it is typically used as activation function
of the output layer for applications that require to estimate
a probability. However, its use for the hidden layers is no
longer recommended, due to the fact that it saturates for a
significant portion of its domain, thus having derivatives very
close to zero when the argument is large in modulus. This
causes the so-called vanishing gradient problem, which slows
down the convergence of gradient-based training algorithms.
Another way of looking at the problem is to say that sigmoid
activation functions are able to learn only when the input is
around zero, i.e. in their (approximately) linear region, where
the output of the sigmoid function is sensitive to variations of
the input. Instead, in other regions of its domain the sigmoid
function saturates and the output tends to be approximately
constant even in response to significant changes in the input,
which does not provide much useful learning information.
Similar considerations also hold for the hyperbolic tangent
function, which is linked to the sigmoid function by the
relation: tanh(zn,`) = 2σ(2zn,`)− 1.

Nowadays, the most widely-used choice for the activation
function of the hidden layers is the Rectified Linear Unit
(ReLU) function [108]–[110], defined as:

ReLU(zn,`) = max(0, zn,`) . (7)

ReLU functions are linear whenever the neuron is active,
which makes them easier to optimize. Whenever the neuron
produces a non-zero output, the gradient of the activation
function is constantly equal to one, and no second-order effects
are present. The drawback is that ReLU units do not provide
any useful learning information when their input is negative.
To counter this issue, some refinements of the ReLU function
have introduced a non-zero slope also for negative inputs,
considering the function:

fn,`(zn,`) = max(0, zn,`) + cmin(0, zn,`) . (8)

The Leaky ReLU function sets c = 0.01 as proposed in
[111]; the absolute value rectification approach proposed in
[108] considers c = −1, while the parametric ReLU approach
proposed in [112] treats c as a parameter to be optimized
during the training process.

A further generalization of the ReLU is the exponential
ReLU, which behaves like the ReLU for positive inputs, but
outputs

fn,`(zn,`) = α(ezn,` − 1) , (9)

15

when the input x is negative, with α a scalar typically set to
1, [113].

The discussion about the ReLU function, its generalizations
and how they try to preserve the properties of linear functions,
seems to lead to the conclusion that the best activation func-
tions are linear functions. In fact, linear activation functions
can be considered as far as the output layer is concerned,
to perform specific operations such as computing arithmetic
averages. However, their use in the hidden layers is not
encouraged, as they might prevent the network from learning
non-linear maps. For example, in the extreme case in which all
activation functions were linear, the input-output relation of the
FNN would reduce to being always linear, when instead one of
the strengths of neural networks lies in their ability to combine
multiple non-linearities to emulate virtually any input-output
map. This fact was formally established in [114], stating
that any deterministic continuous function over a compact set
can be approximated arbitrarily well by a single-layer FNN
with enough neurons and sigmoidal activation functions1. This
fundamental result is known as the universal approximation
theorem of FNNs and was later extended to a broader class
of activation functions, including the ReLU function and
its generalizations, in [115]. Nevertheless, despite its high
theoretical importance the universal approximation theorem is
not constructive, because:
• it does not establish how many neurons are required

in order to obtain the desired level of approximation
accuracy.

• it does not establish whether it is more convenient to use
a shallow or deep architecture in order to improve the
approximation accuracy or reduce the number of required
neurons.

• it does not establish how to configure the FNN in order
to obtain the desired approximation accuracy.

An answer to the first question was provided in [116], which
provides bounds for the number of nodes in a shallow network
to obtain a given approximation accuracy. Unfortunately, the
bounds show that in general an exponential number of nodes
is required.

As for the second issue, deep architectures seem to require
a lower number of nodes, even though a formal proof of
this result in a general setting is still an open problem.
Nevertheless, some available results prove that certain classes
of functions can be represented more efficiently by increasing
the network depth. For example in [117] it is shown that the
number of regions of a piece-wise linear function that can
be reliably represented scales exponentially with the number
of layers L. Moreover, many empirical results have shown
that deep architectures provide lower generalization error than
shallow architectures [20, Sec. 6.4.1].

Finally, the third issue is perhaps the most problematic.
Although the universal approximation theorem ensures that
there exists a FNN able to learn the desired map, it provides
no indication as to how to configure the weightswn,` ∈ RN`−1

and bias bn,` ∈ R of each node to this end. This shows

1The result is proved assuming squashing activation functions, which
include sigmoid as special cases.

Y1,1

YN�F+1,1

Y1,N�F+1

Figure 8. 3D-Convolution in convolutional neural networks. The input data is
arranged in an N×N×Nc matrix, which is filtered by a sliding F×F×Nc

matrix, yielding a N − F + 1×N − F + 1 output matrix.

how configuring the parameters of an ANN represents the
most critical step when employing deep learning. The training
process of ANNs will be addressed in detail in Section III-C.

1) Convolutional neural networks: CNNs are a kind of
FFNs that have been established as the main tool for image
processing, and in general for processing data with a spatial
structure. The main ingredient of CNNs is the 3D-convolution
operation, which amounts to a particular linear processing of
the input data. For this reason, CNNs can be considered as a
sub-category of FFNs.

When using a CNN, the input data is assumed to be
organized in a multi-dimensional matrix X with dimensions
N × N × Nc, where the parameter Nc is called the number
of channels and is typically equal either to Nc = 3 when
color images are processed, or to Nc = 1 when black-and-
white images are processed. Each node of a convolutional layer
is also represented as a multi-dimensional matrix W with
dimensions F ×F ×Nc (with F ≤ N) containing the weights
of the node. Then, the 3D-convolution operation outputs a bi-
dimensional matrix Y , with dimensions N−F+1×N−F+1,
obtained by sliding the weight matrix over the input matrix,
computing each time the cross-correlation between the weight
matrix and the corresponding chunk of the input matrix, as
depicted in Fig. 8. Mathematically, the (`−m)-th element of
the output matrix Y is expressed as:

Y `,m =

F∑
i=1

F∑
j=1

Nc∑
k=1

W i,j,kXi+`,j+m,k , (10)

It can be seen that, as already mentioned, each element
of the output matrix is obtained through a cross-correlation
rather than a convolution, even though the term convolution is
universally used in the ANN jargon to refer to the operation
in (10). In the following, we will embrace this terminology.
After computing (10) for all ` and m, the output of the node
is obtained by first summing a scalar bias term b and then ap-
plying an activation function to each component of Y , like in
a traditional fully-connected layer. Finally, the bi-dimensional
output of each node in the layer are stacked together to form
a new matrix with dimensions N −F + 1×N −F + 1×NF ,
with NF the number of nodes in the convolutional layer, that
becomes the input of the next layer of the CNN.

16

It is interesting to observe that (10) can be rewritten as a
scalar product just like in a fully-connected layer, upon vec-
torizing the input and weight matrices. For example, denoting
by x and w the N2Nc × 1 and F 2Nc × 1 vectors obtained
by vectorizing X and W , the output element Y 1,1 can be
obtained as

Y 1,1 = xT w̃ , (11)

wherein w̃ = [w 0(N2−F 2)Nc]. All other elements of Y can
be obtained in a similarly way, upon considering suitably zero-
padded version of w. As a result, each node of a convolutional
layer is equivalent to (N − F + 1)2 nodes of a fully-
connected layer, in which the weights of many connections
are permanently set to zero. This sparsity of the connections
is one of the major strengths of CNNs, since it enables to
process very large data using a relatively small number of
parameters, which helps avoid overfitting. On the other hand,
the underlying assumption that justifies the use of CNNs is
the presence of strong spatial correlations in the input. Only
if this is fulfilled, as is typically the case in image processing,
it is possible to apply the same filter to different parts of the
input matrix, thus avoiding unnecessary connections among
the neurons.

The operation defined in (10) is the normal convolution
employed in CNNs. In some cases, it can be slightly modified
by applying what are called padding and stride:
• Padding. When computing (10), the components at the

border of the input matrixX are used less frequently than
the components in the middle. In order to avoid this, it is
possible to apply (10) to a zero-padded version of X , in
which P rows and columns of zeros are appended to X .
Then, the zero-padded input matrix will have dimensions
N + 2P × N + 2P , and the output matrix will have
dimensions (N+2P −F +1)×(N+2P −F +1). Then,
if F is odd, choosing

P = (F − 1)/2 , (12)

yields an output with the same dimensions as the input.
• Stride. The convolution operation described in (10) slides

the weight matrix W over the input matrix moving by
one position at each step. This can be generalized by
sliding the weight matrix by S positions at each step,
where S is called the stride parameter. In this case,
assuming also a padding P is used, the output matrix
will have dimensions:⌊

N + 2P − F
S

+ 1

⌋
×
⌊
N + 2P − F

S
+ 1

⌋
. (13)

While the convolution operation is the defining feature of
CNNs, another widely used operation in a CNN is the Pooling.
Unlike the convolution, which is individually performed by
each node of layer before the different bi-dimensional matrices
are combined together, the pooling is performed at the layer
level and operates separately on each channel of the input
matrix X . Two types of pooling are commonly used:
• Max Pooling. For each channel of the input matrix
X , say Xnc = X(:, :, nc), a Max Pooling layer with

Y1,1

Y2,1

Y1,2

Figure 9. Pooling with S = 1 of a single channel of a 4× 4×Nc input by
a 2× 2 filter. From each 2× 2 sub-matrix of the input, either the maximum
element or the average are computed.

parameter F selects the maximum element out of each
F × F sub-matrix of Xnc .

• Average Pooling. For each channel of the input matrix
X , say Xnc = X(:, :, nc), an average Pooling layer with
parameter F computes the arithmetic average of each F×
F sub-matrix of Xnc .

In both cases, a stride S can also be used, meaning that
the sliding window over which the maximum or average are
computed moves by S positions each time. An example of
pooling with S = 1 is shown in Fig. 9.

As a final remark before concluding this section, it should
be mentioned that practical FFNs are composed by a mixture
of convolutional, pooling, and fully-connected layers, normally
performing convolutions and pooling in the first layers, thus
decreasing the size of the data, and employing fully-connected
layers at the end once the dimension of the data has become
more manageable.

B. Recurrent neural networks

If CNNs are meant to process data exhibiting spatial corre-
lations, RNNs are designed to work with temporal sequences
of data with correlated samples. As already anticipated, the
main difference compared to FFNs is that the information does
not only propagate forward, but loops are allowed. More in
detail, each layer of a RNN may receive as input also its own
activation value. To elaborate, using a similar notation as in
Section III-A, the output x

[t]
` (n) of neuron n in layer ` at time

t is obtained as:

a
[t]
` (n) = fn,`(w

T
n,`x

[t]
`−1 + w̃T

n,`a
[t−1]
` + bn,`) (14)

x
[t]
n,` = gn,`(w̄

T
n,`a

[t]
` + b̄n,`) , (15)

wherein fn,` and gn,` are node-dependent activation functions.
Thus, it can be seen that each node in a recurrent layer com-
bines by different weights not only the current input, but also
the intermediate vector a` computed in the previous step. This
introduces a correlation among the different computations that
is beneficial to exploit the correlation in the input sequence.
Moreover, a recurrent layer has two activation functions, f
and g. Popular choices here are to use the hyperbolic tangent
or the ReLU for f and the sigmoid function for g.

The architecture described above is the general architecture
of recurrent layers. Several variants exist that are commonly
used in real-world RNNs. In addition, we stress that a deep

17

RNN typically has just a few recurrent layers, and it is possible
to have hybrid architectures composed of some initial recurrent
layers, followed by feed-forward layers. Nevertheless, it is not
the main purpose of this work to provide a detailed account
of RNNs architectures, which can be found in specialized
references on ANNs, like [20].

C. Training Neural Networks

Training a neural network is the process that tunes the
parameters2 wn,` ∈ RN`−1 and bn,` ∈ R in a supervised
learning fashion in order for the FNN to learn the desired
input-output relation. To elaborate, let us consider a training
set composed of NTR input samples with the corresponding
desired output, namely

STR =
{(

x
(1)
0 ,x

(1)
L+1

)
, . . . ,

(
x
(NTR)
0 ,x

(NTR)
L+1

)}
. (16)

Moreover, for each layer ` = 1, . . . , L + 1, let us stack the
weight vectors into the N`−1 × N` matrix W ` and the bias
terms into the N` × 1 vector b`, respectively defined as

W ` = [w1,`, . . . ,wN`,`] , (17)

b` = [b1,`, . . . , bN`,`]
T
. (18)

The actual output of the FNN when the input is the nt-th
training sample x

(nt)
0 will depend on the network weights and

bias terms, and is denoted as:

x̂
(nt)
L+1

(
{W `, b`}L`=1

)
, ∀ nt = 1, . . . , NTR . (19)

The goal of the training algorithm is to optimize the network
weights and bias terms in order to minimize the loss incurred
between the actual output x̂

(nt)
L+1 in (19), and the desired

output x
(nt)
L+1 defined by the training set in (16), for all

nt = 1, . . . , NTR, as quantified by the loss function

L
(
{W `, b`}L`=1

)
=

1

NTR

NTR∑
nt=1

L
(
x
(nt)
L+1, x̂

(nt)
L+1

(
{W `, b`}L`=1

))
,

(20)
wherein L(x

(nt)
L+1, x̂

(nt)
L+1) is an individual loss function that

models the loss between x̂
(nt)
L+1 and the desired output x

(nt)
L+1.

As for the expression of the individual loss function, a natural
choice is the mean square error, namely:

L(x, x̂) = MSE(x, x̂) =

N`+1∑
i=1

(x(i)− x̂(i))2 . (21)

The MSE has the advantage of being applicable to virtu-
ally any scenario, and enables a simple computation of its
derivatives. However, in some cases it can slow down the
learning algorithm. Instead, faster convergence of the learning
algorithm is typically observed by using the cross-entropy loss
function, defined as

L(x, x̂)=H(x, x̂)=−
N`+1∑
i=1

x(i) log(x̂(i))+(1−x(i)) log(1−x̂(i)).

(22)

2For ease of notation, and without loss of generality, this section focuses
on FFNs with fully connected layers. Results directly apply to CNNs and can
be extended to RNNs with minor modifications.

However, the applicability of (22) is not so wide as that of the
MSE function. Indeed, clearly (22) applies only to those cases
in which both the desired and actual output data belong to the
interval [0, 1], and thus can be interpreted as distributions of
random variables. A notable case in which this holds true is
when sigmoid activation functions are used in the output layer,
aiming at estimating a probability distribution. Assuming that
both x and x̂ have entries in [0, 1], the cross entropy in (22)
represents a measure of the divergence between x and x̂, since
the cross entropy of two distributions p and q is equal to the
Kullbach-Leibler divergence between p and q plus the entropy
of p [118]. Applying this result, (22) can be rewritten as

H(x, x̂)=−
N`+1∑
i=1

x(i)log(x̂(i))+(1−x(i))log(1−x̂(i))

= −
N`+1∑
i=1

x(i) log

(
x̂(i)

x(i)

)
+(1−x(i)) log

(
1−x̂(i)

1−x(i)

)

= −
N`+1∑
i=1

x(i) log(x(i)) + (1− x(i)) log(1− x(i))

=

N`+1∑
i=1

KL(x(i), x̂(i)) +Hb(x(i)) , (23)

with KL(·, ·) and Hb(·) denoting Kullbach-Leibler divergence
and binary entropy, respectively. Then, since Hb(x) does not
depend on the network parameters, minimizing the cross-
entropy in (22) is equivalent to minimizing the Kullbach-
Leibler divergence between the desired and actual output.

In any case, regardless of the chosen performance metric,
the training process mathematically amounts to solving the
optimization problem3

min
1

NTR

NTR∑
nt=1

L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
(24a)

s.t. W ` ∈ RN`−1×N` , ∀ ` = 1, . . . , L+ 1 (24b)

b` ∈ RN`×1 , ∀ ` = 1, . . . , L+ 1 , (24c)

wherein W = {W `}L`=1, b = {b`}L`=1. However, it is also
to be stressed that the end-goal is not so much to minimize
the cost function of (24), i.e. the training error, but rather to
ensure a low generalization gap. Tuning the parameters of the
network to achieve a low training error is a prerequisite to
achieving a low test error, but an equally important task is
that of tuning the network hyperparameters, (e.g. the number
of layers L, the number of neurons per layer N`, the size of
the training set NTR), to fit the training data, avoiding both
underfitting and overfitting. The coming Subsection III-C1
discusses the design of suitable algorithms to tackle (24) in an
efficient and effective way, while Subsection III-C2 provides
some guidelines for hyperparameter tuning in FNNs.

1) Parameter tuning - Tackling (24): Traditionally, in
optimization theory the critical property that marks the wa-
tershed between problems that can be solved with affordable
complexity, and problems that in general require an unfeasible

3In case of RRNs, an additional sum over the time dimension is present to
account for the loss over time of each training sample.

18

complexity, is convexity. A convex problem, defined as a
problem whose objective and constraint functions are convex
in the optimization variables [119]–[121], enjoys several useful
properties, among which the following two have played a
critical role in enabling the development of a consolidated
theory of convex optimization, featuring practical algorithms
able to provide theoretical optimality guarantees:

• [P.1]: Every stationary point of a convex function is
a global minimum, i.e. the minimization of a convex
function can be performed by simply looking for a
point where the gradient of the function vanishes. This
property establishes that first-order optimality conditions
are necessary and sufficient for convex functions.

• [P.2]: For any ε > 0, the complexity required to find an
ε-optimal solution of a generic convex problem with n
variables scales in the worst case as the fourth power of n
and as log

(
1
ε

)
[121, Section 5]. This property establishes

that convex problems can be solved with polynomial
complexity in the number of variables.

Unfortunately, neither of the two properties above holds for
Problem (24) because the objective function is not convex
with respect to the optimization variables, due to the presence
of multiple layers combining several non-linear activation
functions. This implies that the cost function of Problem (24)
might have stationary points that are either local minima, or
local maxima, or saddle points, a circumstance that becomes
more and more likely as the dimensionality of the problem
increases. In fact, it is quite typical for fairly deep model
to have a very large number of points where the gradient
vanishes, but that are not global minima. Moreover, the com-
plexity required in order to find the global solution of Problem
(24) is not guaranteed to be polynomial, scaling in general
exponentially with the number of variables, which is equal to∑L+1
`=1 N`(N`−1 + 1). As a result, finding the global solution

of Problem (24) appears a very challenging task, especially
considering the in realistic FNNs, the number of nodes and
layers can be fairly large.

Having said this, it might seem hopeless to perform an
effective and efficient training of any reasonably-sized FNNs.
Fortunately, this is not the case and several efficient algorithms
exist to effectively train FNNs. To understand why the non-
convexity of (24) does not pose a fundamental problem, one
must recall that, although the training process amounts to
solving an optimization problem, machine learning differs
from pure optimization theory, in that the ultimate goal is
not so much to minimize the training error, but rather to
minimize the generalization error. As discussed in Section
III, the training error lower bounds the generalization error,
but there is no guarantee that a lower training error will also
result in a lower generalization error. Actually, aiming for a
very low training error typically causes overfitting. Therefore,
when tackling Problem (24), it is surely desirable to find a
configuration of parameters that yield a low training error, so
as to avoid underfitting, but it is also not necessary to pursue
the global minimization of the training error, which would
most likely lead to overfitting. Any training algorithm will
aim at progressively reducing the training error, stopping as

soon as the generalization error evaluated over the validation
set is below a desired threshold, regardless of the value of the
training error. It is not uncommon that a training algorithm
stops when the training error is relatively large compared to
its global minimum.

As a result, the presence of stationary points of the cost
function of Problem (24) would be a major issue only if the
training algorithm were likely to converge to a suboptimal
point yielding a too high training error, thus causing under-
fitting. A definitive formal proof that this is not the case is
still an open research problem, but extensive experimental
evidence has shown that, for sufficiently large neural networks,
most local minima lead to a satisfactory training error [122]–
[125]. In addition, especially in higher-dimensional spaces,
local minima and local maxima of random functions are
much less frequent compared to saddle points [123]. This
phenomenon has been proved for some specific shallow neural
networks in [126], while some theoretical arguments as well
as experimental evidence that a similar behavior holds also in
deep networks is provided in [122], [123], [125]. Therefore,
the main issue related to the non-convexity of Problem (24)
is related not so much to local minima, but rather to the
presence of saddle-points. In this respect, empirical evidence
provided in [124] has shown how first-order methods based on
gradient descent are able to escape saddle points. This behavior
can be theoretically justified by observing that gradient-based
methods are not explicitly designed to find point with zero
gradient. Rather, they are designed to reduce the cost function
moving in the direction of maximum decrease which is pointed
by the gradient. Of course, this implies that the algorithm stops
if a point with rigorously zero gradient is reached, but it makes
the algorithm capable of moving away from the neighborhood
of a saddle point even for relatively small step-sizes. On
the other hand, second-order method like Newton’s method
do not share this property, having a higher probability of
being stuck around saddle points. A training algorithm based
on an approximate Newton’s method with a regularization
strategy is the Levenberg-Marquardt method [127], [128],
which has been found to have good performance as long as
the negative eigenvalues of the Hessian of the cost function
are relatively close to zero. Instead, a recent modification
of Newton’s method, designed to be more robust to the
saddle-point problem in FNNs, has been introduced in [123].
However, despite enjoying stronger convergence properties in
the convex case, at present the use of second-order method to
tackle the non-convex Problem (24) is not so well-established
as the use of first-order methods based on gradient descent.
For this reason, the rest of this section will focus on presenting
the main first-order training methods for FNNs.

Backpropagation algorithm. The first problem that we
encounter towards the implementation of a gradient-based
training algorithm for FNNs is the complexity related to the
computation of the gradient. In large neural networks with
many neurons and large training sets, direct computation of
the derivatives of the training error in (24a) with respect to
all network weights and bias terms would require an unman-
ageable complexity. Luckily, a fast algorithm to compute the
gradient of the training error was developed in [129]. It makes

19

a clever use of the chain rule from multivariable calculus, and
was called backpropagation algorithm, for reasons that will
become clear after describing its operation.

To begin with, let us observe that the derivative of (24a) is
written as the average of the derivatives of the individual cost
function L(xL+1, x̂L+1(W , b)) over the training set. In fact,
the backpropagation algorithm provides a way of computing
the derivatives of L(xL+1, x̂L+1(W , b)). Specifically, given
a training input sample x0, the first step of the backpropaga-
tion algorithm is to compute the corresponding actual output
x̂L+1(W , b). This step is referred to as forward propagation
because it propagates the input forward through the network,
computing (4) for all n and `.

After completing the forward propagation, the derivative of
the cost function with respect to zn,L+1 can be computed as

∂L
∂zn,L+1

=
∂L

∂xL+1(n)
f
′

n,L+1(zn,L+1) , ∀ n = 1, . . . , NL+1

(25)
The following step computes the derivatives of the cost
function with respect to zn,`, for all ` = L,L − 1, . . . , 1,
in a recursive way. This is the step that gives the name to
the algorithm, since the derivatives are computed backwards,
proceeding from the last to the first layer. Specifically, it holds4

∂L
∂zn,`

=

N`+1∑
k=1

∂L
∂zk,`+1

∂zk,`+1

∂zn,`

=

N`+1∑
k=1

∂L
∂zk,`+1

wk,`+1(n)f
′
(zn,`) , (26)

which can be easily computed based on the derivatives with
respect to zk,`+1, k = 1, . . . , N`+1 obtained from Layer `+1.
Finally, based on (26) and recalling (4), the derivatives with
respect to the weights and bias terms are readily obtained as:

∂L
∂wn,`(k)

=
∂L
∂zn,`

x`−1(k) , (27)

∂L
∂bn,`

=
∂L
∂zn,`

. (28)

Thus, the backpropagation procedure can be stated as in Al-
gorithm 2. Its strength lies in exploiting the recursive structure
of the derivatives to compute, which enables to obtain them by
simply computing a forward pass through the network, plus
the corresponding backward pass, that has a similar complexity
as the forward pass. Instead, any approach that tried a direct
computation would require evaluating the cost function for
each derivative to compute, thus having to perform a number
of forward passes equal to the number of weights and bias in
the network, which, for large networks, leads to an unfeasible
computational complexity.

Stochastic Gradient Descent. While the backpropagation
algorithm is computationally more convenient compared to
direct derivative computation, its complexity still scales with
the size of the training set. In order to implement Algorithm 2,
one must forward-propagate and backward-propagate all NTR

4Recall that the derivative with respect to x of the function g(y(x)),
with y(x) = [y1(x), . . . , yI(x)], is given by

∑I
i=1(∇yg)T Jxy, where

Jx denotes the Jacobian operator with respect to x.

Algorithm 2 Backpropagation Algorithm.
for nt = 1→ NTR do

Training input x
(nt)
0 with desired

output x
(nt)
L+1;

Forward Propagation: Compute the actual
output x̂

(nt)
L+1 by (4) for all ` = 1, . . . , L+ 1;

Backward Propagation: Compute ∂L
∂zn,`

by (25)
and (26) for all ` = L+ 1, . . . , 1;

Compute (27) and (28) for every weight
wn,`(k) and bias term bn,`;
end for
∇W L(W , b) = 1

NTR

∑NTR
nt=1∇W L(x

(nt)
L+1, x̂

(nt)
L+1(W , b));

∇bL(W , b) = 1
NTR

∑NTR
nt=1∇bL(x

(nt)
L+1, x̂

(nt)
L+1(W , b));

samples in the training set. This poses a complexity issue
since typically large training sets are used by ANNs. More in
general, any algorithm that tried to compute the true gradient
of the cost function of Problem (24), i.e.

∇L(W , b) =
1

NTR

NTR∑
nt=1

∇L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
, (29)

would have a complexity proportional to NTR. To address this
issue, state-of-the-art training algorithms for FNNs employ a
variant of the gradient descent algorithm known as Stochastic
Gradient Descent (SGD) [130]. While the standard (or de-
terministic) implementation of the gradient descent requires
computing (29), the stochastic variant of the gradient descent
algorithm computes an estimates of (29) based on a randomly-
selected subset of the entire training set, called mini-batch. In
more details, denoting by SSGD the set of indexes associated
to the selected mini-batch, and by NS the cardinality of SSGD,
an estimate of the gradient is given by:

∇̂L (W , b) =
1

NS

∑
nt∈SSGD

∇L
(
x
(nt)
L+1, x̂

(nt)
L+1 (W , b)

)
. (30)

Each time a gradient descent step is taken, the estimated
gradient (30) is evaluated based on a new, randomly selected
set SSGD, and used in place of the true gradient. The overall
procedure is provided in Algorithm 3.

Algorithm 3 Stochastic Gradient Descent for FNNs training.
Set ε > 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) by Algorithm 2;
W = W − α∇̂L(W , b);
b = b− α∇̂L(W , b);

end while

In Algorithm 3 it is not explicitly stated how to set the step-
size α. In the context of machine learning, α is usually referred
to as the learning rate as it controls how fast the algorithm
reduces the cost function, and thus learns. The learning rate is
a key parameter of the SGD algorithm and must be carefully
selected. While the traditional gradient descent can use a fixed
α and converges as long as α is not too large, the SGD uses

20

a variable αk to be used in iteration k, due to the inherent
deviation of (30) from the true gradient. More formally, a
sufficient condition for the convergence of Algorithm 3 is:

∞∑
k=1

αk =∞ ,

∞∑
k=1

α2
k <∞ (31)

A common approach is to update αk for the first t iterations
according to the formulas:

αk =

(
1− k

t

)
α0 +

k

t
αt , for k ≤ t , (32)

while keeping α constant after the t-th iteration. Typically,
αt should be roughly one hundredth of α0, but in practice
the parameters t, αt, and α0 are typically chosen by trial and
error monitoring the error obtained over the validation set for
different configurations of parameters.

Two more remarks concerning Algorithm 3 are in order.
Remark 1: The computational complexity of SGD depends

on the size NS of the mini-batches. If NS = NTR the
algorithm reduces to standard gradient descent, also called
deterministic or batch gradient descent. Instead, if NS = 1,
the algorithm is also called online gradient descent. Typically,
SGD uses 1 < NS < NTR and the choice is also dictated
by the particular hardware where the algorithm runs, since
too low values of NS may underutilize modern multi-core
architectures. Also, some architectures, e.g. GPUs are more
efficient when NS = 2n, with n usually chosen in the range
from 16 to 256.

Remark 2: Since the SGD operates based only on an
estimate of the true gradient, it typically requires more itera-
tions than its deterministic counterpart to converge. However,
each iteration is computationally much faster and the total
number of computations required to reach convergence is
much lower than that of the deterministic gradient descent
method. In particular, SGD has a complexity per update that
does not scale with the total size of the training set NTR,
since it might converge also without having to pass through
the entire training set. On the other hand, typically several
passes through the training set, called epochs, are required to
achieve satisfactory training results.

Momentum for Stochastic Gradient Descent. One draw-
back of SGD is that learning can be sometimes slow due to
the fact that only an estimate of the gradient is computed in
each iteration. The method of momentum is a general strategy
in optimization theory [131], that can be used to accelerate the
learning process. The basic idea of the momentum algorithm
is to perform the gradient update by an exponentially decaying
moving average, as stated in Algorithm 4.

Algorithm 4 introduces the new parameter v, which is called
velocity, in analogy with the fact that it controls the velocity
with which the updates move through the parameter space.
Due to the presence of the velocity term and to the exponential
average of multiple gradient points, the magnitude of the
step depends on the magnitude of the sequence of gradients,
and also on how aligned these gradients are. This tends to
smooth out the oscillations of the standard SGD algorithm.
The velocity v represents the cumulative effect of the past
gradients, while the term δ weighs the relative importance of

Algorithm 4 Stochastic Gradient Descent with Momentum for
FNNs training.
Set ε > 0, v � 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) by Algorithm 2;
v = δv − α∇̂L(W , b);
W = W + v;
b = b+ v;

end while

the current gradient with respect to the cumulated gradient.
The larger δ ∈ [0, 1) is with respect to α, the more the past
gradients affect the direction of the update. If all the gradients
of the sequence were equal to ∇̂L̄, the updates will accelerate
in the direction of the common negative gradient until reaching
a limit velocity

v∞ =
ε‖∇̂L̄‖
1− δ

. (33)

Thus, the parameter δ determines the relative speed of the
updates compared to the SGD method without momentum.
Common values of δ are 0.5, 0.9, and 0.99, and it is also
desirable to adapt δ as well as α iteration after iteration,
similarly to what is done for the basic SGD method.

Nesterov Momentum for Stochastic Gradient Descent.
A variant of the momentum for SGD appeared in [132].
Following the approach of Nesterov’s gradient method [133],
the idea is to compute the estimate of the gradient taking into
account the velocity term, as shown in Algorithm 5.

Algorithm 5 Stochastic Gradient Descent with Nesterov’s
Momentum for FNNs training.
Set ε > 0, v � 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) evaluated at W + δv and b+

δv by Algorithm 2;
v = δv − α∇̂L(W + δv, b+ δv);
W = W + v;
b = b+ v;

end while

Nesterov’s momentum enjoys several pleasant properties
in a convex scenario, such as a quadratic convergence rate.
However, these advantages are not guaranteed to hold in non-
convex scenarios as those faced when training FNNs.

AdaGrad algorithm The AdaGrad algorithm belongs to the
class of gradient-descent algorithms that adapt the learning rate
based on the cumulated gradient evaluated over multiple mini-
batches. Specifically, the AdaGrad scales the learning rate by a
factor that is inversely proportional to the sum of the gradients
for all used mini-batches [134]. The effect of this strategy
is that parameters with larger partial derivatives of the cost
function decrease more rapidly than the parameters with a
smaller partial derivatives. The AdaGrad algorithm is reported
in Algorithm 6, with the parameter δ being a small number

21

(typically of the order of 10−7), introduced to avoid a division
by zero when updating the parameters.

Algorithm 6 AdaGrad algorithm for FNNs training.
Set ε > 0, β > 0, r = 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) by Algorithm 2;
r = r + ∇̂L(W , b)� ∇̂L(W , b);
W = W − α

β+
√
r ∇̂L(W + δW , b+ δb);

b = b− α
β+
√
r ∇̂L(W + δW , b+ δb);

end while

RMSProp algorithm. AdaGrad algorithm enjoys several
pleasant properties in the convex case. However, when dealing
with non-convex problems, it has been empirically observed
that summing over all squared gradients used in the training
process can cause a premature and excessive decrease of the
learning rate. As a consequence, the learning rate might have
become already too small when the algorithm finally finds
a region around a (local) minimum of the cost function.
The RMSProp algorithm aims at improving this drawback
of AdaGrad, by introducing a moving weighted average of
the gradients to reduce the relevance of gradients observed
many iterations before. The formal procedure is reported in
Algorithm 7 and can be readily modified to include the use of
Nesterov’s momentum to accelerate convergence.

Algorithm 7 RMSProp Algorithm for FNNs training.
Set ε > 0, β > 0, ρ ∈ (0, 1), r = 0, W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) by Algorithm 2;
r = ρr + (1− ρ)∇̂L(W , b)� ∇̂L(W , b);
W = W − α

β+
√
r ∇̂L(W + δW , b+ δb);

b = b− α
β+
√
r ∇̂L(W + δW , b+ δb);

end while

Adam algorithm. The Adam algorithm was introduced
in [135], and is based on the application of momentum to
the RMSProp method. However, the momentum technique is
used with a different flavor from the conventional momentum.
Specifically, the Adam algorithm employs both the first and
second moment of the gradient estimated in each mini-batch.
Moreover, Adam applies a correction term to both first and
second moments, scaling them by a factor approaching one as
the algorithm progresses. The procedure is formally stated in
Algorithm 8.

As far as Adam Algorithm is concerned, the suggested
value for β is 10−8, whereas the two weighting parameters
ρ1 and ρ2 are suggested to be initialized to 0.9 and 0.999.
Nevertheless, although Adam is usually quite robust to the
choice of the hyperparameters, sometimes the default values
need to be adjusted to obtain good convergence properties.

Parameters initialization. One critical point of any train-
ing algorithm is the initialization of the parameters, and in

Algorithm 8 Adam Algorithm for FNNs training.
Set ε > 0, β > 0, ρ1, ρ2 ∈ (0, 1), s = 0, r = 0, t = 0,
W , b;
while Validation Error larger than ε do

Sample a random mini-batch SSGD;
Compute (30) by Algorithm 2;
t = t+ 1;
s = ρ1s+ (1− ρ1)∇̂L(W , b);
r = ρ2r + (1− ρ2)∇̂L(W , b)� ∇̂L(W , b);
ŝ = s

1−ρt1
;

r̂ = r
1−ρt2

;

W = W − αŝ
β+
√
r̂
∇̂L(W + δW , b+ δb);

b = b− αŝ
β+
√
r̂
∇̂L(W + δW , b+ δb);

end while

particular of the weights5 W . Given the non-convexity of
the problem, the training algorithm will converge to some
suboptimal point, and thus a suitable initialization point can
make the difference between converging to an efficient or
inefficient suboptimal point. Unfortunately, the design of
improved initialization strategies for neural networks is a
little understood topic. Consolidated approaches from pure
optimization theory should be applied with caution, since they
focus on obtaining a low cost function, i.e. a low training error,
but there is no guarantee that this will also translate into a low
generalization error.

Presently, two general rules are known concerning the
initialization of the network parameters:
• Two hidden nodes connected to the same input and with

the same activation function should have different initial
parameters. This is needed to avoid any redundancy, since
otherwise any deterministic algorithm would update the
parameters of these two nodes in the same way.

• All matrices W ` should be initialized to full-rank matri-
ces, since otherwise some patterns might be lost in the
parameters null-space.

These two guidelines motivate a random initialization of the
parameters. Accordingly, initialization values are typically
chosen as independent random variables, following either the
Gaussian or uniform distribution, but a critical issue is how
to choose the parameters of these distributions. These choices
affect the initial scale of the parameters, which can have a
significant impact on the generalization error. Larger initial
weights are able to suppress redundancy more effectively, but
on the other hand might cause vanishing gradients due to
the saturation of sigmoidal activation functions, as well as
other numerical problems. In [136] it is proposed to initialize
the weights of Layer ` following a uniform distribution in
[− −6

N`+N`−1
, −6
N`+N`−1

]. Instead, [122] recommends initializing
the weights to random orthogonal matrices, that are scaled by
a specific gain factor depending on the particular non-linearity
used in each layer. In [137] it is shown that by properly
choosing the gain factor, the orthogonality assumption of the

5The initialization of the bias terms b has been found to have a more limited
impact on the final performance.

22

weight matrices can be relaxed. In [138] a sparse initialization
strategy is proposed in which each unit is initialized to have
a pre-defined number of non-zero weights.

Regularization. When training an FNN it should always
be kept in mind that the ultimate goal is to minimize the test
error, rather than the training error. To this end, an essential
technique is to perturb the training process so as to reduce
the capacity of the neural network, thus avoiding overfitting.
Any strategy aimed at reducing the test error at the expense
of the training error is a regularization strategy. It has been
found that it can be more effective in reducing the test error
to apply a regularization strategy to an ANN with a high
capacity, rather than trying to directly tune the size of the
model in terms of number of layers and nodes. Over the years,
several regularization methods have been proposed, and the
most widely used ones are discussed here.

a) Lp regularization. One main regularization approach is
to add to the cost function of Problem (24) a perturbation term
proportional to the p-th power of the Lp norm of the weights.
This leads to modifying the cost in (24) into

Lr(W , b) = L(W , b) + φ‖W ‖pp , (34)

wherein φ ∈ [0,∞) is a hyperparameter that weighs the
relative contribution of the norm penalty term relative to
the standard cost function. It should be stressed that the
regularization term depends only on the weights and not also
on the bias terms. This is because the weights have a more
significant impact on the test error, as they directly link the
input and output of a node, whereas the bias terms only
directly affect the output. Thus, regularizing the weights is
expected to be more important than regularizing the bias terms,
which would only add to the complexity of the training process
without bringing much improvement. This intuition has been
experimentally confirmed in many research works over the
years and motivates the current practice in neural networks to
perform only weights regularization.

Among the different norms that can be considered in
(34), the most widely used is the L2 norm. This type of
regularization is also called weight decay because it can be
seen to reduce the magnitude of the weights, especially for
larger φ. This results in limiting the impact of many network
connections on the final output, thereby reducing the network
capacity. Moreover, reducing the magnitude of the weights
causes sigmoidal or hyperbolic tangent activation functions to
operate in their linear regions, thus retaining the advantages
of a linear model.

Another widely used regularization norm is the L1 norm.
In comparison to L2 regularization, L1 regularization tends
to produce a more sparse weight matrix W , in which many
connections in every layer are effectively turned off. Besides
reducing the network capacity, this also reduces the memory
required to store the model.

b) Early stopping. Perhaps the simplest form of regulariza-
tion is represented by the early stopping technique. All training
algorithms are designed to minimize the training error in (24)
iteration after iteration. However, recalling also Fig. 4, the
validation error initially decreases together with the training
error, but at some point tends to increase again. Thus, the

idea of early stopping is to stop the training phase when the
validation error reaches its minimum value. In practice, the
network parameters are saved after each gradient update and
when the validation error has not improved for a pre-specified
number of iterations, the training algorithm stops and the
parameters corresponding to the lowest observed validation
error are returned. It is observed in [139] and [140] that
limiting the number of training iterations t reduces the volume
of parameter space reachable from the initial parameters,
thereby reducing the capacity of the ANN and acting as a
regularizer.

c) Dropout. The idea of dropout is to introduce a perturba-
tion by randomly changing the topology of the neural network
every time a new data sample is used [141]. Specifically, for
each data sample, each neuron in the ANN has a probability
p of being included in the network and if it is not included
the corresponding weights are not updated in that particular
iteration of the algorithm. Dropout is an effective regularizer
due to two main reasons:
• By randomly removing a subset of connections each time,

dropout is actively weakening the coupling among neigh-
boring neurons. This reduces the possibility of performing
too complex operations, which could cause overfitting.

• Each time a subset of neurons is randomly disconnected,
a different reduced network is being trained. As a result,
using dropout effectively trains a large number of differ-
ent, random ANNs, and then averages the results, which
tends to reduce the net effect of overfitting.

Batch Normalization. One issue when working with
gradient-based methods, is the different scale that the features
in the input vector, as well as the activation values of each
layer, might have. In the presence of vectors with components
that have very different scales with one another, numerical
problems can arise and gradient descent can be slow. In order
to avoid this issue, [142] has proposed to normalize the input
data and/or the activation values of each layer in the network.

Formally speaking, let us consider the training data points
x
(1)
0 , . . . ,x

(NTR)
0 . Then, batch normalization modifies the op-

eration performed by the input layer, which will not simply
forward the input vector, but will apply the transformation:

x̃0 =
x
(nt)
0 − µ0

Ψ + σ0
, ∀ nt = 1, . . . , NTR , (35)

wherein the division is meant component-wise, Ψ is vector
with positive components of the order of 10−8, whose purpose
is to avoid dividing by zero, while µ0 and σ0 are mean and
standard deviation vectors defined as

µ0 =
1

NTR

NTR∑
nt=1

x
(nt)
0 (36)

σ0 =

√√√√ 1

NTR

NTR∑
nt=1

(x
(nt)
0 − µ0)� (x

(nt)
0 − µ0) , (37)

where the square root operation is meant component-wise.
Denoting by z(nt)` the N`-dimensional vector of activation

values of layer ` when x
(nt)
0 is the input of the network, a

similar normalization technique can be applied to the vectors

23

{z(1)` , . . . ,z
(NS)
` } in each mini-batch, thus changing the ar-

guments of the activation functions of the `-th layer to be:

z̃` =
z
(nt)
` − µ`
Ψ + σ`

, ∀ nt = 1, . . . , NS , (38)

with µ` and σ` having similar definitions as in (36) and (37).
In addition, when applied to a hidden layer, it is common to
further modify the input to the activation functions in (38) as:

z̃` = γ` � z̃` + β` , ∀ nt = 1, . . . , NS , (39)

with γ` and β` being N`-dimensional parameters to be
learnt during the training phase. The operation in (39) is
aimed at preserving the representational power of the network,
which would be significantly diminished by constraining each
layer to have zero-mean and unit-variance activation inputs.
However, this approach might seem counterintuitive, since it
seems to defeat the purpose of applying the normalization
step in (38) in the first place. The advantage of using (39)
lies in the fact that now γ` and β` are parameters to be
learnt based on the normalized values in z̃`, which are more
conveniently handled by gradient descent. Moreover, while
batch normalization increases the number of parameters to
optimize during the training phase, it can be seen that applying
(39) makes the bias terms in each node useless. In other words,
when using batch normalization, it should be set b` = 0 for
any normalized layer, since the role of b` is now played by
β`. As consequence, the only new parameters to be trained are
the vectors γ` for the layers where normalization is applied.

It is also important to mention that batch normalization has
a regularization effect, too, due to at least two main reasons:
• Since µ` and σ` are computed on each mini-batch,

they will be slightly different for each mini-batch. This
introduces a slight perturbation that has a regularizing
effect on the overall network, similarly to what is done
by the dropout technique.

• The fact that batch normalization reduces the variability
of the input data to each layer weakens the coupling
among different layers, again having a similar effect as
the dropout technique.

So far, batch normalization has been described as a tech-
nique to aid the training process. However, since it modifies
the structure and operation of the network, it also affects
the network use at test time. In other words, if a FNN has
been trained using batch normalization, at test time we should
compute (39) in each layer, using the trained parameters γ
and β. However, the problem in doing this is that at test
time there might not be a large enough dataset at our disposal
to compute reliable estimates of mean an variance for each
activation input. This problem is typically solved computing
an exponentially-weighted average including the means and
variances computed during the training phase on each mini-
batch, plus the new data sample at test time.

2) Hyperparameter tuning - Fitting the data: So far, many
techniques have been presented to tune the parameters of a
FNN in order to achieve a low generalization error. However,
the performance of all algorithms that have been presented
depends on several hyperparameters, that are not directly tuned

during the training phase. Examples of hyper-parameters are
the number of network layers and neurons per layer, the size
of the training set and of each mini-batch, the learning rate,
the regularization coefficient, etc. Moreover, other choices
that have a significant impact on the overall performance are
related to which training algorithm is used, what initialization
point is adopted, what regularization strategy to use, whether
or not to use batch normalization, etc.

As discussed in Section II-B, hyperparameter tuning can
be performed either manually or in an automated way. The
three automated methods introduced in Section II-B, grid-
search, random search, hyperparameter optimization, are gen-
eral enough to apply not only to the deep learning context, but
rather to generic machine learning methods. However, grid
search and hyperparameter optimization are rarely used for
deep learning applications. The former is deemed practical
only when three or fewer hyperparameters must be tuned,
in which case a logarithmic search scale is used to span
a wider range of values. The latter is problematic due to
the lack of an expression of the cost function with respect
to some hyperparameters and also because, as a general
fact, a hyperparameter optimization algorithm in turn has its
own hyperparameters to set, even though they are typically
less problematic to tune. Instead, random search appears a
more feasible solution, which has been shown to reduce the
validation error to acceptable values much faster than grid
search [104].

Parallel to these automated methods, manual hyperparam-
eter setting represents an effective way to achieve the de-
sired performance with affordable complexity. Nevertheless,
compared to automated approaches, manual tuning of the
hyperparameters requires a higher degree of experience, and is
typically carried out by monitoring both training and validation
error during the training phase, thereby determining whether
the network is underfitting or overfitting, and modifying the
hyperparameters to adjust the network capacity accordingly.
To this end, in general a trial and error procedure is required,
since it is very challenging to know in advance the optimal
configuration of hyperparameters for the specific problem at
hand. Nonetheless, some general guidelines can be identified,
recalling that the capacity of an ANN depends on three main
factors: 1) the ability of the network to represent the problem
at hand; 2) the ability of the learning algorithm to successfully
minimize the cost function during the training phase; 3) the
degree to which the training procedure regularizes the model,
thus avoiding overfitting.

As shown in Fig. 10, when configuring a neural network, the
first issue to take care of is to make sure that the network does
not underfit. If the performance on the training set is poor, it
means that the network can not fit the available training data
and thus it is generally useless to gather more data. Instead, the
focus should be on improving the optimization algorithm and
the most important hyperparameter in this sense is the learning
rate. Unfortunately, each task has its own optimal learning rate,
and trial and error should be used to find a learning rate that
yields a low enough training error for the task at hand.

Apart from the learning rate, other strategies to increase
the network capacity are to tune the other hyperparameters

24

Check Training
Error

Check Validation
Error

Done

Underfitting:
Increase Capacity

Overfitting:
Decrease Capacity

High

High

Low

Low

Figure 10. Scheme for manual hyperparameter setting in ANNs.

of the algorithm in use or to consider more sophisticated
optimization algorithms. Widely-used choices are SGD with
momentum, RMSProp, or Adam, possibly coupled with Nes-
terov’s momentum technique. Moreover, batch normalization
should be included if the training error does not decrease as
desired. If these strategies are not effective, the problem could
be in the size of each mini-batch, which might be too small
to provide a reliable estimate of the gradient. Finally, another
conceptually simple way to increase the network capacity is
to use more neurons and layers. This is a very powerful way
to avoid underfitting, but comes at the expense of a larger
complexity and the feasibility of this approach should be
evaluated given the available computational resources. If none
of these strategies work, the problem might just be in the
quality of the training data, which might be too noisy and/or
might not include the right features to describe the problem at
hand. In this case, it might be worth starting over, collecting
different training data.

Once a low enough training error has been achieved, the
validation error should be checked. If it is unsatisfactory, then
it is likely that the problem lies in overfitting. In this case, the
most effective strategy is to just gather more data. However,
gathering more data can be costly and requires higher storage
and processing capabilities. A simpler way of reducing the
network capacity is to employ a regularization technique.
Actually, it is advisable to use early stopping from the start,
while other regularizing techniques could be included in the
training procedure if needed. Finally, a third approach consists
of manually reducing the model size, limiting the number of
neurons and layers. If these approaches do not work even after
a careful tuning of their hyperparameters, then gathering more
data appears as the only way to avoid overfitting.

Finally, it should be stressed that the validation error is
simply an estimate of the test error and the discussion above
assumes that such an estimate is reliable. If it happens that test
error is high despite the validation error being low, then the
most effective approach is to increase the size of the validation
set. However, if this does not solve the problem then it is
likely that the cost function used for training and validation
is not appropriate for the task to perform and thus a different
performance function could be considered.

D. Deep Reinforcement Learning

This section presents the framework of deep reinforcement
learning, which merges deep learning with reinforcement
learning. It is to be stressed that the framework of rein-
forcement learning is not directly related to deep learning,
but rather it is a different machine learning approach that
implements the learning procedure in an adaptive way, namely
by interacting with the environment by taking actions and
receiving feedback on the result of the actions that have
been taken. However, recently, the idea has been put forth
to merge deep learning and reinforcement learning, motivated
by the consideration that deep learning provides an efficient
way to implement reinforcement learning techniques. More in
detail, in a reinforcement learning scenario, depending on the
information available on the environment, several techniques
can be used to determine the optimal sequence of actions
to take in order to maximize the long-term utility. In this
context, ANNs can facilitate the computation of the optimal
policy to follow when, as it is often the case, the statistics and
parameters of the environment are not fully known. The rest of
this section first provides a short introduction to reinforcement
learning, whose purpose is solely to define basic terminology
and briefly describe mathematically the scenario where deep
learning can be exploited. For a dedicated and comprehensive
treatment of the reinforcement learning framework, we refer
the reader to [97].

Reinforcement learning apply to scenarios that can be math-
ematically described by a Markov Decision Process (MDP).
An MDP is defined by the following quantities:

• S, the set of possible states.
• A, the set of possible actions that the agent can take.
• P , the set of transition probabilities, with P (st, st+1, at)

the probability of moving from state st to state st+1 by
taking action at.

• R, the set of rewards, with R(st, at) = E [Rt+1|st, at],
and Rt+1 the reward obtained at step t+ 1.

• γ ∈ [0, 1], a discount factor adjusting the weight of more
recent actions.

Based on this notation, it is possible to define the long-term
reward as

Gt =

+∞∑
k=0

γkRt+k+1 , (40)

and a (stationary) policy as the probability of taking action a
at time t, when being in state s, namely:

π(a, s) = P (At = a|St = s) , (41)

where the word stationary refers to the fact that the probability
of taking action a when in state s does not depend on time.

A key concept when analyzing an MDP is that of action-
value function, measuring the value, in terms of expected
reward, of being in state s and taking action a, following policy
π, namely:

Qπ(St = s,At = a) = Eπ [Gt|St = s,At = a] (42)

25

The action-value function can be also rewritten as the sum of
the reward at step t+ 1, plus the long-term reward from t+ 1
to ∞, namely:

Qπ(St = s,At = a) = (43)

Eπ

[
Rt+1 +

+∞∑
k=1

γkRt+k+1|St = s,At = a

]
=

Eπ

[
Rt+1 + γ

+∞∑
k=0

Rt+k+2|St = s,At = a

]
=

R(St, At) + γQπ(St+1, At+1)

At this point, we can also define the optimal action-value
function as

Q∗(s, a) = max
π

Qπ(s, a) . (44)

Solving (44) for each pair (s, a) provides a full character-
ization of the MDP problem, and allows determining the
best policy to follow for each possible state and action. To
this end, several methods are available, depending on the
information available on the MDP. An optimality condition for
Problem (44) is the so-called Bellman’s optimality equation,
which however requires full knowledge of the MDP model
and parameters to be solved.

However, in practical scenarios, assuming a complete
knowledge of the MDP model is quite unrealistic. Typically,
only the response from the environment is observable, but
no information is available as to the statistics regulating the
MDP process, such as the transition probabilities, which makes
it impossible to compute the value of the Q function for
any pair (s, a). In these cases, one possible approach is to
obtain the values of the Q function from experience, i.e. by
starting the process from each possible (s, a) pair, and then
following different policies, observing the rewards returned
by the environment at each step. However, this approach has
the clear drawback of requiring a too high computational
complexity, especially when the number of possible (s, a)
pairs is very large. A similar drawback is suffered by all other
alternative methods aimed at building a table collecting the
possible values Q(s, a), for all possible s ∈ S and a ∈ A.

In scenarios with a very large (possibly even infinite)
number of (s, a) pairs, the state-of-the-art approach is that
of Q-learning. As the name implies, this approach is based on
learning the values of the Q function. More specifically, Q-
learning algorithms assume a functional form for the function
Q(s, a), namely:

Q(s, a) ≈ Q̂(s, a,w) , (45)

with Q̂ a known function, and w a set of parameters to
be determined by any machine learning method, with the
goal of improving the accuracy of the approximation. More
specifically, Q-learning methods assume that some points
of the Q function, say {Q(si, ai)}NTi=1, have been already
determined, for example by trying some actions and observing
the response of the environment. Then, the parameters in the
vector w are determined so as to minimize the mean squared
error between the ground truth values {Q(si, ai)}NTi=1 and the
model (45).

Now, traditional Q-learning approaches typically employ a
linear model for Q̂, but more recently it has been proposed to
adopt an ANN with weights w, that takes as input a pair (s, a)
and outputs the corresponding value Q(s, a). The parameters
w are trained by using the samples {Q(si, ai)}NTi=1 as the train-
ing set. This is the main idea of deep reinforcement learning
[98], [99], which can be considered an algorithm belonging
to the family of Q-learning methods, with the peculiarity that
the approximate function Q̂(s, a,w) is specified through an
ANN. Thus, compared to other Q-learning methods, deep
reinforcement learning has the significant advantage of not
specifying a-priori the functional form of Q̂, leaving to the
ANN the task of determining the best functional form to
use. Indeed, being universal function approximators, ANNs
will be able to approximate the true function Q(s, a) within
any desired tolerance, provided a proper training phase is
performed.

E. Deep unfolding

As discussed, one of the issues with ANNs is how to
determine the number of neurons and layers to use. However,
in some cases it is possible to match the iterations of some
iterative algorithm to the layers of an ANN by a technique
called deep unfolding [143]. This provides a way to determine
the hyperparameters of an ANN to efficiently implement a
given number of iterations of a recursive algorithm.

To elaborate, the idea of deep unfolding applies to all
algorithms that take as input a vector x = [x1, . . . , xN] and
produce as output a vector y = [y1, . . . , yM] expressed by

yi = gi(x,φ,θ) , ∀ i = 1, . . . ,M , (46)

wherein θ is a vector containing all the parameters of the
algorithm, while φ = [φ1, . . . , φN] is iteratively updated
according to the formula

φ
(k)
i = fi(x,φ

(k−1),θ) , (47)

with k the iteration index and φ(0) the initial value. This
formalism applies to detection tasks [144], as well as to the
computation of posterior probabilities by the belief propaga-
tion method, or to inference techniques aimed at estimating a
distribution by minimizing its divergence from an approximate
distribution [143].

The main idea of deep unfolding lies in the observation that
(46) can be regarded as the input-output relationship of a deep
neural network, with (47) being the input-output relationship
of Layer k, and θ representing the parameters of the neural
network, i.e. all weights and bias of each layer. Then, the
iterative algorithm can be unfolded by mapping each iteration
to one layer of an ANN, which takes as inputs x and φ0,
compute φ(k) at the output of the k-th hidden layer, and finally
produce y as output, as displayed in Fig. 11.

Two main points are to be highlighted here:
• Unlike what typically happens with ANNs, in the case

of deep unfolding, the operation of the ANN in terms
of number of nodes and layers is determined by the
particular algorithm that is unfolded. Specifically, the
number of layers is fixed by the amount of iterations of

26

(x,�(0)) �(1) �(2) �(K) y

Figure 11. K + 1 iterations of an iterative algorithm are unfolded onto the
K hidden layers and onto the output layer of an ANN. The output of each
layer is equal to the output produced by one iteration of the algorithm, and
the output of the last layer is equal to the output of the last iteration of the
algorithm.

the algorithm, while the number of nodes in each layer
is fixed by the sizes of the vectors x, φ, and y.

• The advantage of unfolding an algorithm onto an ANN
rather than implementing it directly, lies in the fact that
the parameters θ of the algorithm are determined by an
ANN, instead of being set by more conventional methods.
Moreover, once the parameters are determined, the ANN
can be directly used as a fast implementation of the
iterative algorithm to compute y based on the chosen
parameters θ.

F. Deep Transfer learning

Deep transfer learning is yet another recent framework
that combines deep learning with another machine learning
framework, namely transfer learning. In the broadest sense,
transfer learning studies how to transfer the knowledge that is
used in a given context to execute a given task, into a different,
but related context, to execute another task. Formally speaking,
four fundamental components can be identified in a transfer
learning problem:
• A source task, TS , i.e. the original task for whose

execution the knowledge to be transferred was developed.
• A source domain, DS , i.e. the context in which the task
TS was executed.

• A target task, TT , i.e. the new task to be executed thanks
to the knowledge transfer.

• A target domain, DT , i.e. the new context in which the
task TT must be executed.

Clearly, such a problem formulation is very general, and
need not be related to any deep learning problem. However,
transfer learning can be successfully used to facilitate the
implementation of deep learning algorithms, especially by
reducing the amount of data to be acquired for training and
validation purposes. Indeed, as discussed, the availability of
large quantities of data is a prerequisite for deep learning to
outperform other machine learning methods, but in the context
of wireless communication networks the acquisition of large
amount of data can be too expensive and/or not practical.
In these cases, transfer learning techniques can be used by

transferring knowledge from other related scenarios in which
data acquisition has been already performed. For example,
datasets for similar communication systems can be used,
and/or datasets generated according to (possibly inaccurate)
mathematical models describing the task to be executed.

Despite being a relatively recent approach, many techniques
for deep transfer learning have already appeared in the lit-
erature and it is difficult to provide a general taxonomy.
Here, following the taxonomy by the recent tutorial [145], we
categorize transfer learning techniques into four main classes.

1) Instance-based transfer learning: This approach as-
sumes to have data from both the source domain DS and target
domain DT . Then, the idea is to exploit both datasets to carry
out the target task TT , by assigning a different weight to each
instance of the source and target data. Otherwise stated, data
from the source domain is used to augment the data from the
target domain, but it must be weighted differently to ensure
that instances that are specific to the source domain are given
less or no importance during the training process. After this
re-weighting step, the augmented data set is used as training
set for the target task by any traditional training algorithm,
with the re-weighting factors acting as hyperparameters to be
adjusted during the validation process.

In principle, this method does not require having labeled
data, in the sense that, once the new dataset has been built, it
can be used in conjunction with any machine learning method.
However, as far as training a neural network is concerned,
it is required that the training set be labelled in order to
implement available training algorithms. Recently, instance-
based transfer learning has proved effective when employed in
conjunction with the AdaBoost training algorithm, addressing
both classification and regression problems [146], [147].

2) Mapping-based transfer learning: Mapping-based
transfer learning redefines the training cost function in order
to account for the presence of data from both the source and
target domains. Specifically, the cost function used during the
training phase is defined as:

L(W , b) = LS(W , b) + λLT (W , b) +R2(W , b) , (48)

wherein LS is the cost function for the source task, taking
as input training samples from the source domain, LT is
the cost function for the target task, taking as input training
samples from the target domain, λ is a non-negative term
weighting the relative importance of the two cost functions,
and R is a regularization function that accounts for the
differences between source and target domains. More in detail,
the regularizer R is typically chosen as the maximum mean
discrepancy function between the source and target domains,
with respect to a generic representation φ(·), namely [148]

MMD =

∥∥∥∥∥ 1

|XS |
∑
x∈XS

φ(x)− 1

|XT |
∑
x∈XT

φ(x)

∥∥∥∥∥ , (49)

wherein XS and XT denote the source and target available
datasets. Thus, this approach requires having labelled data
from both the source and target domains. Based on (48), any
standard training algorithm can be executed, exploiting all
available labeled data.

27

Recent studies on mapping-based transfer learning have
focused on analyzing the performance when other regularizers
are used. In [149] it is proposed to use a multiple kernel variant
of the MMD (MK-MMD), while in [150] it is proposed to use
the joint maximum mean discrepancy as regularizer. Finally,
we mention [151], where Wasserstein’s distance is used as
regularizer and is shown to achieve better performance than
the MDD in some cases.

3) Network-based transfer learning: Network-based deep
transfer learning implements the transfer of knowledge by first
training an ANN to execute the source task TS in the source
domain DS , and then reusing and/or refining the obtained
network configuration to execute the target task TT in the
target domain DT . This general concept can be applied in
several different ways. For example, it is possible to identify
a part of the ANN that extracts general features that describe
both the source and target tasks. Then, after training the
ANN in the source domain, the part of the ANN that applies
to both source and target tasks need not be trained again.
This approach is taken in [152], where a language processing
application is considered, and it is proposed to divide the
ANN in two parts. The former extracts language-independent
features, that can be reused for all languages, while the latter
is language-specific and needs to be trained for each new
language.

Nevertheless, a more common approach is to perform a two-
step training, in which the ANN is first trained to execute
the source task, yielding a tentative configuration of network
parameters. Next, a second training phase is performed in the
target domain, which uses the configuration of the weights
and bias from the first phase as the initialization point for
the training algorithm. This approach is very useful in all
situations in which a lot of training data is available in the
source domain, whereas the target domain provides only a
few labeled training samples. As to be describes in more
detail in Section IV, this is the typical scenario that arises
in wireless communications applications, and indeed Section
IV will present several case-studies wherein this particular
transfer learning method proves extremely useful. Techniques
inspired to network-based transfer learning have been recently
proposed for resource allocation in wireless communications
in [153], [154].

4) Adversarial-based transfer learning: The main idea
of adversarial transfer learning is to identify the common
feature between source and target task through the use of
an another deep neural network, called generative adversarial
network (GAN) [155]. The first step of the approach is to
divide the neural network that implements the source task
into two segments, one that extracts the salient features of the
source domain, and one that exploits these features to carry
out the source task. Then, the output of the first segment of
the neural network is also fed to another neural network, the
GAN, which has the task of discriminating whether the input
comes form the source domain or from the target domain.
The two networks are trained together as if they were a
single neural network, even though they have competing goals:
the adversarial network aims at minimizing the error in the
discrimination between target and source inputs, while the

main network aims at minimizing the error on the source
task, while at the same time aiming at maximizing the error
that the adversarial network makes in discriminating between
data coming from the source or target domain. Indeed, if
the adversarial network is not able to distinguish between
source and target domain, then the first segment of the main
network has found a representation of the source domain that
is virtually indistinguishable from the target domain, and thus
the main network can be used to execute both the source and
target tasks. The contrasting goals during the training process
are modeled by defining the overall training cost function as:

L(W , b,V , c) = Lm(W , b)− λLa(W , b,V , c) , (50)

wherein Lm is the error on the source task, La is the error in
discriminating between source and target inputs, λ is a factor
weighting the relative importance of these two errors, W and
b are the weights and bias terms of the main network, while V
and c are the weights and bias of the adversarial network, and
the overall cost function needs to be minimized with respect
to W , b, and maximized with respect to V , c. By minimizing
(50) with respect to W , b, the primary network is minimizing
Lm while at the same time maximizing La. Instead, by
maximizing (50) with respect to V and c the adversarial
network is minimizing La. As a result, unlike typical training
procedures that aim at minimizing the training cost function,
the goal here is to determine a saddle point of (50), which
can be accomplished by several saddle-point algorithms based
again on stochastic gradient descent techniques, as in regular
training procedures [156], [157]. It is to be stressed that, in
order to find a saddle point of (50), it is not required to
know the desired output for each training sample. Indeed,
each training sample must simply carry a label discriminating
whether the sample comes from the source or target domain,
but the desired output is required only if the sample comes
from the source domain. This means that adversarial training
can be used for neural network training also when the available
target data is not labeled.

IV. APPLICATIONS TO WIRELESS COMMUNICATIONS

After presenting the main concepts and tools of the deep
learning framework, this section describes practical appli-
cations to the design of wireless communication systems.
First, a literature survey is performed, reviewing available
contributions about the application of deep learning to the
physical layer of wireless communication systems, and then
several novel applications are described in detail.

A. State-of-the art Review

Deep learning as a tool to perform various tasks at the
physical layer of wireless communication systems has started
attracting research attention only very recently, mostly in the
last couple of years. For this reason, fewer contributions have
appeared than in other areas of wireless communications.
Nevertheless, two main research directions can be identified:
• Deep learning to operate the physical layer, simplifying

the execution of tasks such as data detection, decoding,
channel estimation, localization, etc.

28

• Deep learning to manage the physical layer, simplifying
radio resource allocation tasks.

1) Operation of the physical layer: The first area of appli-
cation of deep learning at the physical layer of wireless net-
works has been the use of ANN to simplify the implementation
of detection and/or estimation operations such as information
decoding, channel estimation, localization, etc. [158]–[184].

In [158], the authors use deep FFNs to emulate the transmit-
ter and the receiver of point-to-point communication systems,
while assuming the communication channel is known. The
end-to-end system is modeled as deep neural network com-
posed of the cascade of a neural network implementing the
data transmission process, one layer implementing the known
channel (whose parameters are fixed and not trainable), and
another neural network implementing the reception process.
The overall network receives as input the information symbol
and provides as output the corresponding symbol estimate.
This architecture is referred to as an auto-encoder, since the
goal of the network is to reproduce at the output, the input
data. It is shown that, without having any information about
the implementation of the transmitter/receiver chains, the auto-
encoder is able to outperform traditional approaches that in-
stead design the system based on (approximate) mathematical
models of the transmitter/receiver chains. The work in [158]
paved the way for many subsequent studies that exploited
ANNs at the physical layer of wireless devices. In [159] it is
proposed to use an auto-encoder to jointly minimize the system
BER and PAPR, and again an improvement over traditional
methods is obtained. Deep learning is used for data detection
in MIMO systems in [160], [161], in decode-and-forward relay
channels [162], and for equalization and synchronization in
OFDM systems in [163].

In all of these works, perfect knowledge about the com-
munication channel is assumed. Several subsequent works
have tried to relax this assumption. In [164] a two-stage
approach is taken. At first, a synthetic channel model is used
to provide a first training of the neural network. Next, this
initial training is refined at the receiver based the true channel
characteristics. Generative Adversarial Networks are used in
[165]–[167], exploiting a surrogate channel for training pur-
poses. A combination of supervised training and reinforcement
learning is used in [168] to remove the need of channel
knowledge. In [169], the auto-encoder approach is further
extended to the case in which no channel state information is
available by exploiting a stochastic perturbation approach. A
similar scenario is considered in [170], where the auto-encoder
approach has been used for data detection without any channel
knowledge, considering molecular communications as a main
application scenario. The use of fully connected ANNs for
molecular communications is also investigated in [171].

In [172] it is shown that a deep neural network can reliably
learn the MMSE channel estimator, while in [173] convolu-
tional neural networks are successfully used to implement a
fingerprinting-based scheme for users localization. Channel es-
timation through neural networks is successfully demonstrated
in [174] and also in [175], where an FDD massive MIMO
system is considered, and the channels are assumed to be
representable by a finite-size dictionary. Experiments showing

the performance of deep learning methods for users localiza-
tion in outdoor environments are provided in [176], showing
that even simple ANNs architectures can achieve satisfactory
performance. In [177] it is shown that deep learning can be
successfully used to implement error correction tasks, while
[178] shows that machine learning is able to provide reliable
channel estimation from compressed measurements. Channel
estimation in rapidly time-varying environments is discussed
in [179], and it is shown that deep architectures are able to
cope with this more challenging setup, while [180] proposes a
deep learning approach for joint equalization and decoding in
wireless networks. Surveys on the use of ANNs to implement
encoding/decoding information as well as channel estimation
tasks with limited side information have appeared in [181],
[182], whereas an information-theoretic study on the mutual
information between input and output of a shallow neural
network is provided in [183]. Channel estimation and signal
detection are also performed through deep learning in [184],
showing that similar performance as traditional methods can
be achieved, but with a much lower computational complexity.

2) Management of the physical layer: More recently, a
second emerging application area of deep learning has been
the use of deep learning to perform radio resource allocation
at the physical layer, with minimum complexity and/or side-
information requirements [153], [185]–[195].

The works [185], [186] put forward the idea of using ANNs
for network resource management, providing an overview of
potential applications of AI for network resource management
in future 5G wireless networks, discussing pros and cons
of supervised, unsupervised, and reinforcement learning. In
[189], a fully connected FNN is used for sum-rate maximiza-
tion in interference networks, by learning the input-output
map given by each iteration of the iterative weighted MMSE
power control algorithm [196]. This approach is able to mimic
the performance of the weighted MMSE resource allocation
algorithm, while at the same time significantly reducing the
computational complexity. In [153], [190], the problem of
energy efficiency maximization in wireless interference net-
works by a fully connected FNN is tackled. Unlike [189], in
[153], [190] the FNN is directly trained based on the optimal
energy-efficient power allocation, that can be computed offline
by the method appeared in [197]. The results indicate that
the globally optimal performance can be approached with
limited complexity, thus enabling an online implementation.
A similar approach is proposed in [191], [192] for the cases
of power control in massive MIMO systems and for user-cell
association in multi-cell systems. Instead, a different approach
is taken in [194], where a fully connected ANN is trained to
solve the sum-rate maximization problem subject to maximum
power and minimum rate constraints. In order to reduce the
complexity of building the training set, the authors propose to
train the neural network using directly the system sum-rate as
training cost function. The result show a gain compared with
previous low-complexity optimization methods, even though a
performance loss compared to the global solution is expected.

In [188] a cloud-RAN system with caching capabilities
is considered. Echo-state neural networks, an instance of
RNNs, are used to enable base stations to predict the content

29

request distribution and mobility pattern of each user, thus
determining which content to cache. It is shown that the use
of deep learning increases the network sum effective capacity
of around 30% compared with baseline approaches based on
random caching. In [187] deep reinforcement learning is used
to develop a power control algorithm for a cognitive radio
systems in which a primary and secondary user share the
spectrum. It is shown that both users can meet their QoS
requirements despite the fact that the secondary user has no
information about the primary user’s transmit power. The use
of deep reinforcement learning is also considered in [193],
where it is used to develop a power control algorithm for
weighted sum-rate maximization in interference channels sub-
ject to maximum power constraints. The proposed algorithm
exhibits fast convergence and satisfactory performance. A
decentralized robust precoding scheme in a network MIMO
system is developed in [195] by ANNs. The proposed method
is shown to outperform state-of-the-art approaches.

B. Learning to optimize

The rest of this section will describe in detail several
applications, primarily focusing on the most recent area of
ANN-based physical layer resource allocation. In this context,
a promising approach is to develop methodologies to embed
available prior knowledge about the problem to solve, into
deep learning methods, that instead are purely data-driven.
The motivation for this approach lies in the consideration that
purely data-driven approaches become unfeasibly complex for
large-scale applications, due to the huge amount of required
data, and to the related processing complexity. This is an
emerging topic even in fields of science where purely data-
driven deep learning techniques are a consolidated reality.
For example, in [198] image processing for object position
detection in robotics applications is considered, and it is
observed that augmenting a small training set of real images
with a large dataset of synthetic images significantly improves
the estimation accuracy with respect to processing only the
small dataset of real images. Similar results have been obtained
in [199] with reference to speech recognition applications.

In the context of wireless communications merging purely
data-driven techniques based on deep learning, with expert
knowledge coming from (even approximate) theoretical mod-
els holds an even greater potential. Indeed, despite their
possible inaccuracy or cumbersomeness, theoretical wireless
models still provide much deeper prior information compared
to what is available in other fields of science. In our opinion,
this clear advantage of wireless communications should not
be wasted. More specifically, when performing resource allo-
cation, depending on the system complexity, one is faced with
one of the four cases shown in Tab. I:

While, it is clear that Cases C.1 and C.4 should be handled
by traditional system design approaches, and fully data-driven
techniques, respectively, the most appropriate way of tackling
Cases C.2 and C.3 is an open issue. Indeed, Cases C.2 and
C.3 offer the possibility of a cross-fertilization between model-
aided and data-driven approaches, due to the fact that a model
is available, even though it is inaccurate or cumbersome

C1: An accurate and tractable theoretical model is available (e.g.
point-to-point channel capacity and bit-error rates.
C2: An accurate, but intractable theoretical model is available (e.g.
achievable sum-rate in interference-limited systems).
C3: A tractable, but inaccurate model is available (e.g. dense
networks deployment, energy consumption, hardware impairments).

C4: Only inaccurate and intractable models are available (e.g.
molecular communications, end-to-end wireless communications).

Table I
SCENARIOS FOR RESOURCE MANAGEMENT IN WIRELESS NETWORKS

to optimize. Moreover, C.2 and C.3 are the typical cases
in wireless communications, where models and optimization
algorithms are usually available, despite being the result of
some approximations and simplifications.

In order to tackle Cases C.2 and C.3, we propose the fol-
lowing two methodological approaches, to be further detailed
through the case-studies presented in the rest of this section:
• Optimizing a model. When in Case C.2, an analytical

expression of the performance metric to optimize is
available. Then, an ANN can be trained to learn the map
between the system parameters and the corresponding op-
timal resource allocation, namely following the technique
anticipated in Section I-D. This approach is depicted in
Fig. 12.

• Refining a model. When in Case C.3, a two-step ap-
proach can be exploited. In the first step, an ANN
is trained based on synthetic data generated from the
approximate model. Next, a second training phase based
on true, measured data will refine the ANN configuration.
This approach is depicted in Fig. 13.

As it will become clear from the applications to be presented
next, the two main advantages of the proposed approaches are
that:
• They drastically reduce the complexity compared to

purely model-based methods, thus enabling real-time
resource allocation with near-optimal performance.

• They drastically reduce the amount of required data
compared to purely data-driven methods, thus dispensing
with expensive and unpractical measurements campaigns.

With the exception of one case-study related to the auto-
encoder approach, all applications to be described in the
following will address resource allocation problems by one
of the two methodologies described above.

Physical
System

Mathematical
Model

Artificial
Neural

Network

System
Design

Physical
System

Approximate
Mathematical

Model

Artificial
Neural

Network

System
Design

Artificial
Neural

Network

Approximate
System
Design

Measured
Data

Figure 12. Optimizing a model. An ANN is trained based on data generated
from the theoretical models. No measurement campaign is needed.

1) Physical layer design: Optimizing the receiver of a
molecular communication system: In this section, we consider

30

Physical
System

Mathematical
Model

Artificial
Neural

Network

System
Design

Physical
System

Approximate
Mathematical

Model

Artificial
Neural

Network

System
Design

Artificial
Neural

Network

Approximate
System
Design

Measured
Data

Figure 13. Refining a model. An ANN is first trained based on data generated
from the approximate theoretical models, and then refined based on a small
dataset of measured data.

the typical case study of optimizing the receiver of a commu-
nication system. As an example, we focus our attention on
a molecular communication system, where chemical signals
instead of electromagnetic signals are used to convey infor-
mation [200]. The motivation of this choice is the complexity
of modeling molecular communication systems, and the possi-
bility of leveraging data-driven methods in this context [201].
A similar approach can be used to design and optimize the
receivers of different communication systems. The objective is
to prove that, by assuming that the system model is accurate,
model-based and data-driven methods yield the same optimal
receiver designs if they are both appropriately designed.

As a practical case study, we consider a molecular com-
munication system where diffusion is employed for allow-
ing information particles propagate from a transmitter to a
receiver. Due to the intrinsic characteristics of diffusion, the
resulting transmission channel is usually affected by a non-
negligible Inter-Symbol Interference (ISI), which, if not taken
into account for system optimization, may severely degrade the
system performance. For this reason, we focus our attention
on optimizing the receiver operation in the presence of ISI.
In particular, we consider a threshold-based demodulator and
denote by τ the demodulation threshold. Let s̄i be the estimate
of symbol si at time-slot i, a threshold-based demodulator
operates as follows:

s̄i =

{
0, ri ≤ τ
1, ri > τ

(51)

where ri is the number of molecular received at time-slot i.
Under the typical operating conditions discussed in detail

in [202] for a binary modulation scheme, the error probability
as a function of τ can be formulated as follows:

Pe(τ) =
1

2L

∑
si−1

Pe(si−1, τ) (52)

where:

Pe(si−1, τ) =
1

2
[Q(λ0T +

L∑
j=1

si−jCj , dτe)

+ 1−Q(λ0T +

L∑
j=1

si−jCj + C0, dτe)]

(53)

and Q(λ, n) =
∑∞
k=n

e−λλk

k! is the incomplete Gamma func-
tion, L is the memory of the chemical channel, i.e., the length
of the ISI, λ0 is the background noise power per unit time, T

20 40 60 80 100 120
Threshold value

10-3

10-2

10-1

BE
R

Slot length 50 T
Slot length 30 T

Figure 14. Error probability as a function of τ (the signal-to-noise-ratio is
equal to 30 dB) for two different durations of the time-slot (amount of ISI).

is the duration of the time-slot, and Cj is the average number
of received information particles at the jth time-slot.

In order to obtain appropriate performance and, thus, reduce
the error probability, the detection threshold, τ , needs to be
appropriately chosen and optimized. In Fig. 14, we depict the
error probability as a function of τ for a typical system setup.
We observe that an optimal value of τ exists that minimizes
the error probability and that depends on the time slot duration
T , i.e., the amount of ISI for a given channel.

In mathematical terms, the optimal threshold that minimizes
the error probability can be formulated as follows:

τ∗ = arg min
τ

Pe(τ) (54)

Due to the analytical complexity of (52), it is not possible
to compute τ∗ explicitly, but it can be obtained numerically
at an affordable complexity.

An alternative approach is to employ a data-driven approach
that does not rely on any model but uses only empirical
data, e.g., a large set of values for rj . More precisely, we
consider an ANN whose aim is to demodulate the transmitted
data by minimizing the error probability. An ANN-based
demodulator is a system whose input is the number of received
information particles, ri at the ith time-slot, and the outputs
are the probabilities that the transmitted bit is 0 or 1, i.e.,
Pi(si = 0|ri) and Pi(si = 1|ri), respectively. Since, Pi(si =
1|ri) + Pi(si = 0|ri) = 1, only one of the two probabilities
is needed. We use the notation Pi = Pi(si = 1|ri). Based on
the outputs, the ANN demodulate the received bits as follows:

s̄i =

{
0, Pi ≤ 0.5
1, Pi > 0.5

(55)

where the threshold 0.5 accounts for the fact that the bits are
equiprobable.

In order to train the ANN, we consider a supervised
learning approach, i.e., we compute the parameters (e.g.,
the bias factors and the weights) of the ANN by using a
known sequence of transmitted bits. In particular, we use the

31

15 20 25 30 35 40
SNR

100

101

102

103
Th

re
sh

ol
d

va
lu

e

ANN-based scheme equivalent threshold (slot length is 30 T)
Optimal theoretical threshold (slot length is 30 T)
ANN-based scheme equivalent threshold (slot length is 50 T)
Optimal theoretical threshold (slot length is 50 T)

Figure 15. Demodulation thresholds: Model-based vs. data-driven for two
different durations of the time-slot (amount of ISI).

-10 0 10 20 30 40 50 60 70 80
SNR (dB)

10-2

10-1

100

BE
R

Bit error probability (theory)
Bit error probability (ANN)

Figure 16. Bit error probability of the ANN-based demodulator vs. the
analytical framework - T = 30∆T .

Bayesian regularization back propagation technique (trainbr),
which updates the weights and biases by using the Levenberg-
Marquardt optimization algorithm. The set of parameters to
train and operate the ANN are as follows: The number of
layers is 10, the learning rate is 0.01, the training epoch is 200,
the number of training bits is 1000, the number of validation
bits is 100000, and the replication time is 50. In particular,
the training is performed in a batch mode, and the replication
time denotes the number of batches each of which is 1000-bit
long.

In Fig. 15, we compare the optimal threshold computed
numerically from (54) as a function of the signal-to-noise-
ratio, and the demodulation threshold that is learned by the
ANN-based demodulator. In the latter case, the threshold
is obtained, after completing the training of the ANN, and
identifying the input, i.e., the number of information particles,
for which the output probability is equal to 0.5. We observe
that the ANN-based implementation is capable of learning the
demodulation threshold in a very accurate manner.

In Fig. 16 and Fig. 17, we compare the bit error probability
of the ANN-based demodulator against the bit error probability
in (52) by considering a short symbol time (small ISI) and

-5 0 5 10 15 20 25 30 35 40
SNR (dB)

10-4

10-3

10-2

10-1

100

BE
R

Bit error probability (theory)
Bit error probability (ANN)

Figure 17. Bit error probability of the ANN-based demodulator vs. the
analytical framework - T = 50∆T .

a long symbol time (large ISI), respectively. As for the
analytical model, the optimal threshold is estimated from (54)
for each value of the signal-to-noise-ratio. We note a very good
agreement even with only 10 layers.

In summary, this section shows that an optimal receiver
design can be obtained by relying solely on data-driven
methods that that the resulting ANN can be used for system
optimization, e.g., to optimize the demodulation threshold.

2) Optimizing a model: power control in wireless networks:
This application focuses on the maximization of the bit-
per-Joule energy efficiency in generic wireless interference
networks. The consideration of the energy efficiency as a per-
formance metric communication systems has emerged as key
aspect of future wireless networks, motivated by the need to
provide 1000x higher data rates compared to present systems,
while at the same time halving the energy consumption. As a
result, in 5G wireless networks, bit-per-Joule energy efficiency
will have to increase by a factor 2000 compared to present
wireless networks [2], [4].

Traditional approaches for energy efficiency maximization
in wireless networks are based on the theory of fractional
programming, the branch of optimization theory that focuses
on the optimization of fractional functions. A tutorial on
fractional programming methods for energy efficiency maxi-
mization in wireless communication is available in [5]. There,
it is observed that achieving the global maximum of the energy
efficiency metric requires in general exponential complexity
whenever the communication system is interference-limited.
Here, we will show how the global maximum of the energy
efficiency can be approached with limited complexity through
the use of ANNs.

To elaborate, let us consider an interference networks in
which K single-antenna transmitters communicate with M
receivers, each equipped with N antennas. Denote by hk,m
the N × 1 channel from transmitter k to receiver m, by pk
the transmit power of transmitter k, by ck the N × 1 receive
vector used by the receiver associated to transmitter k, and by
σ2
m the received noise power at receiver m. Then, the signal

to interference plus noise ratio (SINR) enjoyed by transmitter

32

k at its associated receiver mk is expressed as:

γk =
pk|cHk hk,mk |2

σ2 +
∑
j 6=k pj |cHk hj,mk |2

=
pkdk,k

σ2 +
∑
j 6=k pjdk,j

,

(56)
with dk,j = |cHk hj,mk |2, for all k and j.

Based on (56), the network global energy efficiency (GEE)
is given by

GEE =
B
∑K
k=1 log2(1 + γk)

Pc +
∑K
k=1 µkpk

[bit/Joule] , (57)

wherein B is the communication bandwidth, Pc is the hard-
ware static power consumed in the whole system, and µk
the inverse of the efficiency of the power amplifier used by
transmitter k. It is important to stress that Pc will depend on
system parameters such as the number of antennas and the
efficiency of the system hardware components. However, it is
assumed that Pc does not depend on the transmit powers, and
therefore the specific model expressing Pc as a function of the
system hardware components is inessential as far as resource
allocation is concerned.

Given this setup, the considered energy efficiency maxi-
mization problem is stated as the maximization of the GEE
subject to power constraints, namely

max
{pk}Kk=1

GEE(p1, . . . , pK) (58a)

s.t. Pmin,k ≤ pk ≤ Pmax,k ,∀ k = 1, . . . ,K (58b)

with Pmax,k and Pmin,k being the maximum feasible and
minimum acceptable transmit powers for user k. The challenge
in tackling (58) lies in the fact that the numerator of (58a) is
not a concave function of p = {pk}Kk=1, as a consequence
of the fact that multi-user interference is present in (58). In
this case, global optimization methods are required to find
the optimal power allocation, while more practical approaches
guarantee first-order optimality with a polynomial complexity
[197]. Moreover, Problem (58) needs to be solved anew
whenever the channel realizations {h`,mk}k,` change. This
represents a critical drawback, especially considering that the
resource allocation process must be completed well before the
end of the channel coherence time in order for the optimized
power vector to be practically useful. This observation makes
it difficult to employ even polynomial-complexity algorithm
to perform resource allocation in real-time, i.e. following the
small-scale variations of the channel coefficients.

In oder to address this issue and enable real-time power
control, it is possible to resort to deep ANNs paired with the
use of energy efficiency models and traditional optimization
approaches. Specifically, in this scenario we are in Case C.2 of
Table I, since a model is available and has allowed us to for-
mulate Problem (58). However, the model is too complex (for
practical implementations) to be optimized by directly using
traditional optimization methods. On the other hand, we can
exploit the model by using it to train an ANN to learn the map
between the system parameters, and the corresponding optimal
power allocation. To elaborate, let us observe that Problem
(58) can be regarded as an unknown function mapping from
the coefficients {dk,`}k,` and maximum/minimum transmit

powers Pmax and Pmin, to the optimal power allocation vector
p∗, namely

F : d = {dk,`, Pmin,k, Pmax,k}k,` ∈ RK(M+2) → p∗ ∈ RK
(59)

Then, based on the result that ANNs are universal function
approximators [114], it is possible to train an ANN so that its
input-output relationship reproduces the unknown map (64).
This leads to considering an ANN with K(M+2) input nodes
and K output nodes, to be trained so that it outputs the optimal
K×1 power vector p∗ corresponding to a given K(M+2)×1
input of system parameters d. This enables to update the
resource allocation without having to solve any optimization
problem every time the system parameters change, but by
simply feeding the new vector d to the ANN, and obtaining
the corresponding power allocation as the output of the ANN.

It is important to emphasize that this entails a negligible
computational complexity compared to using sophisticated
numerical optimization algorithms. Indeed, once all the pa-
rameters and hyperparameters of the ANN are fixed, the
ANN basically provides a closed-form expression of its input-
output relationship, whose complexity is related to computing∑L+1
`=1 N`−1N` real multiplications6 and evaluating

∑L+1
`=1 N`

activation functions, with N` denoting the number of neurons
in Layer ` in accordance with the notation of Section III-A.

Instead, a higher complexity is required to generate a
suitable training set, because this requires to consider many
different system parameters realizations {dnt}NTnt=1, and to
compute the corresponding desired power allocation vector
{p∗nt}

NT
nt=1 by actually solving (58) NT times, by leveraging

existing optimization framework, such as monotonic fractional
programming or sequential fractional programming [197]. At
a first sight, this might seem to cause a complexity overhead
that defeats the purpose of using ANNs to reduce the compu-
tational complexity of resource allocation. However, this is
not the case for at least two major reasons that make the
generation of the training set fundamentally different from
solving Problem (58) in real-time:
• The training set can be generated and used offline to train

the ANN. Thus, a higher complexity can be afforded and
real-time constraints do not apply.

• The training set needs to be updated at a much longer
time-scale than that with which the network parameters
change.

In other words, the training process needs not be executed each
time a system parameter changes, and the solution needs not
be obtained within the channel coherence time. Thus, the use
of traditional optimization theory to generate the training set
does not defeat the practicality of the proposed ANN-based
approach. On the contrary, the use of mathematical models to
formulate the optimization problem and the use of traditional
optimization techniques to build the training set, represent
the expert knowledge that is exploited to facilitate the use
of ANNs for real-time power control in wireless networks.

Numerical performance analysis. We considered the up-
link of a MIMO system in which Nc = 4 base stations serve

6The complexity related to additions is negligible compared to that related
to multiplications

33

K = 10 users deployed in a square area with edge 2000 m.
The base stations are deployed at coordinates (500, 500) m,
(500,−500) m, (−500,−500) m, (−500, 500) m, and are all
equipped with NR = 2 antennas. Instead, the mobile users
are randomly deployed in the square area and are equipped
with a single antenna. The path-loss has been modeled fol-
lowing [203], with power decay factor equal to 4.5, while
fast fading terms have been modeled as realizations of zero-
mean, unit-variance complex Gaussian random variables. The
circuit power consumption term is equal to Pc = 0.01 W
for all users and maximum ratio combining is adopted at all
base stations. The noise power at the base station has been
generated as σ2 = FN0B, wherein F = 3 dB is the receive
noise figure, B = 180 kHz is the communication bandwidth,
and N0 = −174 dBm/Hz is the noise spectral density.

In this context, the optimal system global energy efficiency
can be computed using the monotonic fractional programming
framework developed in [197], which however requires expo-
nential complexity. Nevertheless, we can use the monotonic
fractional programming method to produce a training set for
an ANN that will learn the optimal power allocation policy.
Specifically, we have considered NTR = 105 instances of
the MIMO systems, that were independently generated as far
as users’ locations and channel realizations are concerned,
optimizing the transmit powers for each instance, which yields
the training set {di,p∗i }

NTR
i=1 . Out of the NTR data samples,

104 have been used for validation purposes, while the others
have been used to implement Adam training algorithm with
Nesterov’s momentum over a FFN with L = 6 fully-connected
hidden layers, having 512, 256, 128, 64, 32, 16 neurons,
respectively, plus an output layer with K = 10 neurons
providing the power allocation to use. All hidden layers
except the first one have ReLU activation functions, while
an exponential linear unit activation has been used for the
first layer. Finally, the output layer employs a linear activation
function, motivated by the consideration that enforcing the
power constraints directly in the activation function of the
last layer might mislead the FFN. Indeed, enforcing the
power constraint directly through the activation function might
provide low MSEs simply due to the use of cut-off levels in
the activation function, instead of being the result of proper
adjustment of the hidden layer parameters. In this case, the
FFN would not be able to realize that the current MSE level
is acceptable only because the desired power level is close
to either Pmax or Pmin, and the clipping at the output layer
provides by construction such a power level, regardless of the
configuration adopted in the hidden layers.

As loss function, for each training sample, the mean squared
error has been used, defined as:

MSE =
1

K

K∑
k=1

(pk − p∗k)
2
. (60)

After the training and validation phase, the ANN has been
tested over NTest = 104 independently generated channel
realizations. Here, the power constraint has been enforced
a-posteriori, by post-processing the ANN output, manually
setting to Pmax all output powers exceeding the maximum

power constraint and to Pmin all outputs below the minimum
power constraint.

Table IV-B2 reports the MSE in the power estimation and
the relative MSE in the corresponding GEE value over the test
set, respectively defined as

MSEp =
1

KNtest

Ntest∑
i=1

‖p(i)
opt − p

(i)
ANN‖

2

MSEr,GEE =
1

Ntest

Ntest∑
i=1

(
GEE(i)

opt − GEE(i)
ANN

GEE(i)
opt

)2

wherein p
(i)
opt and GEE(i)

opt are the optimal power vector and
corresponding GEE value for the i-th test sample, while p

(i)
ANN

and GEE(i)
ANN are the power vector and corresponding GEE

value output by the ANN for the i-th test sample. Different
values of Pmax, assumed equal for all users, are shown.

Table II
MEAN SQUARED ERROR BETWEEN THE OPTIMAL POWER ALLOCATION

AND GEE VALUE AND THOSE OUTPUT BY THE TRAINED ANN, FOR
DIFFERENT VALUES OF Pmax .

-20 dBW -10 dBW 0 dBW 10 dBW
MSEp 5.02*10−4 8.11*10−4 9.44*10−4 8.72*10−4

MSEr,GEE 0.020 0.013 0.012 0.013

The results evidence a remarkable ability of the ANN to
approach the optimal power allocation profile, for different
values of Pmax, which corroborates the use of ANNs for
practical power allocation in wireless networks.

This result is further confirmed by Fig. 18, that shows the
optimal GEE value achieved over the test set versus Pmax,
comparing it with the GEE value predicted by the ANN in the
saturation region (i.e. Pmax ≥ −10 dbW), that is the region
of interest for system operation, since it provides the best
GEE value. It is seen that the ANN achieves near-optimal
performance, attaining around 98% of the optimal GEE value
and largely outperforming the benchmark scheme in which full
power allocation is used, i.e. when all terminals transmit with
the maximum feasible power Pmax. This further confirms the
usefulness of ANN-based power control as a power allocation
method striking a better performance-complexity trade-off
than existing alternatives.

3) Optimizing a model: user-cell association in wireless
networks: This application has a similar flavor as that in
Section IV-B2, with the difference that instead of allocating the
users’ transmit powers, the problem is that of deciding the as-
signment between transmitters and receivers. This means that,
while the case-study in Section IV-B2 tackles a continuous
resource allocation problem, and thus can be regarded as a
regression problem, here the focus is on a discrete resource
allocation problem, which can be seen as a classification
problem.

To proceed further, let us consider a similar system set-up
and notation as in Section IV-B2, with the difference that now
the receiver associated to transmitter k has not been fixed,

34

-50 -40 -30 -20 -10 0 10

Pmax [dB]

0

5

10

15

20

25

30
G
E
E

[M
b
it
/J

ou
le
]

GEE global optimum
GEE saturation level by the ANN
Maximum transmit power

Figure 18. GEE versus Pmax by: (a) Global optimum; (b) ANN-based power
allocation; (c) Full power transmission.

yet. Then, the SINR enjoyed by transmitter k if associated to
receiver m is written as:

γk,m =
pk|cHk,mhk,m|2

σ2
k +

∑̀
6=k
p`|cHk,mh`,m|2

, (61)

Then, denoting by ρk,m the binary variable taking value 1
when transmitter k is served by receiver m and zero otherwise,
the system sum-rate is expressed as

SR = B

K∑
k=1

M∑
m=1

ρk,m log2(1 + γk,m) , (62)

with B denoting the communication bandwidth.
Defining for notational convenience dk,m = log2(1+γk,m),

for all k and m, and ρ = {ρk,m}k,m, the sum-rate maximiza-
tion problem is cast as:

max
ρ

K∑
k=1

M∑
m=1

ρk,mdk,m (63a)

s.t.
M∑
m=1

ρk,m ≤ 1 , ∀ k = 1, . . . ,K (63b)

K∑
k=1

ρk,m ≤ am , ∀ m = 1, . . . ,M (63c)

M∑
m=1

ρk,mdk,m ≥ Rmin,k , ∀ k = 1, . . . ,K (63d)

ρk,m ∈ {0, 1} , ∀ m = 1, . . . ,M , ∀ k = 1, . . . ,K ,
(63e)

wherein Constraints (63b) and (63c) ensure that each transmit-
ter can be associated to only one receiver and that each receiver
can serve at most am transmitters, while Constraint (63d)
guarantees minimum QoS for each transmitter, and Constraint
(63e) is due to the integrality of the association variables.

Typical approaches to solve linear programs such as (63)
resort to branch-and-cut techniques, which require solving a
series of continuous relaxations of (63). In some special cases,
i.e. when Rmin,k is integer for all k, the constraint matrix of
Problem (63) can be shown to be totally uni-modular, which
enables to solve (63) through just one continuos relaxation.
Nevertheless, this still requires to employ numerical optimiza-
tion algorithms, whose complexity might still be quite high,
especially in large networks. Moreover, as in the power control
case from Section IV-B2, the optimal association rule needs
to be computed in real-time, thus implying that Problem (63)
needs to be solved anew each time any of the coefficients
{dk,m}k,m changes. Moreover, in order to be useful, the
solution needs to be obtained well before the coefficients
{dk,m}k,m change again.

In order to reduce the complexity of the resource allocation
process, we observe that the considered problem is again an
instance of Case C.2 of Table I, since a model is available and
has allowed us to formulate Problem (63). Then, following
a similar approach as in Section IV-B2, the optimization
program in (63) can be seen as the problem of determining
the unknown map:

F :d={dk,m,Rmin,k,am}k,m∈RKM+K+M→ρ∗∈{0, 1}KM,
(64)

which can be tackled by resorting again to a fully-connected
FFNs, taking (KM + K + M)-dimensional inputs and pro-
ducing KM -dimensional outputs, with similar implementation
and complexity considerations as those in Section IV-B2.

Numerical performance analysis. We considered the up-
link of a MIMO system in which Nc = 4 base stations serve
K = 10 users deployed in a square area with edge 2000 m.
The base stations are deployed at coordinates (500, 500) m,
(500,−500) m, (−500,−500) m, (−500, 500) m, and are all
equipped with NR = 2 antennas. Instead, the mobile users are
randomly deployed in the square area and are equipped with
a single antenna. The path-loss has been modeled following
[203], with power decay factor equal to 4.5, while fast fading
terms have been modeled as realizations of zero-mean, unit-
variance complex Gaussian random variables. The noise power
at the base station has been generated as σ2 = FN0B, wherein
F = 3 dB is the receive noise figure, B = 180 kHz is the
communication bandwidth, and N0 = −174 dBm/Hz is the
noise spectral density. All users are assumed to transmit with
power Pmax, assumed equal across the uplink terminals.

For the numerical results, no rate constraints have been
enforced in Problem (63). As a results, as already mentioned,
it can be shown that the constraint matrix of Problem (63)
becomes totally unimodular, which implies that Problem (63)
can be globally solved by solving its continuous relaxation
in which ρk,m ∈ [0, 1], for all k and m. In other words,
if no rate constraints are enforced, relaxing the association
variables in Problem (63) to continuous values in [0, 1] leads
to a continuous problem whose optimal solution is such that
ρk,m ∈ {0, 1}, and thus is feasible for Problem (63), too.
On the other hand, if also rate constraints, are enforced, the
optimal solution of Problem (63) can be obtained by means
of branch-and-cut techniques.

35

In our simulation, we have built a training set with size
NTR = 105, considering independent instances of the MIMO
system with respect to users’ locations and channel real-
izations, and solving (63) for each system scenario, which
yields the training set {di,ρ∗i }

NTR
i=1 . In addition, 104 more

data samples have been used for validation purposes. Adam
training algorithm with Nesterov’s momentum has been used
to train a fully-connected ANN with L = 6 hidden layers,
having 1024, 512, 256, 256, 128, 64 neurons, respectively,
while the output layer has KM = 40 neurons yielding the
association between users and base stations. All hidden layers
have ReLU activation functions, whereas the output layer has
a sigmoidal activation function. The mean squared error has
been used as loss function during the training phase, for each
training sample, namely:

MSE =

NTR∑
i=1

∥∥∥ρ(i) − ρ∗(i)∥∥∥2 . (65)

After the training and validation phase, the ANN has been
tested over NTest = 104 independently generated channel re-
alizations. For each data sample, denoting by ρ = {ρk,m}k,m
the ANN output, user k has been associated to base station m̄
if

m̄ = arg max
m

ρk,m (66)

The results in terms of accuracy of the power allocation
estimation are reported in Table IV-B3 for different values of
Pmax, assumed equal for all users. Specifically, Table IV-B3
reports, for each considered value of Pmax, the average MSE,
over the test set, between the optimal assignment and the
assignment predicted by the ANN, as well as the MSE in
the corresponding sum-rate values, namely:

MSEρ =
1

Ntest

Ntest∑
i=1

‖ρ(i)opt − ρ
(i)
ANN‖

2

MSEr,SR =
1

Ntest

Ntest∑
i=1

(
SR(i)

opt − SR(i)
ANN

SR(i)
opt

)2

,

wherein ρ(i)opt and SR(i)
opt are the optimal assignment vector

and corresponding sum-rate value, while ρ(i)ANN and SR(i)
ANN

are the assignment vector and corresponding sum-rate value
output by the ANN.

Table III
MEAN SQUARED ERROR BETWEEN THE OPTIMAL

TRANSMITTER-RECEIVER ASSOCIATION AND THE RESULTING SUM-RATE
VALUE, AND THOSE OUTPUT BY THE TRAINED ANN, FOR DIFFERENT

VALUES OF Pmax .

-20 dBW -10 dBW 0 dBW 10 dBW
MSEρ 0.176 0.169 0.170 0.168

MSEr,SR 2.75*10−4 3.02*10−4 2.32*10−4 3.11*10−4

The results indicate that the ANN is able to associate
transmitters and receivers in such a way to yield a near-optimal
system sum-rate, for different values of Pmax.

This is further confirmed in Fig. 19, which shows the
optimal sum-rate value achieved over the test set versus Pmax,

comparing it with the sum-rate value predicted by the ANN
for Pmax = 10 dBW (i.e. in the region of interest for typical
communication system operation). It is seen that the ANN
achieves near-optimal performance, attaining more than 99%
of the optimal sum-rate value. Thus, ANN-based resource
allocation proves useful also to solve classification problems,
in which the variables to optimize take on discrete values,
rather than continuous ones.

-25 -20 -15 -10 -5 0 5 10

Pmax [dB]

17.4

17.6

17.8

18

18.2

18.4

18.6

18.8

S
R

[b
it
/H

z]

SR global optimum
SR level by the ANN at Pmax = 10 dB

Figure 19. Comparison between the maximum sum-rate obtained by standard
optimization methods and the sum-rate obtained by the ANN at Pmax = 10
dB.

4) Refining a model by deep learning - Cellular networks
beyond the Poisson point process: In this section, we consider
the case study where an analytical model exists and is analyti-
cal tractable, but it is not considered to be sufficiently accurate
for system optimization. We assume, in addition, that more
accurate network models are difficult to develop and/or are not
suitable for system optimization. As a practical example, we
consider the optimization of the Energy Efficiency (EE) [66]
in non-Poisson cellular networks [81], which is known to be
an intractable optimization problem because of the analytical
complexity of the utility function to optimize.

As discussed in Section I-C, we propose to solve this
issue by relying on deep transfer learning. Our proposed idea
consists of jointly exploiting model-based and data-driven
optimization. The approach consists of first optimizing the
network using a mismatched, but simpler for optimization,
model, and then refining the result with (few) empirical data.
Let us assume, as a practical example, that the mismatched
(approximated) model is the Poisson model. More precisely,
we assume that the only inaccuracy of the system model is
the spatial distribution of the cellular base stations, while all
the other parameters and modeling assumptions as considered
to be accurate. More general system setups can be considered,
and another example is studied in the next section. In detail,
the approximated model is assumed to be Poisson point pro-
cess model, while the “exact” point process model is assumed
to be the square grid model [79]. This is a simple example that

36

is chosen in order to shed light on our proposed approach, and
that is also easy to simulate and reproduce.

From [66], we know that the EE in Poisson cellular
networks is available in closed-form and is amenable for
optimization. Thus, a large dataset of optimal values for the EE
as a function of any system parameters can be readily obtained.
This dataset is used to train a (mismatched) ANN with the
desired accuracy. The issue, as mentioned, is that the original
network model is non-Poisson. We assume, however, that the
considered cellular network deployment is equipped with a
sensing platform, e.g., by using the metasurfaces discussed in
Section I-C, that can sense and report some contextual data
about the network, which is used to obtain a dataset of just
a few empirical but optimal values of the EE, which account
for the actual non-Poisson spatial model. This dataset is used
to tune the ANN and to correct the mismatch. The intuition
behind this proposed approach is that, despite mismatched,
the initial ANN embeds the most important features of the
cellular network already, and thus less data is needed compared
with the case study where no pre-training is performed. The
objective of this section is to study the amount of empirical
samples that the proposed approach based on transfer learning,
which jointly combines model and data, requires to achieve
similar performance as a pure data-driven method. If the
amount of empirical data is not that large, the proposed
approach will be successful and will also reduce the amount
of overhead, to collect the empirical samples, that is needed
to network optimization.

In the rest of this section, we discuss both pure model-based
and data-driven approaches, and then combine them together
based on transfer learning principles, and, more precisely on
network-based transfer learning.

Model-based optimization. From [66], the EE in Poisson
cellular networks can be formulated as follows:

EE (λBS) =
SE (λBS)

Pgrid (λBS)
(67)

where

SE (λBS) = BWlog2 (1 + γD)
λBSL (λMT/λBS)

1 + ΥL (λMT/λBS)

×Q (λBS,Ptx, λMT/λBS)

(68)

Pgrid (λBS) = λBSPtxL (λMT/λBS)

+ λMTPcirc + λBSPidle (1− L (λMT/λBS))
(69)

are the spectral efficiency and the power consumption of the
cellular network, respectively.

Equations (68) and (69) depend on many parameters,
which are all defined in [66]. As far as the present paper
is concerned, we are interested in four main parameters:
λBS, which is the deployment density of the base stations,
Ptx, which is the transmit power of the base stations, Pcirc,
which is the circuit power consumption of the base stations,
and Pidle, which is the idle power consumption of the base
stations. In this section Pcirc and Pidle are assumed to be
fixed, and they are further analyzed in the next section. The
objective is to identify the optimal deployment density of the

base stations, λBS, given some values of the transmit power
Ptx. In [66], it is proved that this optimization problem has a
unique solution, which is formulated as the unique root of a
non-linear equation. Therefore, the optimal density of the base
stations that maximizes the EE can be computed efficiently,
for any given values of the transmit power. By solving
this optimization problem, we can easily obtain the optimal
pairs

(
Ptx, λ

(opt)
BS

)
, where λ(opt)BS = arg maxλBS

{EE (λBS)}.
These pairs can then be used as the input, Ptx, and the
output, λ(opt)BS , for training an ANN that yields the optimal
deployment density of the base stations as a function of the
transmit power that they employ.

Data-driven optimization. Let us assume now that we
cannot rely on any analytical models and that the EE needs to
be estimated by collecting empirical samples from the cellular
network, from which the optimal cellular network deployment
needs to be inferred. In particular, the spectral efficiency and
the power consumption can be computed, respectively, as
follows:

PSE (•) =
1

AreaNet

∑
Cell(1)∈Net

∑
NMT∈Cell(1)

{
BW

NMT
log2 (1 + γD) 1

(
SIR ≥ γD,SNR ≥ γA

)}
(70)

Pgrid (•) =
1

AreaNet

 ∑
Cell(0)∈Net

Pidle

+
∑

Cell(1)∈Net

Ptx + Pcirc

∑
NMT∈Cell(1)

NMT


(71)

These two formulas can be interpreted as follows. Let us
consider the spectral efficiency as an example. Each mobile
terminal in the cellular network determines, based on the
received signal, whether it is in coverage. This is performed
by measuring the average signal-to-noise-ratio during the cell
association phase and the signal-to-interference-ratio during
data transmission (if the first phase was successful). This
condition corresponds to the term 1

(
SIR ≥ γD,SNR ≥ γA

)
,

where 1 (·) is the indicator function. Each mobile terminal,
reports whether it is in coverage or not to a network controller
(one bit of information). Based on the number of mobile
terminals that are in coverage on a given cell (say NMT),
the corresponding base station equally allocates the available
spectrum (say BW) among them, and transmit data with
a fixed rate BW

NMT
log2 (1 + γD). Based on the information

gathered by all the mobile terminals, it is possible to identify
the base stations that have at least one mobile terminal in
their corresponding cells (say Cell (1)) and to compute the
number of mobile terminals that lie in each of them for
each network realization. The spectral efficiency can then be
estimated by summing the rates all of active base stations and
by normalizing by the area of the network under analysis. It
is worth mentioning that in order to identify, e.g., the optimal

37

10 20 30 40 50 60 70 80 90 100
Amount of Empirical Data [number of samples]

10-4

10-3

10-2

10-1

100
M

ea
n

R
el

at
iv

e
Sq

ua
re

 E
rro

r
Training Error (model+data driven)
Validation Error (model+data driven)
Training Error (data driven only)
Validation Error (data driven only)
Complete Dataset of Empirical Data
Only Model

Figure 20. Comparison between model-based, data-driven, and transfer
learning based optimization - Error performance of the actual and estimated
average cell radius.

deployment density of the base stations, we need to repeat this
procedure by considering all possible combinations of base
station patterns, given the number of base stations actually
deployed. If the optimization variable is the transmit power
of the base stations, all possible values of transmit power
should be tested and the value corresponding to the optimal
EE should be recorded and used to train an ANN, similar to
the approach discussed for model-based optimization. Based
on this simple description, we can readily understand that the
amount of empirical data that is necessary to train an ANN
may not be negligible, and, in any case, may strongly affect
the overhead for network optimization.

Network-based transfer learning optimization. Network-
based transfer learning is a solution to overcome the limi-
tations of model-based and data-driven approaches, since it
is apparent that both have advantages and limitations. As
mentioned already, the idea is to first train and optimize an
ANN by using a model-based approach, and then refining
the obtained ANN by using some empirical data (data-driven
approach). Once the first model-based ANN is obtained, in
particular, we consider that its configuration, i.e., the number
of layers, neurons, weights, and biases, constitute the initial
configuration of the second ANN that is refined based on
empirical data. In our case study, we assume that, during
the refinement phase, the number of layers and neurons are
is modified, while the weights and biases are finely-tuned in
order to account for the empirical data and to capture those
features of the actual network setup that the assumed model,
in order to keep its complexity at a low level, is not capable
of doing.

In Figs. 20 and 21, we illustrate some numerical exam-
ples that compare the performance of the three proposed
approaches. As far as the architecture of the ANN is con-
cerned, we have considered a simple setup that is made of
two layers and four neurons. As for training the ANN, we

-10 -5 0 5 10 15 20 25 30 35 40
Transmit Power [dBm]

0

20

40

60

80

100

120

O
pt

im
al

 (A
ve

ra
ge

) C
el

l R
ad

iu
s

[m
]

Empirical Data - Complete Dataset
Model-Based
Only Data (40 samples)
Model+Data (40 samples)

Figure 21. Comparison between model-based, data-driven, and transfer
learning based optimization - Optimal deployment.

have considered 100 iterations and the Bayesian regularization
back propagation algorithm. The complete dataset of empirical
data is made of 10,000 samples, and the validation dataset is
made of 1,000 samples. Each case study based on the transfer
learning method is obtained by considering 10,000 samples,
which are split among model-based and data-driven steps as
described in the figures: If x empirical samples are used to
refine the second ANN, then 10, 000 − x samples from the
analytical model as used to train the first ANN.

Figures 20 and 21, in particular, show that the proposed
approach based on transfer learning is capable of providing
performance that is very close to the best performance bound
that is obtained by using the complete dataset of 10,000
samples. In Fig. 20, in particular, we observe that by using
a data-driven approach and by increasing the amount of
empirical data, the error performance decreases, as we would
expect from a correct implementation of deep learning. We
observe, in addition, that using only a model yields estimates
of the optimal density of the base stations, or equivalently
the average cell radius, that is significantly different from the
actual optimal value that is obtained by considering the actual
spatial distribution of the cellular network. By using a transfer
learning based approach that uses only 40 empirical samples,
we obtain almost perfect estimates of the actual deployment
density of the base stations. This is confirmed in Fig. 21,
where the optimal density of base stations as a function of
their transmit power is depicted, by considering model-based,
data-driven, and the proposed joint approach. Notably, we
observe that a data-driven approach based on only 40 empirical
samples yield inaccurate estimates of the optimal deployment
density of the base stations: This highlights the relevance
of performing the model-based pre-training before employing
actual measurements for system optimization.

In summary, based on the results reported in Figs. 20 and
21, we conclude that the proposed approach based on transfer
learning constitutes a suitable approach to take the best of
both model-based and data-driven methods. Based on our

38

100 200 300 400 500 600 700
Amount of Empirical Data [number of samples]

10-4

10-3

10-2

10-1

100
M

ea
n

R
el

at
iv

e
Sq

ua
re

 E
rro

r
Training Error (model+data driven)
Validation Error (model+data driven)
Training Error (data driven only)
Validation Error (data driven only)
Complete Dataset of Empirical Data
Only Model

Figure 22. Comparison between model-based, data-driven, and transfer
learning based optimization - Error performance of the actual and estimated
average cell radius.

trials, however, we have observed that optimizing the proposed
approach may not be trivial. In many cases, in fact, we have
noticed the so-called negative transfer, i.e., the refined ANN
yields performance that is worst than the pre-trained ANN. In
spite of the promising results illustrated in Figs. 20 and 21,
we think that the application of transfer learning to the design
and optimization of wireless networks is a non-trivial research
issue.

5) Refining a model by deep learning - Cellular networks
with inaccurate power consumption models: In this section,
we consider a similar optimization problem as in the previous
section. Rather than focusing on the impact of the spatial
distribution of the cellular base stations, we focus our attention
on the power consumption model of the base stations. More
precisely, we assume that the Poisson point process is suffi-
ciently accurate to account for the distribution of the cellular
base stations. As far as the power consumption model of the
cellular base stations is concerned, on the other hand, we
assume a model based on a uniform distribution for Pcirc and
Pidle, while the empirical model is assumed to be based on
the Gaussian distribution. The optimization problem that we
are interested in is still concerned with identifying the optimal
deployment density of the base stations, but as a function of
three variables: Ptx, Pcirc, and Pidle. The model-based, the
data-driven, and the transfer learning based approach follow
the same approach as that described in the previous section. As
far as the architecture of the ANN is concerned, on the other
hand, we consider a different network setup that is made of six
layers and four neurons. The ANN model is, therefore, more
complicated because three input parameters instead of one are
considered in this case study.

The results are illustrated in Figs. 20 and 21. The ob-
tained performance trends are similar to those obtained in the
previous case study. We note, however, that in this case a
large number of empirical sample is needed in order to obtain
adequate performance, especially compared against the bench-

-10 -5 0 5 10 15 20 25 30 35 40
Transmit Power [dBm]

10

15

20

25

30

35

40

45

50

55

60

O
pt

im
al

 (A
ve

ra
ge

) C
el

l R
ad

iu
s

[m
]

Empirical Data - Complete Dataset
Model-Based
Only Data (400 samples)
Model+Data (400 samples)

Figure 23. Comparison between model-based, data-driven, and transfer
learning based optimization - Optimal deployment.

mark constituted by data-driven optimization that leverages
the complete dataset of 10,000 empirical samples. By using
only 400 empirical samples, the proposed approach based on
transfer learning is capable of obtaining good performance,
and of providing sufficiently accurate performance predictions
of the optimal network deployment. Based on these results,
we conclude that the proposed network-based transfer learning
approach is a promising alternative to bridge the critical
tension between modeling accuracy, optimization complexity,
and sensing overhead for network optimization.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The complexity of future wireless communication networks
makes deep learning an indispensable design tool. Moreover,
recent technological advancements in the area of computer
processing units and distributed data storage make the use
of deep learning now more practical than ever. Nevertheless,
research in this field has just started, and a great deal of
open problems must be solved before true ANN-based wireless
communication networks can be operated.

The first challenge to be overcome is represented by the
huge quantity of data that ANN need in order to ensure
satisfactory performance. As remarked in Section II, deep
learning outperforms other machine learning techniques in
the large data regime. However, while this might not be an
obstacle in other fields of science, the acquisition of large
datasets in wireless networks requires measurement campaigns
that could be too expensive and/or not practical. As shown
in this work, the most promising approach to overcome this
challenge is the joint use of data-driven approaches and
model-based techniques. The transfer learning methodologies
developed in Section IV demonstrate how even approximate
mathematical models contain useful prior information that,
if successfully embedded into deep learning techniques, can
significantly reduce the amount of data required to achieve
the desired performance. Nevertheless, this represents only

39

the tip of the iceberg, and many open issues remain to be
investigated. As far deep transfer learning is concerned, it is
not clear how to perform hyperparameter setting (e.g. amount
of model-based data, number of ANN layers and neurons, etc.)
to prevent a negative transfer. Moreover, other transfer learning
techniques remain to be explored, as well as other ways of
embedding expert knowledge into ANNs, based for exam-
ple on the deep unfolding and deep reinforcement learning
methods. As an example, embedding some prior information
into a deep reinforcement learning algorithm could potentially
speed up its convergence. In addition, a research direction
that could provide guidance to achieve a cross-fertilization
between mathematical models and deep learning is that aimed
at deriving a theoretical explanation of how ANNs work and
how to configure them to perform a certain task. Opening the
black box of ANNs to understand the information-theoretic
principles that regulate their behavior is surely a major topic
for future investigation. A recent contribution in this direction
is [204], which employs the so-called information bottleneck
approach.

The second challenge to be overcome is the integration of
ANN into future wireless network architectures. As motivated
in this work, deep learning should be implemented in a
distributed fashion. However, this poses several issues that
need to be overcome in the next years. Integrating AI tech-
nologies into distributed wireless networks will not only affect
the transmission technologies, but it will also significantly
impact the way the network should be controlled through
feedback signals to avoid instability and malfunctioning. A
distributed network in which each node has its own ANN, that
is trained based on a dataset acquired from local measurement
and experience, inevitably leads to different nodes having
different learning capabilities. Each distributed dataset might
differ in both size, since different nodes might have different
measurement and storage capabilities, as well as quality, since
different nodes might experience different data perturbations
due to the non-ideality of the measurement sensors. This could
potentially lead to instabilities and, in the worst case, cause
the wireless network to crash. Moreover, another issue to be
addressed in distributed setups is the possibility for each node
to optimize its own performance, rather than the system-wide
utility, which might cause a device to learn how to cheat for
individual gain. Thus, security mechanisms must be put in
place to ensure the correct evolution of a distributed, ANN-
based wireless communication network.

A third challenge to be overcome is to make deep learn-
ing techniques robust against corrupted data. Indeed, due to
inevitable errors over feedback channels or in the storage
process of data into memory banks, the datasets used to train
ANNs might be corrupted and possibly lead to undesirable
training results. Techniques that are able to make the training
process robust to these events are warranted, especially in
light of the distributed implementation of ANN-based wireless
networks, which makes the overall network highly prone to
inconsistencies and failures.

REFERENCES

[1] Cisco, “2020 cisco highlights,” http://www.telecompetitor.com/3-4-
device-connections-per-person-worldwide-2020-cisco-highlights-11th-
visual-networking-index/, 2017.

[2] “NGMN alliance 5G white paper,” https://www.ngmn.org/5g-white-
paper/5g-white-paper.html, 2015.

[3] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong,
and J. C. Zhang, “What will 5G be?” IEEE Journal on Selected Areas
in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[4] S. Buzzi, C.-L. I, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A
survey of energy-efficient techniques for 5G networks and challenges
ahead,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 5, 2016.

[5] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks
via fractional programming theory,” Foundations and Trends R© in
Communications and Information Theory, vol. 11, no. 3-4, pp. 185–
396, 2015.

[6] C. G. Aliu et al., “A survey of self organisation in future cellular
networks,” IEEE Communications Surveys and Tutorials, vol. 15, no. 1,
pp. 336–361, 2013.

[7] 5G-PPP, “5G empowering vertical industries,” Euro-5G Project
Brochure, February 2016.

[8] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[9] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Net-
work function virtualization in 5G,” IEEE Communications Magazine,
vol. 54, no. 4, pp. 84–91, 2016.

[10] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D
placement of an unmanned aerial vehicle base station for energy-
efficient maximal coverage,” IEEE Wireless Communications Letters,
vol. 6, no. 4, pp. 434—437, August 2017.

[11] Telus and Huawei, “Next generation SON for 5G,” White Paper, 2016.
[12] H. W. Paper, “5G security: Forward thinking,” 2015.
[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.
[14] O. Simeone, “A brief introduction to machine learning for engineers,”

Foundations and Trends R© in Communications and Information The-
ory, pp. 1—191, 2017.

[15] ——, “A very brief introduction to machine learning with applica-
tions to communication systems,” https://arxiv.org/pdf/1808.02342.pdf,
2018.

[16] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends R© in Communications and Information The-
ory, vol. 4, no. 2, pp. 107–194, 2012.

[17] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-
learning techniques in cognitive radios,” IEEE Communications Sur-
veys and Tutorials, vol. 15, no. 3, pp. 1136–1159, 2013.

[18] S. Lasaulce and H. Tembine, Game Theory and Learning for Wireless
Networks. Elsevier, 2011.

[19] J. Moysen and L. Giupponi, “From 4G to 5G: Self-
organized network management meets machine learning,”
https://arxiv.org/pdf/1707.09300.pdf, 2018.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[21] Y. Bengio, “Learning deep architectures for AI,” Foundations and
Trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[22] L. Deng and D. Yu, “Deep learning methods and applications,” Founda-
tions and Trends R© in Signal Processing, vol. 7, no. 3–4, pp. 197–387,
2014.

[23] A. Rao, J. Voyles, and P. Ramchandani, “Top 10 artificial intelli-
gence technology trends for 2018,” http://usblogs.pwc.com/emerging-
technology/top-10-ai-tech-trends-for-2018/, 2017.

[24] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine
learning for wireless networks with artificial intelligence: A tutorial on
neural networks,” https://arxiv.org/pdf/1710.02913.pdf, 2017.

[25] A. Imran, A. Zoha, and A. Abu-Dayya, “Challenges in 5G: how to
empower SON with big data for enabling 5G,” IEEE Network, vol. 28,
no. 6, pp. 27–33, 2014.

[26] S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in
the era of big data,” IEEE Communications Magazine, vol. 53, no. 10,
pp. 190–199, October 2015.

[27] X. Cheng, L. Fang, L. Yang, and S. Cui, “Mobile big data: The fuel for
data-driven wireless,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1489–1516, October 2017.

40

[28] P. Harris, “Analysis: What blockchain technology means for
artificial intelligence,” http://www.nasdaq.com/article/analysis-what-
blockchain-technology-means-for-artificial-intelligence-cm888540, De-
cember 2017.

[29] F. Corea, “The convergence of AI and blockchain: what’s the
deal?” https://medium.com/@Francesco AI/the-convergence-of-ai-and-
blockchain-whats-the-deal-60c618e3accc, December 2017.

[30] T. McConaghy, “How blockchains could transform artificial in-
telligence,” http://dataconomy.com/2016/12/blockchains-for-artificial-
intelligence/, December 2016.

[31] R. Yu, “Huawei reveals the future of mobile AI at ifa
2017,” http://www.businesswire.com/news/home/20170902005020/
en/Huawei-Reveals-Future-Mobile-AI-IFA-2017,, 2017.

[32] S. Kovach, “What the big innovation house that powered the mobile
boom is betting on next,” http://www.businessinsider.com/qualcomm-
ceo-steve-mollenkopf-interview-2017-7, 2017.

[33] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light commu-
nication, networking, and sensing: A survey, potential and challenges,”
IEEE Communications Surveys and Tutorials, vol. 17, no. 4, pp. 2047–
2077, 2015.

[34] D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED
based indoor visible light communications: State of the art,” IEEE
Communications Surveys and Tutorials, vol. 17, no. 3, pp. 1649–1678,
2015.

[35] T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, “Molec-
ular communication and networking: Opportunities and challenges,”
IEEE Transactions on NanoBioscience, vol. 11, no. 2, pp. 135–148,
2012.

[36] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A
comprehensive survey of recent advancements in molecular communi-
cation,” IEEE Communications Surveys and Tutorials, vol. 18, no. 3,
pp. 1887–1919, 2016.

[37] C. Häger and H. D. Pfister, “Deep learning of the
nonlinear schrödinger equation in fiber-optic communications,”
https://export.arxiv.org/pdf/1804.02799, 2018.

[38] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436—444, 2015.

[39] J. Schmidhuber, “Deep learning in neural networks: An overview,”
https://arxiv.org/abs/1404.7828, 2014.

[40] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo,
“Machine learning paradigms for next-generation wireless networks,”
IEEE Wireless Communications, vol. 24, no. 2, pp. 98–105, April 2017.

[41] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Communications Surveys and Tutorials, vol. 16, no. 4, pp. 1996–
2018, 2014.

[42] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self organizing cellular
networks,” IEEE Communications Surveys and Tutorials, vol. 19, no. 4,
pp. 2392–2431, 2017.

[43] P. Kasnesis, C. Patrikakis, and I. Venieris, “Changing the game of
mobile data analysis with deep learning,” IT Professional, vol. PP,
no. 99, 2017.

[44] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: A survey,” https://arxiv.org/abs/1803.04311,
2018.

[45] “https://www.comsoc.org/ctn/what-will-6g-be.”
[46] P. Hu, P. Zhang, M. Rostami, and D. Ganesan, “An integrated active-

passive radio for mobile devices with asymmetric energy budgets,” in
ACM SIGCOMM, 2016.

[47] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and
I. F. Akyildiz, “Realizing wireless communication through software-
defined hypersurface environments,” in IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks, 2018.

[48] “5GPPP vision on software networks and 5g sn wg, jan. 2017.”
[49] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F.

Akyildiz, “A new wireless communication paradigm through software-
controlled metasurfacesâ, ieee communications magazine, vol. 56, no.
9, pp. 162-169, sep. 2018.” IEEE Communications Magazine, vol. 56,
no. 9, pp. 162–169, September 2018.

[50] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[51] N. Wiener, Cybernetics, or Control and Communication in the Animal
and the Machine. MIT Press, 1948.

[52] L. Subrt and P. Pechac, “Controlling propagation environments using
intelligent walls,” in European Conference on Antennas and Propaga-
tion, 2012.

[53] C. Liaskos, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F.
Akyildiz, “Using any surface to realize a new paradigm for wireless
communications,” Communications of the ACM, vol. 61, no. 11, pp.
30–33, November 2018.

[54] A. Tsioliaridou, C. Liaskos, and S. Ioannidis, “Towards a circular econ-
omy via intelligent metamaterials,” in IEEE International Conference
on Computer-Aided Modeling Analysis and Design of Communication
Links and Networks, 2018.

[55] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and
Z. Gaburro, “Light propagation with phase discontinuities: Generalized
laws of reflection and refraction,” Science, vol. 334, no. 6504, pp. 333–
337, 2011.

[56] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and
D. R. Smith, “An overview of the theory and applications of meta-
surfaces: The two-dimensional equivalents of metamaterials,” IEEE
Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, April
2012.

[57] L. Spada, “Metamaterials for advanced sensing platforms,” Research
Journal on Optical Photonics, vol. 1, no. 1, October 2017.

[58] T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of elec-
tromagnetic waves in a metamaterial that mimics electromagnetically
induced transparency,” Physical Review B, vol. 87, no. 161110, 2013.

[59] A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta,
“Performing mathematical operations with metamaterials,” Science,
vol. 343, no. 6167, pp. 160–163, 2014.

[60] “A hardware platform for software-driven functional metasurfaces,”
H2020 VISORSURF project.

[61] H. Claussen, L. T. W. Ho, H. R. Karimi, F. J. Mullany, and L. G.
Samuel, “Base station: Cognisant robots and future wireless access
networks,” in IEEE Consumer Communications and Networking Con-
ference, 2006.

[62] H. Claussen, “Autonomous self-deployment of wireless access net-
works,” Bell Labs Technical Journal, vol. 14, no. 1, pp. 55–71, 2009.

[63] S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in hetero-
geneous networks: Modeling, analysis, offloading in heterogeneous
networks: Modeling, analysis, and design insights,” IEEE Transactions
on Wireless Communications, vol. 12, no. 5, pp. 2484–2497, May 2013.

[64] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, “Are we
approaching the fundamental limits of wireless network densification?”
IEEE Communications Magazine, vol. 54, no. 10, pp. 184–190, October
2016.

[65] M. D. Renzo, W. Lu, and P. Guan, “The intensity matching approach:
A tractable stochastic geometry approximation to system-level analysis
of cellular networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 9, pp. 5963–5983, September 2016.

[66] M. D. Renzo, A. Zappone, T. T. Lam, and M. Debbah, “System-
level modeling and optimization of the energy efficiency in cellular
networks—a stochastic geometry framework,” IEEE Transactions on
Wireless Communications, 2018.

[67] ——, “Spectral-energy efficiency pareto front in cellular networks:
A stochastic geometry frameworks,” IEEE Wireless Communications
Letters, 2018.

[68] C. Mollen, “High-end performance with low-end hardware: Analysis
of massive mimo base station transceivers,” Doctoral Thesis, Linkoping
University, Sweden, 2017.

[69] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. Sayeed,
“An overview of signal processing techniques for millimeter wave
MIMO systems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 10, no. 3, April 2016.

[70] J. G. Andrews, T. Bai, M. N. Kulkarni, A. Alkhateeb, A. K. Gupta,
and R. W. Heath, “Modeling and analyzing millimeter wave cellular
systems,” IEEE Transactions on Communications, vol. 65, no. 1, pp.
403–430, 2017.

[71] O. Abari, D. Bharadia, A. Duffield, and D. Katabi, “Enabling high-
quality untethered virtual reality,” in USENIX Symposium on Networked
Systems Design and Implementation, 2017.

[72] W. Lu and M. D. Renzo, “Stochastic geometry modeling and system-
level analysis and optimization of relay-aided downlink cellular net-
works,” IEEE Transactions on Communications, vol. 63, no. 11, pp.
4063–4085, November 2015.

[73] A. Shojaeifard, K.-K. Wong, M. D. Renzo, G. Zheng, K. A. Hamdi, and
J. Tang, “Massive MIMO-enabled full-duplex cellular networks,” IEEE
Transactions on Communications, vol. 65, no. 11, pp. 4734–4750, 2
2017.

[74] S. Abadal et al., “Computing and communications for the software-
defined metamaterial paradigm: A context analysis,” IEEE Access,
vol. 5, pp. 6225–6235, 2017.

41

[75] F. Liu et al., “Programmable metasurfaces: State of the art and
prospects,” in IEEE International Symposium on Circuits and Systems,
2018.

[76] A. Welkie, L. Shangguan, J. Gummeson, W. Hu, and K. Jamieson,
“Programmable radio environments for smart spaces,” in ACM Work-
shop on Hot Topics in Networks, 2017.

[77] H. Claussen, “Autonomous self-deployment of wireless access net-
works in an airport environment,” Autonomic Communication, Lecture
Notes in Computer Science, Springer, vol. 3854, pp. 86–98, 2006.

[78] R. Chandra and K. Winstein, “Programmable radio environments for
smart spaces,” in HotNets-XVI Dialogue, ACM Workshop on Hot Topics
in Networks, 2017.

[79] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach
to coverage and rate in cellular networks,” IEEE Transactions on
Communications, vol. 59, no. 11, pp. 3122–3134, November 2011.

[80] M. D. Renzo, A. Guidotti, and G. E. Corazza, “Average rate of
downlink heterogeneous cellular networks over generalized fading
channels: A stochastic geometry approach,” IEEE Transactions on
Communications, vol. 61, no. 7, pp. 3050–3071, July 2013.

[81] M. D. Renzo, S. Wang, and X. Xi, “Modeling and analysis of cellular
networks by using inhomogeneous poisson point processes,” IEEE
Transactions on Wireless Communications, vol. 17, no. 8, pp. 5162–
5182, August 2018.

[82] M. D. Renzo, T. T. Lam, A. Zappone, and M. Debbah, “A tractable
closed-form expression of the coverage probability in poisson cellular
networks,” IEEE Wireless Communications Letters, 2018.

[83] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, October 2010.

[84] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1993.
[85] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,

2nd ed., ser. Classics In Applied Mathematics. SIAM, 1999.
[86] R. B. Myerson, Game theory: analysis of conflict. Harvard University

Press, 1997.
[87] Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game

Theory in Wireless and Communication Networks: Theory, Models, and
Applications. Cambridge University Press, 2011.

[88] A. MacKenzie and L. DaSilva, “Game theory for wireless engineers,”
Synthesis Lectures on Communications, vol. 1, no. 1, pp. 1–86, 2006.

[89] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in 20 th International Conference on Artificial
Intelligence and Statistics (AISTATS), vol. 54, 2017.

[90] J. Konečný, H. B. McMahan, F. X. Yu, A. T. Suresh, D. Bacon, and
P. Richtárik, “Federated learning: Strategies for improving communi-
cation efficiency,” https://arxiv.org/abs/1610.05492, 2017.

[91] F. Chen, Z. Dong, Z. Li, and X. He, “Federated meta-learning for
recommendation,” https://arxiv.org/abs/1802.07876, 2018.

[92] X. Wei, Q. Wang, T. Wang, and J. Fan, “Jammer localization in multi-
hop wireless network: A comprehensive survey,” IEEE Communica-
tions Surveys and Tutorials, vol. 19, no. 2, pp. 765–799, 2017.

[93] G. Han, J. Jiang, C. Zhang, T. Q. Duong, M. Guizani, and G. K.
Karagiannidis, “A survey on mobile anchor node assisted localization
in wireless sensor networks,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 3, pp. 2220–2243, 2016.

[94] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques
for wireless sensor networks: A survey,” IEEE Communications Sur-
veys and Tutorials, vol. 12, no. 2, pp. 1–12, 2010.

[95] J. Granjal, E. Monteiro, and J. Sá Silva, “Security for the internet of
things: A survey of existing protocols and open research issues,” IEEE
Communications Surveys and Tutorials, vol. 17, no. 3, pp. 1294–1312,
2015.

[96] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[97] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd Edition Draft. MIT Press, 2017.
[98] Y. Li, “Deep reinforcement learning: An overview,”

https://arxiv.org/abs/1701.07274, 2017.
[99] K. Arulkumaran, M. P. Deisenroth, and M. B. A. A. Bharath, “Deep

reinforcement learning: A brief survey,” IEEE Signal Processing Mag-
azine, vol. 34, no. 6, pp. 26–38, November 2017.

[100] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Theory of
Probability and Its Applications, vol. 16, pp. 264–280, 1971.

[101] A. Blumer, A. Ehrenfeucht, and D. H. M. K. Warmuth, “Learnability
and the Vapnik-Chervonenkis dimension,” Journal of the ACM, vol. 36,
no. 4, pp. 865–929, 1989.

[102] V. N. Vapnik, Estimation of Dependences Based on Empirical Data.
Springer-Verlag, 1982.

[103] ——, The nature of Statistical Learning Theory. Springer, 1995.
[104] J. Bergstra and Y. Bengio, “Random search for hyperparameter opti-

mization,” Journal of Machine Learning Research, vol. 13, pp. 281–
305, 2012.

[105] Y. Bengio, H. Larochelle, and P. Vincent, “Non-local manifold parzen
windows,” NIPS, MIT Press, 2005.

[106] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural
network design. Martin Hagan, 2014.

[107] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012.

[108] K. Jarret, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recogntion?” in International
Conference on Computer Vision, 2009.

[109] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learn-
ing, 2010.

[110] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on International Conference of
Artificial Intelligence and Statistics, 2011.

[111] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier non linearities
improve neural network acoustic models,” in International Conference
on Machine Learning, 2013.

[112] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: surpassing human-level performance on ImageNet classification,”
https://arxiv.org/abs/1502.01852, 2015.

[113] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (ELUs),”
https://arxiv.org/abs/1511.07289, 2015.

[114] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[115] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks 6, vol. 6, pp. 861–867,
1993.

[116] A. E. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Transactions on Information Theory, vol. 39,
no. 3, pp. 930–945, 1993.

[117] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Neural Information
Processing Systems, 2014.

[118] T. Cover and J. Thomas, Elements of information theory. Wiley, 2006.
[119] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge

University Press, 2004.
[120] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[121] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-

tion: Analysis, Algorithms, Engineering Applications. MPS-SIAM
Series on Optimization, 2001.

[122] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,” in
International Conference on Learning Representation, 2013.

[123] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization,” in Neural Information
Processing Systems, 2014.

[124] I. J. Goodfellow, O. Vinyals, and A. M. Saxe, “Qualitatively char-
acterizing neural network optimization problems,” in International
Conference on Learning Representations, 2015.

[125] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surface of multilayer networks,” in Artificial Intelligence and
Statistics, 2015.

[126] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural
Networks, vol. 2, pp. 53–58, 1989.

[127] K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Journal of Applied Mathematics, Second
Quarter, no. 2, pp. 164–168, 1944.

[128] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society of Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[129] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, 1986.

[130] L. Bottou, Online algorithms and stochastic approximations, D. Saad,
Ed. Cambridge University Press, Cambridge, UK, 1998.

42

[131] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[132] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
Conference on Machine Learning 2013, 2013.

[133] Y. Nesterov, Introductory lectures on convex optimization : a basic
course, ser. Applied optimization. Boston, Dordrecht, London: Kluwer
Academic Publisher, 2004.

[134] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, 2011.

[135] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representation, 2015.

[136] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS’2010, 2010.

[137] D. Sussillo and L. F. Abbott, “Random walks: Training very
deep nonlinear feed-forward networks with smart initialization,”
https://arxiv.org/abs/1412.6558v3, 2015.

[138] J. Martens, “Deep learning via hessian-free optimization,” in Twenty-
seventh International Conference on Machine Learning, 2010.

[139] C. M. Bishop, “Regularization and complexity control in feed-forward
networks,” in International Conference on Artificial Neural Networks,
1995.

[140] J. Sjöberg and L. Ljung, “Overtraining, regularization and searching
for a minimum, with application to neural networks,” International
Journal of Control, vol. 62, no. 6, pp. 1391–1407, 1995.

[141] N. Srivastava, G. Hinton, A. K. I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[142] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in 32nd Interna-
tional Conference on Machine Learning, vol. 37, 2015.

[143] J. R. Hershey, J. Le Ru, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,”
https://arxiv.org/pdf/1409.2574.pdf, 2014.

[144] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu,
“Model-driven deep learning for physical layer communications,”
https://arxiv.org/pdf/1809.06059.pdf, 2018.

[145] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” https://arxiv.org/abs/1808.01974, 2018.

[146] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple
sources,” in 2010 IEEE conference on Computer vision and pattern
recognition (CVPR), 2010.

[147] D. Pardoe and P. Stone, “Boosting for regression transfer,” in Proceed-
ings of the 27th International Conference on International Conference
on Machine Learning, 2010.

[148] E. Tzeng et al., “Deep domain confusion: Maximizing for domain
invariance,” https://arxiv.org/pdf/1412.3474.pdf, 2014.

[149] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” International Conference on
Machine Learning, pp. 97–105, 2015.

[150] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learn-
ing with joint adaptation networks,” https://arxiv.org/abs/1605.06636,
2017.

[151] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,”
https://arxiv.org/abs/1701.07875, 2017.

[152] J. T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language
knowledge transfer using multilingual deep neural network with shared
hidden layers,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing Conference (ICASSP), 2013.

[153] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian,
“Model-aided wireless artificial intelligence: Embedding expert knowl-
edge in deep neural networks towards wireless systems optimization,”
https://arxiv.org/abs/1808.01672, 2018.

[154] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Transfer learning
for mixed-integer resource allocation problems in wireless networks,”
https://arxiv.org/abs/1811.07107, 2018.

[155] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, pp. 2672—2680,
2014.

[156] Y. Ganin et al., “Domain-adversarial training of neural networks,”
Journal of Machine Learning Research, vol. 17, pp. 1–35, 2016.

[157] Z. Cao, M. Long, J. Wang, and M. I. Jordan, “Partial
transfer learning with selective adversarial networks,”
https://arxiv.org/pdf/1707.07901.pdf, 2017.

[158] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, December 2017.

[159] M. Kim, W. Lee, and D.-H. Cho, “A novel PAPR reduction scheme for
OFDM system based on deep learning,” IEEE Communications Letters,
vol. 22, no. 3, pp. 510–513, 2018.

[160] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,”
https://arxiv.org/pdf/1805.07631.pdf, 2018.

[161] S. Xue, Y. Ma, N. Yi, and R. Tafazolli, “Unsupervised deep learning
for MU-SIMO joint transmitter and noncoherent receiver design,” IEEE
Wireless Communications Letters, 2018.

[162] X. Jin and H.-N. Kim, “Deep learning detection networks in MIMO
decode-forward relay channels,” https://arxiv.org/abs/1807.09571,
2018.

[163] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. t. Brink, “OFDM-
autoencoder for end-to-end learning of communications systems,”
https://arxiv.org/pdf/1803.05815.pdf, 2018.

[164] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning-
based communication over the air,” IEEE Journal of Selected Topics
in Signal Processing, vol. 12, no. 1, pp. 132–143, 2018.

[165] T. J. O’Shea, T. Roy, N. West, and B. C. Hilburn, “Physical layer com-
munications system design over-the-air using adversarial networks,”
https://arxiv.org/abs/1803.03145v1, 2018.

[166] T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning
stochastic channel models from observation with variational generative
adversarial networks,” https://arxiv.org/abs/1805.06350, 2018.

[167] H. Ye, G. Y. Li, B. H. F. Juang, and K. Sivanesan, “Channel agnostic
end-to-end learning based communication systems with conditional
gan,” https://arxiv.org/abs/1807.00447, 2018.

[168] F. A. Aoudia and J. Hoydis, “End-to-end learning of
communications systems without a channel model,”
https://arxiv.org/pdf/1804.02276.pdf, 2018.

[169] V. Raj and S. Kalyani, “Backpropagating through the air: Deep learning
at physical layer without channel models,” IEEE Communications
Letters, 2018.

[170] N. Farsad and A. Goldsmith, “Detection algorithms for communication
systems using deep learning,” https://arxiv.org/abs/1705.08044, 2017.

[171] X. Qian and M. Di Renzo, “Receiver design in molecular com-
munications: An approach based on artificial neural networks,” in
IEEE International Symposium on Wireless Communication Systems
(ISWCS), 2018.

[172] D. Neumann, T. Wiese, and W. Utschick, “Learning the MMSE channel
estimator,” https://arxiv.org/abs/1707.05674v2, 2017.

[173] J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep
convolutional neural networks for massive MIMO fingerprint-based
positioning,” https://arxiv.org/pdf/1708.06235.pdf, 2017.

[174] S. Navabi, C. Wang, O. Y. Bursalioglu, and H. Papadopou-
los, “Predicting wireless channel features using neural networks,”
https://arxiv.org/abs/1802.00107, 2018.

[175] Y. Ding and B. D. Rao, “Dictionary learning based sparse channel
representation and estimation for FDD massive MIMO systems,”
https://arxiv.org/abs/1612.06553, 2018.

[176] A. Decurninge et al., “CSI-based outdoor localization for massive
MIMO: Experiments with a learning approach,” in IEEE International
Symposium on Wireless Communication Systems (ISWCS), 2018.

[177] S. Schibisch et al., “Online label recovery for deep learning-based
communication through error correcting codes,” in IEEE International
Symposium on Wireless Communication Systems (ISWCS), 2018.

[178] M. Koller et al., “Machine learning for channel estimation from com-
pressed measurements,” in IEEE International Symposium on Wireless
Communication Systems (ISWCS), 2018.

[179] X. Ma, H. Ye, and G. Y. Li, “Learning assisted estimation for time-
varying channels,” in IEEE International Symposium on Wireless
Communication Systems (ISWCS), 2018.

[180] W. Xu et al., “Joint neural network equalizer and decoder,” in IEEE In-
ternational Symposium on Wireless Communication Systems (ISWCS),
2018.

[181] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep
learning for wireless physical layer: Opportunities and challenges,”
https://arxiv.org/pdf/1710.05312.pdf, 2017.

[182] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” https://arxiv.org/abs/1807.11713, 2018.

[183] A. Javid, S. Chatterjee, and M. Skoglund, “Mutual information pre-
serving analysis of a single layer feedforward network,” in IEEE In-
ternational Symposium on Wireless Communication Systems (ISWCS),
2018.

43

[184] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless
Communications Letters, vol. 7, no. 1, pp. 114–117, 2018.

[185] R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang,
“Intelligent 5G: When cellular networks meet artificial intelligence,”
IEEE Wireless Communications, vol. 24, no. 5, pp. 175–183, October
2017.

[186] F. D. Calabrese, L. Wang, E. Ghadimi, G. Peters, and P. Soldati,
“Learning radio resource management in 5G networks: Framework,
opportunities and challenges,” https://arxiv.org/abs/1611.10253, 2017.

[187] J. Fang, X. Li, W. Cheng, Z. Chen, and H. Li, “Intelligent power
control for spectrum sharing: A deep reinforcement learning approach,”
https://arxiv.org/pdf/1712.07365.pdf, 2018.

[188] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,” IEEE Transactions on Wireless Communications, vol. 16, no. 6,
pp. 3520–3535, June 2017.

[189] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for wireless
resource management,” https://arxiv.org/pdf/1705.09412.pdf, 2017.

[190] A. Zappone, M. Debbah, and Z. Alltman, “Online energy-efficient
power control in wireless networks by deep neural networks,” in
IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications, 2018.

[191] A. Zappone, L. Sanguinetti, and M. Debbah, “User association and
load balacing for massive MIMO through deep learning,” in Asilomar
Conference on Signals, Systems, and Computers, 2018.

[192] L. Sanguinetti, A. Zappone, and M. Debbah, “A deep-learning frame-
work for energy-efficient resource allocation in massive MIMO sys-
tems,” in Asilomar Conference on Signals, Systems, and Computers,
2018.

[193] Y. S. Nasir and D. Guo, “Deep reinforcement learning for
distributed dynamic power allocation in wireless networks,”
https://arxiv.org/abs/1808.00490, 2018.

[194] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal
power control via ensembling deep neural networks,”
https://arxiv.org/abs/1807.10025, 2018.

[195] P. De Kerret and D. Gesbert, “Robust decentralized joint precoding
using team deep neural network,” in IEEE International Symposium
on Wireless Communication Systems (ISWCS), 2018.

[196] Q. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, “An Iteratively
Weighted MMSE Approach to Distributed Sum-Utility Maximization
for a MIMO Interfering Broadcast Channel,” IEEE Transactions on
Signal Processing, vol. 59, no. 9, pp. 4331–4340, September 2011.

[197] A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “Globally
optimal energy-efficient power control and receiver design in wireless
networks,” IEEE Transactions on Signal Processing, vol. 65, no. 11,
pp. 2844–2859, June 2017.

[198] T. Inoue, S. Chaudhury, G. D. Magistris, and S. Dasgupta, “Transfer
learning from synthetic to real images using variational autoencoders
for robotic applications,” https://arxiv.org/pdf/1709.06762.pdf, 2017.

[199] C. Kim, E. Variani, A. Narayanan, and M. Bacchiani, “Efficient
implementation of the room simulator for training deep neural network
acoustic models,” https://arxiv.org/pdf/1712.03439.pdf, 2017.

[200] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A
comprehensive survey of recent advancements in molecular communi-
cation,” IEEE Communications Surveys and Tutorials, vol. 18, no. 3,
pp. 1887–1919, 2016.

[201] N. Farsad and A. Goldsmith, “Sliding bidirectional recurrent neural
networks for sequence detection in communication systems,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
2018.

[202] X. Qian and M. D. Renzo, “Receiver design in molecular commu-
nications: An approach based on artificial neural networks,” in IEEE
International Symposium on Wireless Communications Systems, 2018.

[203] G. Calcev, D. Chizhik, B. Goransson, S. Howard, H. Huanga, A. Ko-
giantis, A. Molisch, A. Moustakas, D. Reed, and H. Xu, “A wideband
spatial channel model for system-wide simulations,” IEEE Transactions
on Vehicular Technology, vol. 56, no. 2, March 2007.

[204] N. Wolchover, “New theory cracks open the black box of deep
learning,” Quanta Magazine, September 2017.

	Introduction and Vision
	Deep Learning in Communications: Why Now?
	Novelty and Organization
	Deep Learning for Network Deployment and Planning
	Current Networks vs. Future Smart Radio Environments
	The Need for Deep Learning

	Deep Learning for Network Resource Management
	Deep Learning for Network Operation and Maintenance

	Machine Learning and Deep Learning: What is New?
	Overfitting and Underfitting
	Hyperparameters and Validation Set
	Beyond classical machine learning

	Deep learning by artificial neural networks
	Feedforward Neural Networks
	Convolutional neural networks

	Recurrent neural networks
	Training Neural Networks
	Parameter tuning - Tackling (24)
	Hyperparameter tuning - Fitting the data

	Deep Reinforcement Learning
	Deep unfolding
	Deep Transfer learning
	Instance-based transfer learning
	Mapping-based transfer learning
	Network-based transfer learning
	Adversarial-based transfer learning

	Applications to wireless communications
	State-of-the art Review
	Operation of the physical layer
	Management of the physical layer

	Learning to optimize
	Physical layer design: Optimizing the receiver of a molecular communication system
	Optimizing a model: power control in wireless networks
	Optimizing a model: user-cell association in wireless networks
	Refining a model by deep learning - Cellular networks beyond the Poisson point process
	Refining a model by deep learning - Cellular networks with inaccurate power consumption models

	Conclusions and future research directions
	References

