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Abstract—Providing seamless connectivity for wireless virtual
reality (VR) users has emerged as a key challenge for future
cloud-enabled cellular networks. In this paper, the problem of
wireless VR resource management is investigated for a wireless
VR network in which VR contents are sent by a cloud to cellular
small base stations (SBSs). The SBSs will collect tracking data
from the VR users, over the uplink, in order to generate the VR
content and transmit it to the end-users using downlink cellular
links. For this model, the data requested or transmitted by the
users can exhibit correlation, since the VR users may engage in
the same immersive virtual environment with different locations
and orientations. As such, the proposed resource management
framework can factor in such spatial data correlation, so as to
better manage uplink and downlink traffic. This potential spatial
data correlation can be factored into the resource allocation
problem to reduce the traffic load in both uplink and downlink.
In the downlink, the cloud can transmit 360◦ contents or specific
visible contents (e.g., user field of view) that are extracted
from the original 360◦ contents to the users according to the
users’ data correlation so as to reduce the backhaul traffic
load. In the uplink, each SBS can associate with the users that
have similar tracking information so as to reduce the tracking
data size. This data correlation-aware resource management
problem is formulated as an optimization problem whose goal
is to maximize the users’ successful transmission probability,
defined as the probability that the content transmission delay
of each user satisfies an instantaneous VR delay target. To
solve this problem, a machine learning algorithm that uses
echo state networks (ESNs) with transfer learning is introduced.
By smartly transferring information on the SBS’s utility, the
proposed transfer-based ESN algorithm can quickly cope with
changes in the wireless networking environment due to users’
content requests and content request distributions. Simulation
results demonstrate that the developed algorithm achieves up
to 15.8% and 29.4% gains in terms of successful transmission
probability compared to Q-learning with data correlation and
Q-learning without data correlation.

Index Terms— virtual reality; resource allocation; echo state net-
works; transfer learning.
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I. INTRODUCTION

Virtual reality applications will be an integral component
of tomorrow’s wireless networks [2]. Indeed, it is envisioned
that by using wireless virtual reality (VR) services, users can
engage in unimaginable virtual adventures and games within
the confines of their own home. As a VR device is operated
over a wireless network, the VR users must send tracking
information that includes the users’ locations and orientations
to the small base stations (SBSs) and, then, the SBSs will
use the tracking information to construct 360◦ images and
send these images to the users. Therefore, for wireless VR
applications, the uplink and downlink transmissions must be
jointly considered. Moreover, in contrast to traditional video
that consists of 120◦ images, a VR video consists of high-
resolution 360◦ vision with three-dimensional surround stereo.
This new type of VR video requires a much higher data rate
than that of traditional mobile video. In consequence, to enable
a seamless and pervasive wireless VR experience, it is im-
perative to address many wireless networking challenges that
range from low latency and reliable networking to effective
communication, computation, and resource management [3].

To address these challenges, a number of recent works
on wireless VR recently appeared such as in [1]–[12]. In
[2] and [3], qualitative surveys are provided to motivate the
use of VR over wireless networks and to present the asso-
ciated opportunities. The authors in [4] proposed an efficient
wireless VR communication scheme using a wireless local
area network. The work in [5] studied the problem of VR
tracking and positioning. However, the works in [4] and [5]
only analyze a single VR metric such as tracking accuracy
and do not develop a specific wireless-centric VR model. In
[6], the authors proposed a new algorithm for cached content
replacement to minimize transmission delay. The work in
[7] introduced a model for wireless VR services that takes
into account the tracking accuracy, processing latency, and
wireless transmission latency and, then, developed a game-
theoretic approach for VR resource management. The authors
in [8] studied the resource allocation problem with a brain-
aware QoS constraint. In [9], the authors investigated the



problem of concurrent support of visual and haptic percep-
tions over wireless cellular networks. In [10], the authors
developed a framework for mobile VR delivery by leveraging
the caching and computing capabilities of mobile VR devices
in order to alleviate the traffic burden over wireless net-
works. A communications-constrained mobile edge computing
framework is proposed in [11] to reduce wireless resource
consumption. The authors in [12] presented a new scheme
for proactive computing and millimeter wave transmission for
wireless VR networks. However, the works in [6]–[12] ignore
the correlation between the data of VR users. In fact, VR data
(tracking data or VR image data) pertaining to different users
can be potentially correlated because the users share a common
virtual environment. For example, when the VR users are
watching an event from different perspectives, the cloud has to
only send one 360◦ image to the SBSs who, in turn, can rotate
the image and send it to the various users. For such scenarios,
one can reduce the traffic load on the cellular network, by
exploiting such correlation of views among users. Note that,
in [1], we have studied the problem of data correlation-aware
resource allocation in VR networks. However, our work in [1]
considered only data correlation among two users and it relied
on a very preliminary model that does not consider 360◦ and
visible contents transmission for the cloud. In practice, for
a given user, a 360◦ VR content can be divided into visible
and invisible components. A visible content is defined as the
component of a 360◦ content that is visible (in the field of
view) to a given user. Moreover, our work in [1] used a more
rudimentary learning algorithm for resource allocation.

The main contribution of this paper is to address the
resource allocation problem for wireless VR networks while
taking into account potential correlation among users. We
introduce a novel model and associated solution approach
using ESN-based transfer learning that enable SBSs to effec-
tively allocate the uplink and downlink resource blocks to the
VR users considering the data correlation among the uplink
tracking information data and downlink VR content data so as
to maximize VR users’ successful transmission probabilities.
To our best knowledge, this is the first work to use ESNs as
transfer learning for data correlation-aware resource block
management and visible content transmission in wireless VR
networks. The primary contributions of this work can thus be
summarized as follows:

• We introduce a new model for VR in which the cloud
can transmit 360◦ or visible contents to the SBSs and
the SBSs will transmit the visible contents to VR users.
Meanwhile, the users will cooperatively transmit tracking
information to the SBSs so as to enable them to extract
the visible contents from original 360◦ contents.

• We then investigate how the cloud can jointly optimize
uplink and downlink data transmission and resource block
allocation. We formulate this joint content transmission
and resource block allocation problem as an optimization
problem. The goal of this optimization problem is to
maximize the users’ successful transmission probability.
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Fig. 1. The architecture of a VR network that consists of the cloud, SBSs,
and VR users.

• To address this problem, we propose a transfer learning
algorithm [13] based on ESNs [14]. This algorithm is able
to smartly transfer information on the learned successful
transmission probability across time so as to adapt to
the dynamics of the wireless environment due to factors
such as changes in the users’ data correlation and content
request distribution.

• We analyze how the cloud determines the transmission
format (360◦ or 120◦ content) of each VR content that
is transmitted over the cloud-SBSs backhaul links. Ana-
lytical results show that the transmission format of each
VR content depends on the number of users that request
different visible contents, the data correlation among the
users, and the backhaul data rate of each VR user.

• We perform fundamental analysis on the gain, in terms
of the successful transmission probability, resulting from
the changes of resource block allocation and content
transmission format. This analytical result can provide
guidance for action selection in the proposed approach.

• Simulation results demonstrate that our proposed algo-
rithm can achieve, respectively, 15.8% and 29.4% gains
in terms of the total successful transmission probability
compared to Q-learning with data correlation and Q-
learning without data correlation. The results also show
that the proposed transfer learning algorithm needs 10%
and 14.3% less iterations for convergence compared to
Q-learning with data correlation and Q-learning without
data correlation.

The rest of this paper is organized as follows. The system
model and problem formulation are presented in Section II.
The ESN-based transfer learning algorithm for resource block
allocation is proposed in Section III. In Section IV, numerical
simulation results are presented and analyzed. Finally, conclu-
sions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the wireless network shown in Fig. 1 that is
composed of a set K of K SBSs that serve, in both uplink
and downlink, a set U of U users. In this network, uplink
transmissions are used to carry tracking information (e.g., VR
user location and orientation) from the users to the network.
Meanwhile, downlink transmissions will carry the actual VR
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Fig. 2. The content and tracking information transmissions in a VR network.
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Fig. 3. An illustrative example of 360◦ and visible contents. Here, ai and
aj represent the visible content requested by users i and j, respectively. The
red region shows the similarities between ai and aj .

content (e.g., images) to the users. A capacity-constrained
backhaul connection is considered between the SBSs and the
cloud. To serve the VR users, the SBSs will use the cellular
band. The cloud can directly transmit the 360◦ contents to the
SBSs or extract the visible contents from the 360◦ contents
and transmit them to the SBSs, as shown in Fig. 2. In our
model, a 360◦ VR content that consists of 360◦ images while
a visible content is composed of 120◦ horizontal and 120◦

vertical images1, as shown in Fig. 3. If the cloud wants to
transmit visible contents to the SBSs, it needs to acquire the
users’ tracking information from the SBSs. Let G120◦ be the
data size of each visible content and G360◦ be the data size of
each 360◦ content. To reduce the traffic load over SBS-users
links, the SBSs will only transmit visible contents to the users,
as shown in Fig. 2.

We adopt an orthogonal division multiple access (OFDMA)
scheme. The SBSs use a set V of V resource blocks for the
uplink and a set S of S resource blocks for the downlink. We
assume that each SBS has a circular coverage area of radius
r. We also assume that the resource blocks of each SBS are
all allocated to the users. We also consider that each SBS will
allocate all of its resource blocks to its associated users. Let
qin = [qin,1, . . . , qin,NC ] be the content request distribution

1Here, the degree of the visible contents of a user depends on the devices
that the users used for engaging in the VR applications. 120◦ is typically used
with HTC Vive [15].

[16] of user i during a period n where qin,k represents the
probability that user i requests content k and NC is the total
number of contents that each user can request. For different
periods, the content request distribution of each user will be
different. We also assume that the users will immediately
request a new VR content once they completely receive one
content.

A. Proposed Model for VR Data Correlation

1) Model for Data Correlation in the Downlink: In the
downlink, the cloud will transmit VR contents to the SBSs. For
VR applications, each VR content consists of 360◦ images,
which means that the cloud must transmit all of the sur-
rounding virtual environment information to each SBS. When
the users engage in the same VR activity or play the same
immersive games, they will share the same virtual environment
information thus making their downlink data correlated. The
network can better manage its backhaul traffic if it exploits
the correlation of data for users that are engaged in the same
VR game or activity. For instance, as the users are engaged
in a common virtual football or basketball game, the cloud
can directly transmit the entire 360◦ contents to the SBSs.
Then, the SBSs can extract the unique visible contents from
the 360◦ data and transmit them to the users. However, if
the users are engaged in different VR activities, then, their
VR data correlation between the users is low and, therefore,
different VR contents must be sent to those users.

To properly define VR data correlation, we consider that
the VR users that request the similar 360◦ content will request
different visible contents. This is because the users may have
different location and orientation. In consequence, they may
observe different components of a 360◦ content. Let ai be
the visible content that is extracted from 360◦ content a
and requested by user i. Let Caik be the fraction of the
same pixels between visible contents ai and ak that users i
and k request, respectively. In this context, as users i and
k are connected to the same SBS, the cloud needs to only
transmit G120◦ (2− Caik) Mbits data of visible contents to
that SBS. Let Cna be the set of data correlation among any
n users that request different visible contents extracted from
360◦ content a. For example, for a given SBS that is serving
three users (users 1, 2, and 3), C2a = {Ca12, Ca13, Ca23} and
C3a = {Ca123}. The cloud can select the appropriate content
format (visible or 360◦ content) for each content transmission.
Let gja ∈ {120◦, 360◦} be the content transmission format.
gja = 120◦ implies that the cloud will transmit visible contents
that are extracted from 360◦ content a to SBS j, otherwise,
the cloud will transmit 360◦ content a to SBS j.

2) Data Correlation Model for the Uplink: In the uplink,
the tracking information is collected by the sensors that are
located at the VR users’ headsets. The VR user sensors need
to scan their environment and send the information related to
their environment to the SBSs. Therefore, the VR users’ sen-
sors will collect data from a similar environment and, hence,
this data will be correlated [17]. In consequence, the tracking
information of wireless VR users will have data correlation.



TABLE I
LIST OF NOTATIONS

Notation Description Notation Description
U Number of VR users hkij Path loss between user i and SBS j
K Number of SBSs B Bandwidth of each resource block
PU Transmit power of each user Naik Data size of different pixels between visible contents ai and ak
y′j (t) Output b) of ESN Caik Data correlation between user i and k
Ca Set of data correlation υ2 Variance of the Gaussian noise
U Set of VR users gja Content transmission format
K Set of SBSs σij Covariance of tracking information

yj (t) Output a) of ESN V Bi Fronthaul transmission rate of each user i
cij Downlink data rate of user i S Number of downlink resource blocks
PB Transmit power of each SBS Dij Delay of content transmission
NW Number of neurons in ESN DU

ij Delay of tracking information transmission
G120◦ Data size of each visible content Qit Successful transmission of user i at time t
G360◦ Data size of each 360◦ content Pi Successful transmission probability of user i
cUL
ij Uplink data rate of user i M (gja) Data size of content a with transmission format gja

xj (t) Input of ESN at time t Ki
(
σmax
i

)
Data size of tracking information

aj An action of SBS j V Number of uplink resource blocks
Nja Number of actions of SBS j dij Distance between BS j and user i

To model each user’s tracking information that is collected by
the VR sensors, we adopt a Gaussian field model similar to the
one use in [18]. Let the tracking data, Xi, gathered by each
VR user i be a Gaussian random variable with variance σ2

i

and mean µi. This model for each user’s tracking information
is constructed based on the historical tracking information
collected by the SBSs. The SBSs can use the expectation
maximization algorithms in [19] to determine the parameters
of the Gaussian field model. In VR applications, observations
from neighboring VR devices will often be correlated. For
example, VR users that are located close in proximity or
within a common location (VR theater or stadium) may request
similar visible VR contents. Based on the model of tracking
information, we employ the power exponential model [20] to
model the spatial correlation of the VR tracking data since
the power exponential model can capture how the distance
between two users impacts data correlation. Consequently,
for any two VR users i and j located at a distance dij , the
covariance σij , will be given by [21]:

σij = cov (Xi, Xj) = σiσje
−dαij/κ, (1)

where α and κ are parameters that capture how sensitive data
correlation will be to distance variations.

B. Transmission Model

In the studied model, the cloud will first transmit the
VR contents requested by the users to the SBSs. Then, the
SBSs will transmit the contents received from the cloud to
its associated users. Meanwhile, the users will transmit their
tracking information to the SBSs. If the cloud determines
that it needs to transmit the visible contents to the SBSs,
the SBSs must transmit the tracking information to to the
cloud. However, in the uplink, we only consider the tracking
information transmission over the wireless SBS-users links
and ignore the delay of tracking information transmission over
wired backhaul links. This is due to the large capacity of the
wired backhaul and the relatively small data size of tracking
information compared to the VR content data size. For each

user i, the transmission rate of each VR content from the cloud
to the SBS can be given by [22]:

V B
i =

V B

U
, (2)

where V B is the maximum downlink backhaul link rate, for
all VR users. We assume that the backhaul rates for all
users are equal and we do not consider backhaul transmission
optimization. In a VR model, we need to capture the VR
transmission requirements such as high data rate, low delay,
and accurate tracking. Hence, we consider the transmission
delay as the main VR QoS metric of interest. For user i
associated with SBS j, the downlink rate can be given by:

cij (sij) =

S∑
k=1

sij,kBlog2 (1 + γij,k), (3)

where sij = [sij,1, . . . , sij,S ] represents the resource blocks
vector with sij,k ∈ {0, 1}. sij,k = 1 indicates that SBS j
allocates resource block k to user i, and sij,k = 0, otherwise.

γij,k =
PBh

k
ij

υ2+
∑

l∈K,l6=j
PBhkil

represents the signal-to-interference-

plus-noise ratio (SINR) between SBS j and user i on resource
block k. B represents the bandwidth of each resource block
and PB represents each SBS j’s transmit power. Moreover,∑
l∈K,l 6=j

PBh
k
il is the interference caused by other SBSs using

resource block k for VR content transmission. υ2 represents
the variance of the Gaussian noise and hkij = gkijd

−β
ij repre-

sents the path loss between SBS j and user i with gkij being the
Rayleigh fading parameter. dij represents the distance between
SBS j and user i, and β represents the path loss exponent. For
user i associated with SBS j, the delay of transmitting content
a from the cloud to user i is:

Dij (sij , gja) =
G120◦

cij (sij)
+
M (gja)

UjaV B
i

, (4)

where Uja is the number of users that are associated with
SBS j and request visible contents a. M (gja) is the data size



of content a must be transmitted from the cloud to SBS j.
The first term in (4) is the time that SBS j uses to transmit
content a to user i and the second term in (4) is the time
that the cloud uses to transmit content a to SBS j. From (4),
we can see that if several users request the same content, the
cloud will perform only one transmission over the backhaul
using the sum backhaul data rate of these users. We let PU be
the transmit power of each user and B be the bandwidth of
each uplink resource block. In this case, for user i connected
to SBS j, the uplink data rate can be given by:

cij (vij) =

V∑
k=1

vij,kBlog2
(
1 + γu

ij,k

)
, (5)

where vij = [vij,1, . . . , vij,V ] represents the vector of up-
link resource blocks that SBS j allocates to user i with
vij,k ∈ {0, 1}. vij,k = 1 indicates that SBS j allocates
uplink resource block k to user i, vij,k = 0, otherwise.

γu
ij,k =

PUh
k
ij

υ2+
∑

l∈Uk,l 6=j
PUhkil

represents the SINR between SBS

j and user i on resource block k. Here, Uk is the set of
VR users that transmit their tracking information over uplink
resource block k. The time that user i needs to transmit
tracking information to SBS j can be given by:

DU
ij (vij , σ

max
i ) =

Ki (σ
max
i )

cij (vij)
, (6)

where Ki (σ
max
i ) is the size of tracking information data that

user i needs to transmit and σmax
i = max

k∈Uj ,k 6=i
(σik) represents

the maximum covariance for each user i. (6) shows that finding
data correlation among the users allows minimizing the uplink
data traffic that the users need to transmit.

C. Model of Successful Transmission Probability

Next, we derive the successful transmission probability.
For each user i that requests content ait at time t, a

successful transmission is defined as:

Qit(ait, sij ,vij , gjait , σ
max
i )

=1{Dijt(sij ,gjait)+DU
ijt(vij ,σmax

i )≤γD}, (7)

where Dijt and DU
ijt represent the delay of downlink and

uplink transmission at time t, respectively. γD is the delay
requirement for each VR user. Based on (7), the probability
of successful transmission can be given by:

Pi (sij ,vij) =
1

T

T∑
t=1

Qit(ait, sij ,vij , gjait , σ
max
i ) , (8)

where T denotes the number of time slots used to evaluate the
successful transmission probability of each user. Now, given
the resource block vectors sij and vij , users association can
be determined. Once the user association is determined, the
data correlation of each user is also determined, since the
data correlation depends on the user association and the data
request by each user. In consequence, one can consider only
the optimization of the resource block allocation for each SBS

to maximize the successful transmission probability of each
user. To capture the gain that stems from the allocation of the
resource blocks, we state the following result:

Theorem 1. Given the uplink and downlink resource blocks
vij and sij as well as the uplink and downlink data correlation
σmax
i and M (gja), the gain of user i’s successful transmission

probability due to an increase in the amount of allocated
resource blocks and the change of content transmission format
includes:

i) The gain due to an increase of the number of uplink
resource blocks, ∆Pi, is given by:

∆Pi =
1

T

T∑
t=1

1{γDU−cij(∆vij)≤cij(vij)<γDU}, (9)

where ∆Pi represents the change of the successful transmis-
sion probability of each user i and γDU =

Ki(σ
max
i )

γD−Dijt(sij ,gjait)
.

ii) The gain due to an increase of the number of downlink
resource blocks, ∆Pi, is given by:

∆Pi =
1

T

T∑
t=1

1{γDD−cij(∆sij)≤cij(sij)<γDD} (10)

where γDD = G120◦

γD−DU
ijt(vij ,σmax

i )−
M(gja)
V D
i

.

iii) The gain due to the change of content transmission
format, gja, ∆Pi, can be given by:

∆Pi=


1
T

T∑
t=1

1{M(120◦)6ξ<M(360◦)}, if M(360◦)>M(120◦),

1
T

T∑
t=1

1{M(360◦)6ξ<M(120◦)}, if M(360◦)<M(120◦),

0, if M(360◦)=M(120◦).
(11)

where ξ =
(
γD − G120◦

cij(sij)
−DU

ijt (vij , σ
max
i )

)
V B
i .

Proof. See Appendix A.

Theorem 1 shows that the resource block allocation scheme
and content transmission format will jointly determine the
users’ successful transmission probability. Indeed, Theorem
1 can provide guidance for action selection in the machine
learning approach proposed in Section III. Theorem 1 also
shows that, as M (120◦) = M (360◦), the users’ successful
transmission probability will remain constant as the content
transmission format changes. The reason behind this is that,
as the number of users that request the same content increases
or the data correlation among the users decreases, the data
size of visible contents that the cloud needs to transmit will
be equal to or larger than the data size of a 360◦ content.

D. Problem Formulation

Having defined our system model, the next step is to intro-
duce a resource management mechanism to effectively allocate
the downlink and uplink resources so as to maximize the
successful transmission probability of all users. This problem



will be:

max
sijn,vijn,gjan,σmax

i

N∑
n=1

∑
j∈B

∑
i∈Uj

Pin (sijn,vijn) , (12)

s. t. vijn,k ∈ {0, 1} , ∀j ∈ B, i ∈ Uj , (12a)
sijn,k ∈ {0, 1} , ∀j ∈ B, i ∈ Uj , (12b)
gjan ∈ {120◦, 360◦} , ∀i ∈ Uj , a ∈ C, (12c)

where Pin represents the successful transmission probability
during a period n that consists of T time slots. sijn and
vijn represent the resource block allocation during period
n. Here, the content request distribution of each user will
change as period n varies. (12a) and (12b) indicate that each
uplink and downlink resource block k can be only allocated
to one user. (12c) indicates that the cloud can transmit visible
or 360◦ contents to the SBSs. From (12), we can see that
the successful transmission probability Pin is optimized over
N periods. The users’ content request distributions and data
correlation will change as period n varies. Since the content
request distribution of each user changes during each period,
each SBS needs to change its resource allocation strategy so
as to optimize the successful transmission probability during
each period. Moreover, from (12a) to (12c), we can see that
the optimization variables vijn,k and sijn,k are binary, and
gjan is discrete. Consequently, we cannot differentiate the
optimization function. Thus, the problem in (12) cannot be
readily solved by conventional optimization algorithms. In
addition, from (1), we can see that user association (the
number of users that request different visible content a) and
data correlation are coupled. Meanwhile, from (4) and (6), we
can see that resource allocation and data correlation jointly
determine the transmission delay of each user. Hence, in (12),
the user association, resource allocation, and data correlation
are interdependent and we cannot divide the optimization
problem into three separate optimization problems. Also,
from (3) and (5), we can see that the data rate of each
user i depends on not only the resource allocation scheme
that is implemented by its associated SBS but also on the
resource allocation schemes performed by other SBSs. Finally,

since Pi (sij ,vij) = 1
T

T∑
t=1

1{Dijt(sij ,gjait)+DU
ijt(vij ,σmax

i )≤γD}
and 1{Dijt(sij ,gjait)+DU

ijt(vij ,σmax
i )≤γD} are non-convex func-

tions, the problem in (12) is challenging to solve.

III. ECHO STATE NETWORKS FOR SELF-ORGANIZING
RESOURCE ALLOCATION

In this section, a transfer reinforcement learning (RL) algo-
rithm based on the neural network framework of ESNs [23]–
[25] is introduced. The proposed transfer RL algorithm can be
used to find the optimal resource block allocation during each
period so as to maximize the users’ successful transmission
probability. Conventional learning approaches such as Q-
learning usually use a matrix to record the information related
to the users and networks. As a result, the information that the
Q-learning approach must record will exponentially increase,

Input

Output a)

Output b)Output b

OutputESN Model

Fig. 4. The components of the ESN-based transfer RL algorithm. Here, output
a) combined with the input and the ESN model is used as an RL algorithm so
as to find the optimal resource allocation scheme while output b) combined
with the input and the ESN model acts as a transfer learning algorithm to
transfer the alreadly learned information to new environments.

when the number of SBSs and users in the network increases.
In consequence, the Q-learning approach cannot record all of
the information related to the users and network. However,
the ESN-based transfer RL algorithm exploits a function
approximation method to record all of the information related
to the network and users. Hence, the proposed ESN-based
transfer RL algorithm can be used for large networks with
dense users. Moreover, the users’ content request distributions
and data correlation will change as time elapses. Traditional
learning approaches such as [26] must re-implement the
learning process as the users’ content request distribution and
data correlation change. However, the ESN-based transfer RL
algorithm can transform the already learned resource block
allocation policy into the new resource block allocation policy
that must be learned as the users’ content request distribution
and data correlation change to improve the convergence speed.

A. Components of ESN-based Transfer RL Algorithm

The ESN-based transfer RL algorithm of each SBS j
consists of four components: (a) input, (b) action, (c) output,
and d) ESN model, as shown in Fig. 4, which is given by:
• Input: The input of the ESN-based transfer RL algorithm

the strategy index of the SBSs and period n, which is
xj (t) = [π1 (t) , · · · , πB (t) , n]

T where πk (t) is the
index of a strategy that SBS k uses at time t. Here, the
strategies of each SBS are determined by the ε-greedy
mechanism [27].

• Action: The action aj of each SBS j
consists of downlink resource allocation vector
sj =

[
s1j , s2j , . . . , sUjj

]
and uplink resource allocation

vector vj =
[
v1j ,v2j , . . . ,vUjj

]
. Uj represents the

number of users located within the coverage of SBS j.
• Output: The output of the ESN-based transfer RL algo-

rithm consists of two components: a) predicted successful
transmission probability and b) predicted variation in
the successful transmission probability when the users’
content request distribution and data correlation change.



Output a) is used to find the relationship between the
strategies πj , actions aj , and users’ successful transmis-
sion probability

∑
i∈Uj

Pin(aj (t)). Therefore, output a) of

the ESN-based transfer RL algorithm can be given by

yj (t) =
[
yjaj1 (t) , · · · , yjajNja (t)

]T
. Here, yjajn (t)

represents the predicted total successful transmission
probability of SBS j using action ajn. Nja is the total
number of actions of each SBS j.
To calculate

∑
i∈Uj

Pin(aj (t)), we need to determine the

transmission format of each content. Given action aj (t),
the user association will be determined. In consequence,
for the cloud, the choice of visible or 360◦ content
transmission can be given by the following theorem:
Theorem 2. Given action aj (t), the maximum downlink
backhaul link rate V B, the set Uja of Uja users that
request different visible contents extracted from 360◦

content a, and the set of data correlation Ca =
Uja⋃
n=2
Cna ,

the transmission format of content a can be given by:
– If G360◦ > La (Ca), gja = 120◦.
– If G360◦ < La (Ca), gja = 360◦.

Here, La (Ca) = G120◦

(
Uja −

Uja∑
n=2

∑
Ca∈Cna

(−1)n−1Ca

)
.

Proof. See Appendix B.

Theorem 2 shows that the choice of 360◦ and visible
content transmission depends on the data size of the 360◦

and visible contents, the data correlation among the users,
and the number of users that request the same content.
When the data correlation among the users increases, the
cloud prefers to transmit visible contents to the SBSs.
In contrast, as the number of users that request the
same content decreases, the cloud prefers to transmit the
360◦ content. Based on Theorem 2 and action aj (t),∑
i∈Uj

Pin(aj (t)) can be computed.

The output b) is used to find the relationship between
Pin(aj (t)) andPin+1(aj (t)) when SBS j only knows
Pin(aj (t)). This means that the proposed algorithm can
transfer the information from the already learned success-
ful transmission probabilityPin(aj (t)) to the new suc-
cessful transmission probabilityPin+1(aj (t)) that must
be learned. The output b) of the ESN-based transfer learn-
ing algorithm at time t is the predicted variation in the
successful transmission probability when the users’ infor-

mation changes y′j (t) =
[
y′jaj1 (t) , · · · , y

′
jajNja

(t)
]T

with y′jajk (t) =Pin(ajk (t))−Pin−1(ajk (t)).
• ESN Model: An ESN model of the learning approach can

approximate the function of the ESN input xj (t) and
output yj (t) as well as output y′j (t). The ESN model is
composed of two output weight matrices W out

j ,W
′out
j ∈

RNja×(Nw+B+1). Let W in
j ∈ RNw×(B+1) be the input

weight matrix and W j ∈ RNw×Nw be the recurrent

matrix with Nw being the number of the neurons. Math-
ematically, W j can be given by:

W l =


0 0 · · · w
w 0 0 0

0
. . . 0 0

0 0 w 0

 , (13)

where w ∈ [0, 1] is a constant. Here, the recurrent weight
matrixW j combined with the output weight matrices can
store the historical information of ESN. This information
that includes ESN input, neuron states, and output can be
used to find the relationship between the ESN input and
output.

B. ESN-based Transfer RL for Resource Allocation

Next, we introduce the process that uses the ESN-based
transfer RL algorithm to solve the problem in (12). At each
time slot t, each SBS j will broadcast its strategy to other
SBSs. Then, each SBS can set the input of the ESN-based
transfer algorithm. Given the input xj (t), each ESN needs to
update the states of the neurons located in the ESN model.
The states of the neurons will be given by:

µj (t) = f
(
W jµj (t− 1) +W in

j xj (t)
)
, (14)

where µj (t− 1) is the neuron state vector at time slot t−1 and
f(x) = ex−e−x

ex+e−x is the tanh function. From (14), we can see
that the states of the neurons depend not only on the recurrent
input but also on the historical states. In consequence, the ESN
model can record historical information related to the inputs,
states, and outputs of each ESN. Based on the states of the
neurons, the ESN-based transfer RL algorithm will combine
with the output weight matrix W out

j to predict the successful
transmission probability of each SBS, which can be given by:

yj (t) =W
out
j (t)

[
µj (t)
xj (t)

]
, (15)

where W out
j (t) is the output weight matrix at time slot t.

Meanwhile, the proposed transfer RL approach combined with
W
′out
j (t) will predict the variation in the successful transmis-

sion probability when the users’ content request distribution
and data correlation change. This prediction process is:

y′j (t) =W
′out
j (t)

[
µj (t)
xj (t)

]
. (16)

From (15) and (16), we can see that, to enable an ESN
to predict different outputs (i.e., y′j (t) or yj (t)), we only
need to adjust the output weight matrix of a given ESN. The
adjustment of the output weight matrix W out

j can be given by:

W out
jk (t+ 1) =

W out
jk (t)+λ

∑
i∈Uj

Pin(ajk (t))− yjajk(t) (t)

µT
j (t), (17)

where λ is the learning rate, W out
jk (t+ 1) is row k of the

output weight matrix W out
j (t+ 1), and

∑
i∈Uj

Pin(ajk (t)) is



the actual successful transmission probability resulting from
SBS j using action ajk (t). Similarly, W

′out
j can be adjusted

based on the following equation:

W
′out
jk (t+ 1) =W

′out
jk (t)

+ λ′

∑
i∈Uj

Pin(ajk (t))−
∑
i∈Uj

Pin−1(ajk (t))− yjajk(t) (t)

µT
j (t),

(18)

where λ′ is the learning rate (λ′ � λ). Based on (14)-
(18), the ESN-based transfer RL algorithm can predict: a)
the successful transmission probability resulting from each
action that SBS j takes and b) the variation in the successful
transmission probability when the users’ information changes.
In consequence, each SBS j will first use the output a) of the
ESN-based transfer RL algorithm to find the optimal resource
allocation scheme so as to maximize the users’ successful
transmission probability. Then, as the users’ content request
distribution or data correlation change, each SBS j can use the
outputs b) to find the relationship between the already learned
successful transmission probability and the new successful
transmission probability that must be learned. In consequence,
each SBS j can directly transfer the already learned successful
transmission probability to the new successful transmission
probability so as to increase the convergence speed. The
proposed approach that is implemented by each SBS j is
summarized in Table I.

C. Complexity and Convergence

With regards to the computational complexity, the com-
plexity of the proposed algorithm depends on the action that
is performed at each iteration. The proposed algorithm is
used to find the optimal action. As the number of iterations
needed to find and perform the optimal action increases, the
complexity of the proposed algorithm increases. However, the
action selection depends on the ε-greedy mechanism which
will also change with time. Therefore, for a very general
case, we cannot quantitatively analyze the complexity of the
proposed algorithm. Hence, we can only analyze the worst-
case complexity of the proposed algorithm. Since the worst-
case for each SBS is to traverse all actions, the worst-case
complexity of the proposed algorithm is O(|A1|×· · ·×|AK |)
where |Aj | denotes the total number of actions of each SBS
j. However, the worst-case complexity pertains to a rather
unlikely scenario in which all SBSs choose their optimal
resource allocation schemes after traversing all other resource
allocation schemes during each period n. Moreover, the pro-
posed algorithm uses a function approximation method to
find the relationship between the actions, states, and utili-
ties. In this context, the proposed algorithm will not need
to traverse all actions to find this relationship. In addition,
ESNs are a type of recurrent neural networks which can use
historical input data to find the relationship between actions,
states, and utilities which can reduce the training complexity.
Furthermore, unlike the existing learning algorithms such as
long short term memory based RL algorithms [28] that need

to calculate the gradients of all neurons in the hidden and
input layers, the proposed algorithm only need to update
the output weight matrix. Moreover, at each iteration, the
proposed transfer learning algorithm only needs to update
one row of each output weight matrix. In particular, since
W out

j ,W
′out
j ∈ RNja×(Nw+B+1), the proposed algorithm must

update W out
jk ,W

′out
jk ∈ R1×(Nw+B+1). This will also reduce

the training complexity of our algorithm. Finally, compared
to the existing RL algorithms, the proposed algorithm can
transform the already learned resource allocation policy into
the new resource allocation policy that must be learned to
reduce the number of iterations needed for training.

For the convergence of the ESN-based transfer RL ap-
proach, we can directly use the result of [7, Theorem 2]
which showed that, for each action ajk (t), the outputs of a
given ESN will converge toPin(ajk (t)) andPin(ajk (t)) −
Pin−1(ajk (t)) via adjusting the values of the input and output
weight matrices, as follows.

Corollary 1 (follows from [7]). The ESN-based transfer
learning algorithm of each SBS j converges to the utility
valuesPin(ajk (t)) andPin(ajk (t))−Pin−1(ajk (t)), if any
following conditions is satisfied:

i) λ and λ′ are constant, and
min

W in
ji,xτ,j ,x

′
τ,j

W in
ji

(
xτ,j − x′τ ′,j

)
≥ 2, where W in

ji

represents the row i of W in
j .

ii) λ and λ′ satisfy the Robbins-Monro conditions (λ (t) >
0,
∑∞
t=0 λ (t) = +∞,

∑∞
t=0 λ

2 (t) < +∞ where λ (t) is
the learning rate at time t.) [23].

Since the convergence of the ESN-based algorithm depends
on the values of the learning rates, input weight matrix,
and recurrent weight matrix, the proof in [7] will still hold
for the proposed algorithm which converges to the utility
valuesPin(ajk (t)) andPin(ajk (t))−Pin−1(ajk (t)). Based
on Corollary 1, the proposed transfer learning algorithm can
adjust the value of input weight matrix of the ESN and the
values of learning rates λ and λ′ to guarantee the convergence
of the proposed algorithm.

IV. SIMULATION RESULTS

For simulations, a cellular network deployed within a circu-
lar area with radius r = 500 m is considered. In this network,
K = 5 SBSs and U = 25 VR users are uniformly distributed.
The bandwidth B of each resource block is set to 10×180 kHz.
We use typical wireless network parameters such as in [29]–
[31], as listed in Table III. All of the simulation data related to
VR is collected from wired HTC Vive VR devices [15]. We use
5 VR videos and 5 VR games as the total number of contents
that can be provided by the cloud. Each user will request its
visible contents according to its head movement. The tracking
information of each user is extracted from the sensors of the
HTC Vive VR devices. For comparison purposes, we use two
baselines:
• The first baseline is the Q-learning algorithm in [27] with

data correlation, which we refer to as “Q-learning with



TABLE II
ESN-BASED TRANSFER RL ALGORITHM FOR RESOURCE ALLOCATION

for each time t do.
(a) Each SBS j predictsPin based on (15).
if t = 1

(b) Set the policy of the action selection πj (1) uniformly.
else

(c) Set πj (t) based on the ε-greedy mechanism.
end if
(d) Broadcast the action selection policy index to other SBSs.
(e) Receive the action selection policy index as ESN input xj (t).
(f) Perform an action based on the policy of action selection

πj (t).
(g) Calculate the actual successful transmission probability.
(h) Update the states of the neurons based on (14).
(i) Adjust W out

j based on (17).
if n > 1

(j) Estimate the value ofPin+1 −Pin based on (16).
(k) Calculate the actual value ofPin+1 −Pin.
(l) Adjust W

′out
j based on (18).

end if
end for

data correlation”. For this Q-learning algorithm, the state
is set to the ESN’s input xj , the actions of Q-learning are
the actions defined in our ESN algorithm, and the reward
function r (xj ,aj) is the total successful transmission
probability in (13). At each iteration, this Q-learning algo-
rithm will select an action based on the ε-greedy mecha-
nism and, then, use a Q-table to record the states, actions,
and the successful transmission probabilities resulting
from the actions that the SBSs have implemented. Finally,
each SBS will update its Q-table by the following equa-
tion: Qt (xj ,aj) = (1− ζ)Qt−1 (xj ,aj) + ζr (xj ,aj),
where ζ is the learning rate.

• The second baseline is the Q-learning algorithm in [27]
without data correlation, which we refer to as “Q-learning
without data correlation”. The settings of the Q-learning
without data correlation are similar to the Q-learning
algorithm with data correlation. However, in the Q-
learning without data correlation algorithm, the cloud
will directly transmit 360◦ contents to the SBSs and the
users will directly transmit their tracking information to
their associated SBSs without the consideration of data
correlation.

• The third baseline is the ESN-based transfer RL without
data correlation, which we refer to as “ESN-based RL
without data correlation”. The setting of this algorithm
is similar to the proposed algorithm. However, this algo-
rithm does not consider the data correlation for downlink
VR content and uplink tracking information transmission.

All statistical results are averaged over a large number of
independent runs. In simulation figures, total successful trans-
mission probability indicates the total successful transmission
probability of all the users that are associated with the SBS.

Fig. 5 shows how the total successful transmission probabil-
ity varies as the number of SBSs changes. Fig. 5 shows that, as
the number of SBSs increases, the total successful transmission
probability of all considered algorithms increases. The reason
behind this is that the users have more SBS choices and the

TABLE III
SYSTEM PARAMETERS

Parameters Values Parameters Values
NW 100 λ 0.3
T 1000 N 100

χσLoS 5.3 PU 20 dBm
G360◦ 50 Mbits PB 30 dBm
S 5 V 5
κ 5 V B 10 Gbits/s
λ′ 0.03 γD 20 ms
υ2 -105 dBm G120◦ 12 Mbits
α 2 Nw 100
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Fig. 5. Total successful transmission probability as the number of SBSs varies.
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Fig. 6. Total successful transmission probability as the number of users varies.

number of users located in each SBS’s coverage decreases
when the number of SBSs increases. Fig. 5 also shows that
the ESN-based transfer RL algorithm can yield up to 15.8%
and 29.4% gains in terms of the total successful transmission
probability compared to the Q-learning with data correlation
and Q-learning without data correlation for a network with 9
SBSs. This is because the ESN-based transfer RL approach
can record historical information related to the users’ data
correlation and content request distribution so as to find the
optimal resource block allocation policy.

In Fig. 6, we show how the total successful transmission
probability changes as the number of users varies. Fig. 6 shows
that, as the number of users increases, the total successful
transmission probability of all considered algorithms increases.
This implies that, as the number of users increases, the SBSs
have more choices of users to service. Fig. 6 also shows that, as
the number of users increases, the ESN-based algorithm can
achieve more gain in terms of total successful transmission
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Fig. 8. CDFs of the delay resulting from the different algorithms.

probability compared to the Q-learning with data correlation.
The reason behind this is that the ESN-based transfer RL
algorithm uses an approximation method to record historical
information while Q-learning uses a Q-table to record the
historical information. In consequence, the ESN-based transfer
RL algorithm can record more historical information compared
to Q-learning and, hence, it can accurately predict the total
successful transmission probability. Fig. 6 also shows that, as
the number of users increases, the gap between Q-learning
with data correlation and Q-learning without data correlation
increases. The main reason behind this is that, as the number of
users increases, the probability that the users request the same
content increases and, hence, the data correlation among the
users increases.

Fig. 7 shows how the total successful transmission prob-
ability changes as the total data rate of the backhaul varies.
From Fig. 7, we can see that, as the data rate of the backhaul
increases, the total successful transmission probability of all
considered algorithms increases. This implies that as the data
rate of backhaul increases, the transmission delay over back-
haul links decreases. Fig. 7 also shows that the gap between
the proposed ESN-based transfer RL algorithm and Q-learning
with data correlation decreases. This is due to the fact that, as
the data rate of the backhaul increases, the data rate of each
user for content transmission increases. In consequence, the
effect of using data correlation to reduce the data traffic over
backhaul links decreases.
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Fig. 9. Data correlation as the number of users varies.

In Fig. 8, we show the cumulative distribution function
(CDF) for the total successful transmission probability result-
ing from all of the considered algorithms. Fig. 8 shows that
the ESN-based transfer RL algorithm improves the CDF of
by to 45% and 56% compared, respectively, to Q-learning
with data correlation and Q-learning without data correlation
at a successful transmission probability of 0.5. These gains
stem from the fact that the proposed ESN-based transfer RL
algorithm can record more historical information related to
the states of the network and users compared to Q-learning.
Moreover, the ESN-based transfer RL algorithm can transfer
the resource allocation schemes that have been learned in
the previous period for the new resource allocation schemes
that must be learned in the next period. In consequence, the
proposed ESN-based transfer RL algorithm can predict the
successful transmission probability more accurately compared
to Q-learning and find a better solution for the successful
transmission probability maximization.

In Fig. 9, we show how the data correlations of uplink
tracking information and downlink VR contents of user i
change as the number of VR users varies. In this figure,
user i is randomly choosen from the network. The uplink
data correlation is σmax

i = max
k∈Uj ,k 6=i

(σik), which represents

the maximum covariance for each user i. The downlink data

correlation is Uja −
Uja∑
n=2

∑
Ca∈Cna

(−1)n−1Ca, which represents

the data correlation among the users that request content a.
For uplink, we consider the data correlation between only two
users while for downlink, we consider the data correlation
among multiple VR users. From this figure, we can see that, as
the number of users increases, both the data correlations over
uplink and downlink increase. An increase in uplink data cor-
relation is because the distance between two users decreases
and the maximum covariance increases as the number of users
increases. An increase in downlink data correlation is due
to the fact that the number of users that request the same
contents increases. Fig. 9 also shows that the value of uplink
data correlation is below 1 while the downlink data correlation
is larger than 1. This is because, in uplink, the data correlation
is considered between only two users. However, in downlink,
the data correlation is considered among multiple users.
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Fig. 10. Transmission format of a given content as the data size of the visible
contents that the cloud needs to transmit varies.
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Fig. 11. Successful transmission probability per user as σmax varies.

Fig. 10 shows how the transmission format of a given
content a changes as the data size of visible contents that the
cloud needs to transmit to an SBS varies. Here, the change
of the data size of visible contents indicates the change of
the data correlation among the users that request content a.
From Fig. 10, we can see that, as the data size of visible
contents does not exceed 50 Mbits, the cloud will transmit
visible contents that are extracted from 360◦ content a to the
SBS. In contrast, when the data size of visible contents exceeds
50 Mbits, the cloud will transmit 360◦ content a to the SBS.
This is because the cloud will always transmit the content
that has a smaller data size. Fig. 10 also shows that, for the
Q-learning algorithm without data correlation, the cloud will
always transmit 360◦ contents to the SBS. This is because, for
the Q-learning algorithm without data correlation, the cloud
will not consider the data correlation among the users.

In Fig. 11, we show how the successful transmission proba-
bility per user varies as the uplink maximum covariance σmax

changes. Here, an increase in σmax indicates that the maximum
uplink data correlation decreases. In contrast, an increase in
σmax indicates that the maximum uplink data correlation in-
creases. From Fig. 11, we can see that, as σmax increases (the
maximum uplink data correlation decreases), the successful
transmission probability per user resulting from all of the
considered algorithms decreases. This is due to the fact that,
as σmax increases, the data size of the tracking information
that the users needs to transmit to the SBS increases. In con-
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Fig. 12. Convergence of learning algorithms.
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Fig. 13. Number of iterations needed for convergence as period varies.

sequence, the delay of the transmitting tracking information
increases. Fig. 11 also shows that the gap between the Q-
learning with data correlation and Q-learning without data
correlation decreases because, as σmax continues to increase,
the data correlation of tracking information decreases.

In Fig. 12, we show the number of iterations needed for
convergence as period n changes. In this figure, the users’
data correlation and content request distribution change with
period n. The convergence point indicates that each SBS
finds its optimal resource allocation vector during each period
and the total successful transmission probability of all users
associated with this SBS is maximized. From Fig. 12, we can
see that the successful transmission probability per SBS for all
considered algorithms increases and, then, converges as time
elapses. We can also see that the proposed ESN-based transfer
RL algorithm needs 33% less iterations to reach convergence
compared to Q-learning with data correlation at period 3.
Meanwhile, the proposed algorithm at period 3 uses 33%
less iterations to reach convergence compared to the proposed
algorithm at period 1. These gains are due to the fact that the
proposed ESN-based transfer RL algorithm can use the already
learned successful transmission probability for learning the
new successful transmission probability thus increasing the
learning speed.

Fig. 13 shows how the number of iterations changes as the
period varies. From Fig. 13, we can see that, as the period
increases, the number of iterations needed for convergence
of the Q-learning with data correlation and Q-learning with-



out data correlation do not change significantly. However,
the number of iterations needed for the convergence of the
proposed algorithm decreases as the period increases. Fig. 13
also shows that the proposed algorithm can achieve up to
9.6% and 14.3% gains in terms of the number of iterations
needed for convergence compared to the Q-learning with data
correlation and Q-learning without data correlation schemes,
during period 9. This is due to the fact that, as the period
changes, the content request distribution of each user changes.
Hence, the data correlation among the users will change and
each SBS needs to retrain the Q-learning algorithms so as to
find the optimal resource allocation. However, the proposed
transfer learning algorithm can directly build the relationship
between the actions, states and utility values via transferring
the information that was already learned in previous periods.
Fig. 13 also shows that the number of iterations needed for the
convergence of the Q-learning with data correlation is larger
than for the Q-learning without data correlation. Meanwhile,
the number of iterations needed for the convergence of the
Q-learning without data correlation changes slightly as the
period changes. This is because the Q-learning without data
correlation does not consider the data correlation.

V. CONCLUSION

In this paper, we have studied the problem of resource man-
agement in a network of VR users whose data can be corre-
lated. We have formulated this data correlation-aware resource
management problem as an optimization problem whose goal
is to maximize the VR users’ successful transmission probabil-
ity. To solve this problem, we have developed a neural network
reinforcement learning algorithm that uses echo state networks
along with transfer learning to find the most suitable resource
block allocations. We have then shown that, by using transfer
learning, the proposed algorithm can exploit VR user data
correlation to intelligently find the optimal resource allocation
strategy as the VR users’ content request distribution and
data correlation change. Simulation results have evaluated the
performance of the proposed approach and shown considerable
gains, in terms of total successful transmission probability
compared to a classical Q-learning algorithm. Future work can
consider additional delay components, such as those related to
handover and user association.

APPENDIX

A. Proof of Theorem 1

To simplify the proof, we use s,v, DU
t , and Dt to refer to

sij ,vij , D
U
ijt, and Dijt. For i), the gain that stems from an

increase in the allocated uplink resource blocks, ∆Pi is:

∆Pi = Pi (s,v +∆v)−Pi (s,v)

=
1

T

T∑
t=1

1{Dt(s,gjait)+DU
t (v+∆v,σmax

i )≤γD}

− 1

T

T∑
t=1

1{Dt(s,gjait)+DU
t (v,σmax

i )≤γD}. (19)

From (19), we note that DU
t (v +∆v, σmax

i ) ≤ DU
t (v, σ

max
i ).

This is due to the fact that SBS j allocates more uplink
resource blocks ∆v to user i and, hence, the total delay of
user i decreases. From (19), we can see that,

∆Pi = 0, if Dt (s, gjait) +DU
t (v, σ

max
i ) ≤ γD. (20)

The is because as Dt (s, gjait) +DU
t (v, σ

max
i ) ≤ γD,

Dt(s, gjait)+D
U
t (v+∆v, σ

max
i )≤γD. In consequence, as

Dt(s, gjait) +DU
t (v, σ

max
i )≤γD, ∆Pi = 0. From (22), we

can also see that,

∆Pi = 0, if Dt(s, gjait)+D
U
t (v+∆v, σmax

i )>γD. (21)

This is because as Dt(s, gjait)+D
U
t (v+∆v, σ

max
i )>γD,

then Dt(s, gjait)+D
U
t (v, σ

max
i ). Hence, as

Dt (s, gjait) +DU
t (v +∆v, σmax

i ) > γD, ∆Pi = 0.
Finally, as Dt (s, gjait)+D

U
t (v +∆v, σmax

i ) ≤ γD and
Dt(s, gjait) +DU

t (v, σ
max
i ) > γD, ∆Pi will be given by:

∆Pi =
1

T

T∑
t=1

1{Dt(s+∆s,gjait)+D
U
t (v,σmax

i )≤γD},

(a)
=
1

T

T∑
t=1

1{
Ki(σmax

i )

γD−Dt(s,gjait)
−cij(∆v)6cij(vij)<

Ki(σmax
i )

γD−Dt(s,gjait)

},

where (a) is obtained from the fact that,
when Dt (s, gjait) +DU

t (v +∆v, σmax
i ) ≤ γD,

cij (v) > Ki(σ
max
i )

γD−Dt(s,gjait)
− cij (∆v). Similarly,

as Dt(s, gjait)+D
U
t (v, σ

max
i )>γD and cij (v) <

Ki(σ
max
i )

γD−Dt(s,gjait)
. The proof of case ii) is similar to the

proof of case i).
For case iii), we first need to determine the size of visible

and 360◦ contents. If M (120◦) < M (360◦), the gain due to
the change of content transmission format, gja is given by:

∆Pi =
1

T

T∑
t=1

1{Dt(s,120◦)+DU
t (v,σmax

i )≤γD}

− 1

T

T∑
t=1

1{Dt(s,360◦)+DU
t (v,σmax

i )≤γD}. (22)

Here, since M (120◦) < M (360◦), then
Dt (s, 360

◦) > Dt(s, 120
◦). In conse-

quence, when Dt (s, 360
◦) +DU

t (v, σ
max
i ) ≤ γD,

Dt(s, 120
◦) +DU

t (v, σ
max
i ) < γD. Hence,

1{Dt(s,360◦)+DU
t (v,σmax

i )≤γD}−1{Dt(s,120◦)+DU
t (v,σmax

i )≤γD}=0.

Similarly, If Dt(s, 120
◦) +DU

t (v, σ
max
i ) > γD, then

Dt (s, 360
◦) +DU

t (v, σ
max
i ) > γD. Hence,

1{Dt(s,360◦)+DU
t (v,σmax

i )≤γD}−1{Dt(s,120◦)+DU
t (v,σmax

i )≤γD}=0.

Finally, if Dt(s, 120
◦) +DU

t (v, σ
max
i ) 6 γD and



Dt (s, 360
◦) +DU

t (v, σ
max
i ) > γD, then ∆Pi is:

∆Pi =
1

T

T∑
t=1

1{Dt(s,120◦)+DU
t (v,σmax

i )≤γD}

=
1

T

T∑
t=1

1{
M(120◦)6

(
γD−

G120◦
cij(s)

−DU
t (v,σmax

i )
)
V B
i

}, (23)

(23) is hold as Dt (s, 360
◦) +DU

t (v, σ
max
i ) > γD.

In consequence, M (360◦) will be larger than(
γD − G120◦

cij(s)
−DU

t (v, σ
max
i )

)
V B
i . We can use the same

method to prove the case as M (120◦) > M (360◦). When
M (120◦) =M (360◦), we can obtain that

1{Dt(s,360◦)+DU
t (v,σmax

i )≤γD}−1{Dt(s,120◦)+DU
t (v,σmax

i )≤γD}=0.

Therefore, ∆Pi = 0. This completes the proof.

B. Proof of Theorem 2

To prove Theorem 2, we must first calculate the data size
La (Ca) of visible contents extracted from 360◦ content a
using an enumeration method. Let Uja = 2. If users i and
j that are associated with SBS j request visible contents ai
and aj , respectively, the set of the data correlation between
these two users is Caik. This means that users i and k have
Caik portion of visible content that is similar. In consequence,
when the cloud transmits visible contents ai and aj to SBS j,
the size of the data that the cloud needs to transmit is:

La (Ca) = G120◦ (Uja−Caik)=G120◦

Uja− ∑
Ca∈C2a

Ca

 ,

(24)
where Ca = C2a = {Caik}. Similarly, if users i, j, and k that
are associated with SBS j request visible contents ai, aj , and
ak, respectively, (Uja = 3), the size of the data that the cloud
needs to transmit can be given by:

La (Ca) = G120◦ (Uja−Caik−Caij − Cajk + Caijk)

= G120◦

Uja−∑
Ca∈C2a

Ca+
∑
Ca∈C3a

Ca

 , (25)

where Ca = C2a ∩ C3a with C2a = {Caik, Caij , Cajk} and C3a =
{Caijk} . We can also see that if Uja = 4, the cloud needs to
transmit is given by:

La (Ca) = G120◦

Uja − ∑
Ca∈C2a

Ca+
∑
Ca∈C3a

Ca −
∑
Ca∈C4a

Ca

 ,

(26)
where Ca = C2a∩C3a∩C4a. Hence, we can obtain that La (Ca) =

G120◦

(
Uja −

Uja∑
n=2

∑
Ca∈Cna

(−1)n−1Ca

)
. The cloud will select

the content transmission format that can minimize the size of
the data transmitted over cloud-SBS links. In consequence,
if G360◦ > La (Ca), the cloud will transmit visible contents
that are extracted from 360◦ content a, G360◦ 6 La (Ca),
otherwise. This completes the proof.
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