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Electromagnetic Time Reversal as a Correlation
Estimator: Improved Metrics and Design Criteria

for Fault Location in Power Grids
Shaoyin He, Andrea Cozza,Senior Member, IEEE, Yanzhao Xie,Member, IEEE

Abstract—Recently published papers have proven the effec-
tiveness of Electromagnetic time reversal (EMTR) in locating
the position of faults such as phase-to-ground shunt connections
in power grids. EMTR directly transposes the idea of focusing
energy back to its source introduced in original time-reversal
methods. The current interpretation of EMTR, based on metrics
measuring energy or peak-amplitude of focusing, is shown to
suffer from ambiguities that increase the risk of inaccurate fault
location. After pointing out under what conditions time-reversal
focusing occurs, an original frequency-domain reformulation
of EMTR is introduced, showing that EMTR should more
accurately be interpreted as a correlation estimator. New metrics
based on this observation are introduced, taking into account
the inhomogeneous transmission of electrical energy throughout
complex networks, enabling a direct quantitative evaluation of
the likelihood of locating a fault. Extensive numerical simulations
confirm that the proposed formulation systematically improves
the reliability of EMTR location estimates when faults occur in
power grids of realistic complexity, highlighting the accrued risk
that comes with the use of metrics that measure the scale of
time-reversal focusing rather than its quality.

Index Terms—Fault location, power grids, time reversal.

I. I NTRODUCTION

T HE proper operation of power grids can be severely
disrupted by events such as shunt faults where two

or more conductors, subject to different potentials, become
electrically connected through a low-impedance path, e.g.,
because of electrical arcs or phase-to-ground faults.

The occurrence of such shunt faults is followed by transient
signals that can be detected by a monitoring station, or probe,
and subsequently used in order to estimate the fault position.
A large number of methods has been introduced in the last
decades for fault location in power grids, among which those
based on travelling waves are of interested in the context of
this paper [1]–[4].

A recent proposal for fault location is Electromagnetic Time
Reversal (EMTR) [5], which is inspired by the idea of time-
reversal (TR) focusing [6], [7]. Its main appeal is its ability
to locate faults from the transient signals they generate, as
measured from a single probe. Its performance has been shown
to depend on what kind of metrics are used, e.g., by monitoring
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maximum focused energy or peak amplitude [8]. While EMTR
has been presented as an effective fault-location method [9]–
[11], none of the results available in the literature has so
far provided clear design criteria and necessary conditions to
ensure accurate fault location.

This paper starts by revisiting in Sec. II the definitions
employed in EMTR, pointing out some fundamental dis-
crepancies with TR, which are shown to lead to inaccurate
expectations, in particular in the ability of EMTR to provide a
single focusing peak, and therefore a single candidate position
for the fault. Sec. III presents an alternative interpretation
of EMTR, showing how it basically mimics the properties
of correlation functions, which are meant to only identify
similarity. The fact that currently used EMTR norms do not
take into account the existence ofscale terms related to the
inhomogeneous propagation of transient energy throughouta
distribution network, is shown to potentially lead to spuri-
ous fault locations. Moreover, the unacknowledge effect of
strongly frequency-dependent fault transient signals is also
argued to dramatically reduced EMTR location performance,
while requiring access to unnecessarily wideband data.

Based on these observations, Sec. IV introduces two alter-
native norms that are subsequently shown to systematically
outperform those of energy- and peak amplitude-based norms.
The necessary conditions for their accurate use are discussed,
showing that these metrics can be promptly adopted with-
out introducing any further complexity in EMTR location
processing. Moreover, they lend themselves to quantitative
interpretation, since they represent correlation functions. On
the contrary, current EMTR norms require ana posteriori
normalization, before being able to locate a fault. As new
candidate fault positions are tested, the result of this normaliza-
tion process is bound to change, and is therefore qualitative in
nature. Moreover, this kind of normalization does not warrant a
direct quantitative interpretation, since it does not correspond
to a well-define quantity, such as a correlation function. In
turn, this risks making it difficult to introduce a quantitative
criterion to decide whether a fault has been reliably located or
not.

Extensive simulations results are analyzed in Sec. V, for
three grids of increasing complexity, confirming all the impli-
cations and predictions discussed in the previous sections. A
remarkable result is the feasibility of accurately locating a fault
using only low-frequency information, as low as 30 kHz, as
opposed to 1 MHz required by previous EMTR norms, which
is of practical importance when dealing with real-life lossy
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Fig. 1. Principle of implementation of EMTR to locate faults, and related
quantities for its analysis: (a) direct-time phase, duringwhich the fault
transient signal is recorded and (b) reversed-time phase, enabling the rate
of TR focusing in numerically tested candidate fault positions.

lines.
Finally, Sec. VI argues about the necessary conditions

required for EMTR to provide accurate locations, as based
on known results for the TR property of self averaging, upon
which TR methods rely to control the propagation of signals
through complex media. Design guidelines are then discussed
in order to allow a better understanding of EMTR limitations.

II. A BRIEF SUMMARY OF EMTR

EMTR is based on two phases, schematically represented
in Fig. 1, whereZL is the equivalent impedance of the
termination load of the transmission lines, usually representing
transformers. These were argued in [5], [12] to typically
behave as capacitances in the hundreds of pF, in the range of
frequencies covered by transient signals. For this reason,ZL

will be assumed to be larger than the characteristic impedance
Zc of transmission lines by several orders of magnitude. The
fault is represented by its Thevenin equivalent circuit, with an
impedanceZF < Zc, and a voltage generatorvf (t) modeling
the fault transient.

Transient signals generated by the fault are first recorded,
e.g., by monitoring the voltagevm(t) by a probe at one of
the terminations of the distribution network, as in Fig. 1(a).
The network under test (NUT) is modeled by its impulse
responsehdt(t), for direct time. Subsequently, a time-reversed
version of the probe-recorded transient signal, e.g.,vm(T −t),
is injected in numerical models of the NUT, where different
candidate fault positionsxg are tested; the delayT , required
to ensure causality, will be dropped hereafter for the sake of
simplicity, without loss of generality.

As discussed in [5], EMTR estimates the actual fault
position by monitoring the signal energy at each tested fault
positionxg, e.g., by measuring the voltagevg(t), or the current
ig(t). During this second (numerical) phase, each system
response is modeled by an impulse responsehrt(t;xg). The
best estimatêxf is identified as the one that maximizes the
energy, i.e.,

x̂f = argmax
xg

‖vg(t;xg)‖ (1)

where‖vg(t)‖ was originally the energy ofvg(t), eventually
evaluated only over a finite time interval [9]. More recent work
[8] showed that other norms perform better, by monitoring,
e.g., the peak-amplitude of voltage or current at the test fault
locations. In the rest of the paper, the energy norm will be
referred to asL2

2, i.e., theL2 norm squared, and the peak
amplitude asL∞, for the sake of simplicity.

While previous EMTR works have maintained the interpre-
tation introduced by standard TR for the need to actually inject
TR signals into the system, an alternative approach will be
used throughout this paper, which significantly simplifies this
operation. The voltagevg(t) observed across the fault during
the second phase can be written as

vg(t;xg) =

∫

BT

dν V ⋆
m(ν)Hrt(ν;xg) e

j2πνt, (2)

where ν is the frequency variable andBT the bandwidth
over which transient signals are measured; uppercase functions
stand for Fourier spectra.

This formulation does not require to carry out cumbersome
cycles of second-phase simulations for each test fault position
xg, since the transfer functions needed for locating the fault
can be generated and stored for a given NUT, serving as a
dictionary for decoding the position of any fault from transient
detected by the probe.

For the case of a low-impedance shunt connection between
two conductors, the fault-transient generator is often modeled
as a unit step pulse, a choice also adopted in EMTR literature
[5], representing the voltage difference between the two con-
ductors passing instantaneously to negligible values. A more
general model will be applied in this paper, assuming a finite
rise time, modeling the transient as an exponential charge,

vf (t) = Vo(1− exp(−t/Tr)), (3)

with a rise timeTr and a Fourier spectrum

Vf (ν) = Vo

2πfc
s(s+ 2πfc)

(4)

wheres = j2πν andfc = 1/2πTr. Typical values ofTr has
been reported to vary between 1 and 100µs [13]–[16]. This
kind of model will also be shown in Sec. III to help establish
the feasibility of new improved metrics. Eqs. (2) and (4) show
one of the pitfalls of current EMTR implementations: by using
time-domain definitions, thus including low frequencies,Vf (ν)
strongly emphasizes their contribution against that of higher
frequencies. The role ofVf (ν) in the performance of EMTR
metrics will be widely discussed in the next sections. It can
already be appreciated by computing its equivalent quadratic
bandwidth

Beq =

∫

BT

dν ν|Vf (ν)|2
∫

BT

dν|Vf (ν)|2
= f1

ln(f2/f1)

1− f1/f2
, (5)

over the bandwidth[f1, f2], assumingf2 ≪ fc. As an exam-
ple, for a bandwidth[1, 101] kHz, the equivalent bandwidth is
about 4.7 kHz, against 100 kHz of available data.
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The frequency-domain formulation (2) helps in this respect,
since it allows to easily select a portion of the frequency data,
in order to minimize the bias introduced by lower frequencies.

III. EMTR AS A CORRELATION ESTIMATOR

As argued in [4], [5], electrical networks in power grids
are typically terminated by transformers, presenting an in-
put impedance by far higher than the typical characteristic
impedance of power lines. Therefore, each line connected
to a transformer behaves as a multi-frequency resonator for
transient signals, while the grid can be regarded as a set of
coupled resonators. As discussed in Sec. VI, these conditions
directly lead to a reverberating response, i.e., to a systemwith
an impulse response lasting much longer than the transient
generated by a fault. This kind of response is systematically
found throughout the literature for fault transients.

Under these conditions, TR signals should be treated as
random processes, characterized by a relatively short, but
prominent, coherent part and a much longer random coda
[17]–[19], orthogonal to each other. The first implication of
this well-known property of TR in complex media is that the
random codas do not provide any useful information, as they
fundamentally behave as random Gaussian noise.

Hence, metrics based on time integration of TR signals
would be inevitably affected by these noisy contributions.Only
the coherent part, observed aroundt = 0, can be exploited,
thanks to its being practically deterministic [19]. The fact that
it occurs att = 0 is intrinsic to the very definition of TR: this
is the instant that provides the maximum coherence, with time
and spatial focusing, resulting in the highest peak amplitude
possible. It can therefore be expected that EMTR norms
measuring peak amplitude should better perform than those
based on energy: this improvement was indeed confirmed in
[8].

This notwithstanding, the focus should not be on the search
for the maximum peak amplitude, but rather on the fact that
TR coherence only occurs att = 0, where the TR focused
signalvg(t) should rather be regarded as measuring maximum
coherence. In the context of fault location, having in mind how
EMTR was introduced, maximum coherence is an effective
measure of how closexg , i.e., the test fault position, is to
the actual one,xf . Clearly, this property also works when
assessing whetherxg is not a good candidate for the fault
position.

The point is, theL∞ norm selects the maximum peak
occurring at any possible instant, not only att = 0, thus
missing important information about the non-suitability of
a test fault position. This discrepancy is shown in Sec. V
to lead to fundamental limitations in the ability of EMTR
to accurately locate faults. For these reasons, theL∞ norm
should be substituted by the peak amplitudeP (xg) at t = 0,
which reads

P (xg) =

∫

BT

dν V ⋆
m(ν)Hrt(ν;xg)

=

∫

BT

dν V ⋆
f (ν)H

⋆
dt(ν)Hrt(ν;xg)

(6)

This norm, which is the only one that makes sense of TR
self-averaging property, deserves a closer scrutiny. Indeed,
(6) can be interpreted as a projection between the probe
outputVm(ν) and simulated transfer functionsHrt(ν;xg). In
practice, it can be implemented as a simple matrix product, by
arranging theN test transfer functionsHrt(ν;xg) as the rows
of a matrix and the probe-recorded voltage spectrumVm(ν)
as a column vector, duly phase conjugated (or time reversed
in time domain), i.e.,







P (x1)
...

P (xN )






= δf







Hrt(ν, x1)
...

Hrt(ν, xN )









 V ⋆
m(ν)



 (7)

with δf the step by which frequency is discretized. Eq.
(7) illustrates the advantage of using a frequency-domain
formulation, whereP (xg) can be instantaneously computed
once the fault transient is measured, without going through
large batches of simulations meant to observe the TR focusing
of transient signals.

The random nature of NUT transfer functions, as discussed
in Sec. VI, affords interpreting the frequency integrationas an
average operator. Under these circumstances,P (xg) takes on a
more specific meaning, namely of a cross-covariance between
Vm(ν) andhrt(ν;xg). As such, it can be factorized into cross-
correlation and energy terms [20]

P (xg) = ρVH(xg)
√

EmErt(xg) (8)

with ρVH(xg) the cross-correlation betweenVm(ν) and
Hrt(ν;xg), and Em, Ert(xg) their respectivemathematical
energies1, with

Em =

∫

BT

dν |Vm(ν)|2 (9)

Ert =

∫

BT

dν |Hrt(ν;xg)|2. (10)

The rationale for invoking the factorization in (8) is that it
points to a fundamental issue in the current implementation
of EMTR. The idea behind using EMTR is to decide the
positionxg that yields the closest match between experimental
and numerical results, by using focusing as a decision metric.
The issue here is: what does the amplitude ofP (xg) actually
measure? Eq. (8) provides the answer to this question, by
showing that it is actually a mix of two complementary
contributions: on the one hand, the cross-correlationρVH(xg)
is a measure ofsimilarity; on the other hand,Em andErt(xg)
rather measureintensity. It is therefore impossible to tell
whether a peak inP (xg) is due to having found the fault
position, in which caseρV H is maximum, or rather having just
spotted a peak in the intensity ofHrt(xg), e.g., when testing a
positionxg closer to the probe. The same observations apply
to L∞, which was proposed in previous EMTR works. A
previous attempt at using similarity-based metrics for EMTR
was also recently discussed in [21], but it was rather based
on the search for positions where the transient measured by
the probe would be most similar to the signal observed at

1i.e., squaredL2 norms
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the test fault position after injecting the TR version of the
transient. This approach should not be confused with the one
here proposed, since it introduces a further location metric
without recognizing that current EMTR metrics already are
inaccurate and ineffective correlators. Indeed, [21] doesnot
acknowledge the fundamental role of the spectrum of the
transient signal, which is the main obstacle to make EMTR
reliable and efficient.

The implications of highlighting the dual contributions of
similarity and scale are clear: EMTR location procedures
work by spotting the test positionxg in simulation results
that fits more closely those measured, thus looking for the
maximum TR transmission. Scaling terms such as energies
should not take part to this process, since they would readily
bias comparisons of results evaluated at different test positions
xg, as indeed proven in Sec. V. In this respect,ρV H(xg)
should be expected to ensure better results thanP (xg), now
formally defined as

ρV H(xg) =
P (xg)

√

EmErt(xg)
. (11)

The above definition should not be confused witha posteri-
ori normalization of the kind currently used in current EMTR
implementations [5], [8]. Indeed, in (11) the normalization is
meant to remove scaling factors that are intrinsically position
dependent. In particular, this operation is carried out at each
tested positionxg, without relying on knowledge of results
obtained at other positions. Instead, standard EMTR metrics
are rather based on peak-normalized results, which therefore
bear a quantitative meaning only when compared to other
results. This is not the case with correlation functions, since
their value has a clear quantitative meaning that can be
evaluated on a local level, independently from those observed
at other positions. The two metrics would coincide only in
caseErt(xg) were constant, i.e., independent from the position
tested. In fact, Sec. V proves thatErt(xg) is highly position
dependent.

A direct implication of the local normalization in (11) is
that by usingρVH(xg) it should be possible to directly decide
whether a numerically tested position is a good candidate
for the fault position. Before looking more closely into this
property, it is useful to reformulate (11) by formalizing the
interpretation of all integrals as frequency averages, introduc-
ing the averaging operator

〈g(ν)〉 = B−1
T

∫

BT

dν g(ν), (12)

whereg(ν) is a generic function. Now (11) and (6) can be
restated as

ρV H(xg) =

〈

V ⋆
f (ν)H

⋆
dt(ν)Hrt(ν;xg)

〉

σmσrt(xg)
, (13)

whereσm and σrt(xg) are the (frequency-defined) standard
deviations ofVm(ν) andHrt(ν;xg)

2.

2A more accurate definition ofσm would be σ2
m =

〈

|Vm(ν)|2
〉

−
| 〈Vm(ν)〉 |2, but due to the reverberant response of the NUT,〈Vm(ν)〉 can
be assumed negligible. The same applies to transfer functions

IV. M ITIGATING THE EFFECTS OFVf (ν)

The values taken byρVH(xg) could be easily interpreted if
it were evaluated between two homogeneous quantities, e.g.,
two voltages: in that case their degree of similarity would be
directly confirmed by a correlation close to one, as soon as
xg = xf . The fact thatρVH(xg) rather represents a cross-
correlation makes direct interpretations less obvious since, as
discussed at the end of Sec II,Vf (ν) is highly dispersive,
thus limiting the similarity betweenVm(ν) and Hrt(ν;xg),
even when consideringxg = xf . Moreover,Vf (ν) in (13)
disproportionately emphasizes lower frequencies, reducing the
contributions from higher frequencies, resulting in a reduced
effective bandwidth. It goes without saying that metrics based
on correlation functions between measured and simulated
probe voltages would be counterproductive, since in such a
case the dispersive effects ofVf (ν) would be reinforced by
its being squared.

The frequency-domain formulation in (6) makes it apparent
that Vf (ν) has no useful role in assessing the similarity
between numerical tested and actual responses: while in the
standard implementation of TR it makes sense to inject the
time-reversed signals into thesame system that generated
them, EMTR is actually about injecting signals into systems
that are different. Reformulating this process as in (6) pro-
vides insight into the mechanisms subtending maximization
of energy/peak amplitude at the fault position. In particular,
from (6) it becomes apparent that similarity should be based
only on transfer functions, since they completely determine
the NUTs: if Hrt(ν;xf ) = Hdt(ν) at the fault positionxf ,
thenP (xf ) would be maximum only for a constantVf (ν).

In view of these arguments, the accuracy of EMTR as an
estimator of a fault position is expected to improve when
directly evaluating the similarity between the transfer func-
tions Hdt(ν) andHrt(ν;xg), by computing their correlation
ρHH(xg), defined as

ρHH(xg) =
〈H⋆

dt(ν)Hrt(ν;xg)〉
σdtσrt(xg)

, (14)

where

σ2
dt =

〈

|Hdt(ν)|2
〉

, (15)

having adopted the formalism introduced in (13).
The problem is that the only information accessible in

practice for the NUT isVm(ν). If the spectrumVf (ν) were
known, then an inverse-filter approach could be applied to
Vm(ν), providing an estimate ofHdt(ν), but this option is
not typically viable.

The following subsections tackle these issues by taking two
different stances. In Sec. IV-A, the bias generated by a dis-
persiveVf (ν) in ρV H(xg) is considered, by proposing a first-
order correction that approximately reestablishes the property
of ρVH(xg) peaking at one, without relying on an arbitrary
a posteriori normalization. In Sec. IV-B, the feasibility of a
blind inverse-filter procedure is analyzed, showing that itis not
necessary to accurately knowVf (ν) in order to compensate its
effects, proving under what conditions an accurate estimate of
ρHH(xg) can be estimated.
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Fig. 2. Contour plot of the bias coefficientCV , as defined in (19), as
a function of the tested frequency bandwidth[f1, f2], relative to the cut
frequencyfc = 1/2πTr for an exponential step fault signal with rise time
Tr .

A. Cross-correlation correction

This section studies under what conditions the cross-
correlation coefficientρVH(xg) can be used as an approxi-
mate estimator ofρHH(xg). This is in particular useful as
it provides a mean to avoid peak-normalizing results issued
from EMTR processing (cf. Sec. III). As explained in Sec.
III, a local normalization would make it possible to interpret
results on a one-by-one basis, even before having identifiedthe
actual fault position, as otherwise required by current EMTR
implementations.

To this end, the numerator ofρVH(xg) in (13) can be
approximated as demonstrated in the Appendix, yielding

∫

BT

dν V ⋆
f H

⋆
dtHrt(xg) ≃ BT

〈

V ⋆
f

〉

〈H⋆
dtHrt(xg)〉 , (16)

while
σ2
m =

〈

|Vf |2|Hdt|2
〉

≃ BT

〈

|Vf |2
〉

σ2
dt, (17)

which appears in the denominator ofρV H ; a similar result
applies toσ2

rt(xg). Inserting (16) and (17) into (13) results in

ρVH(xg) ≃ ρHH(xg)CV , (18)

where
CV =

〈

V ⋆
f

〉

/
√

〈|Vf |2〉. (19)

Cauchy-Schwarz inequality imposes|CV | ≤ 1, with unity
reached only for a constantVf (ν). The strongly dispersive
nature ofVf (ν), recalled in Sec. II, therefore leads to a bias,
with |CV | < 1, confirming that the cross-correlation nature
of EMTR makes its direct interpretation unwarranted, sinceit
depends on an unknown function, i.e.,Vf (ν).

Fig. 2 shows how|CV | changes depending on the frequency
bandwidth over which data are collected, assumingVf (ν)
corresponds to the exponential step discussed in Sec. II. These
results show that in order forCV ≃ 1, it is sufficient that
BT ≤ f1, irrespective of the rise timeTr = 1/2πfc. It is
therefore not necessary to consider very narrow bandwidths

0 2 4 6 8 10
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1

ν/fc

|W
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)|
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Fig. 3. Normalized modulus ofW (ν) as a function ofR = f̂c/fc.

in order to minimize the emphasis on the low-frequency
contribution. Conversely, using wide-band data, in particular
when including low-frequency data, systematically results in
the loss of the main advantage of correlation functions, i.e.,
their taking an amplitude close to one only in case of strong
similarity.

B. Equalization

While choosingBT < f1 is effective in countering the most
negative effects of a dispersiveVf (ν), it does not allow to fully
benefit from all the data available. As already discussed,Vf (ν)
being unknown,Hdt(ν) cannot be expected to be retrievable
from an inverse-filter equalization, i.e.,

Hdt(ν) = Vm(ν)/Vf (ν). (20)

In fact, it is notHdt(ν) that needs to be estimated accurately,
but ratherρHH(xg). This section analyzes under what condi-
tions the use of an approximatêVf (ν) in (20) can still lead to
a good estimate ofρHH(xg), without assuming (20).

To this end, the parametric spectrum

V̂f (ν) =
2πf̂c

s(s+ 2πf̂c)
, (21)

will be used as an educated guess ofVf (ν), corresponding
to the exponential step function introduced in Sec. II, with
a guessed time constant̂Tr = 1/2πf̂c. The idea is to assess
under what conditions a good estimate ofρHH(xg) can still
be expected even forTr 6= T̂r.

The following estimator ofρHH(xg) will therefore be
considered

ρ̂HH(xg) =

〈

V ⋆
m(ν)Hrt(ν;xg)/V̂

⋆
f (ν)

〉

σ̂dtσrt(xg)
, (22)

with

σ̂2
dt =

〈

∣

∣

∣
Vm(ν)/V̂f (ν)

∣

∣

∣

2
〉

. (23)
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Fig. 4. Contour plots of the bias coefficientCW , as defined in (27), as a
function of the tested frequency bandwidth[f1, f2], for four values ofR =
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Approximating the spectrum ofVf (ν) as in (4), (22) can be
restated as

ρ̂HH(xg) =
〈H⋆

dt(ν)Hrt(ν;xg)W (ν)〉
σrt(xg)

√

〈|Hdt(ν)|2|W (ν)|2〉
, (24)

where

W (ν) =
s+ 2πf̂c
s+ 2πfc

=
jν/fc + f̂c/fc
jν/fc + 1

(25)

is a weighting function that measures the residue of an
imperfectly uncompensatedVf (ν) after the equalization.

From (25) it appears that the flatness ofW (ν) depends on
the relative position of its pole and zero. More precisely, if
(24) were evaluated at frequenciesν < min(fc, f̂c), or ν >
max(fc, f̂c), W (ν) would still be relatively flat, as visible
from Fig. 3, resulting in an accurate estimate ofρHH(xg).
The scenarios wherêfc < fc result in a flatter|W (ν)|.

In general, an imperfect correction ofVf (ν) hasW (ν) 6= 1
and would therefore result in̂ρHH(xf ) < 1. The extent of
this effect can be quantified by applying to (24) the same
approximation used in (16) and (17) for deriving (19), yielding

ρ̂HH(xg) ≃ ρHH(xg)CW , (26)

with
CW = 〈W (ν)〉 /

√

〈|W (ν)|2〉. (27)

Since W (ν) is substantially flatter thanVf (ν), CW is
expected to be closer to one thanCV . Fig. 4 shows howCW

changes for a broad set of scenarios, with the ratioR = f̂c/fc
changing from 1/100 to 100. As argued above, the caseR ≤ 1
yields the more robust results, withCW taking values above
0.9 in all cases but when using data acquired at very low
frequencies, much smaller thanfc. The minimum value taken
by CW in this case can be evaluated from (27) to be equal
to

√
3/2 ≃ 0.86. Conversely, ifR > 1, CW is significantly

smaller than one only if data cover a large bandwidth, reaching
out the transition region betweenfc and f̂c, shown in Fig. 3.
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Fig. 5. Schematics for the three grid structures consideredin the paper, for:
(a) three-junction, (b) five-junction and (c) ten-junctiondistribution networks.
Numerical tags identify the fault positions tested in Sec. V, with 1 km
separating each section between two tags. The grids are terminated by
transformers. The voltage probe monitoring fault transients is found at tag
no. 0, for all three grids.

Overall, Fig. 4 confirms the feasibility of a blind inverse
filtering, suggesting to set the value of̂fc equal to the lower
bound of typical values expected forfc. This property should
not be read as an invitation to choose very small values off̂c:
for the sake of equalization, this ratio should be as close as
possible to one. It should rather be seen as a requirement notto
choosef̂c/fc ≫ 1. It is worth noticing that these results prove
that the actual value of̂fc is not important for the application
of (26), unless gross errors are made. The relative insensitivity
of ρ̂HH(xg) to the choice off̂c, as long asf̂c/fc ≪ 1 is
confirmed in Sec. V.
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NUTs in Fig. 5, from top to bottom, computed over the frequency range
[10− 1000] kHz.

V. SIMULATION RESULTS

This section compares the performance of each of the norms
discussed so far, when applying the EMTR location criterion
(1) to the three networks shown in Fig. 5. Several goals guided
the definition of the comparisons: 1) the network complexity,
measured in terms of the number of junctions, 2) the relative
position and distance between the probe and the fault, 3) the
effects of the frequency-response dynamics by using data from
a selected bandwidth rather than the entire dataset available.

Each network consists of uniform lines where losses are
assumed to be negligible. The rationale for this simplification
is to avoid any spurious effect due to losses, which could
mask differences due to the metrics themselves. Each line is
terminated by either a junction or a transformer. As already
discussed in [5], the transformers are assumed to present high-
impedance conditions, therefore regarding each line terminated
by transformers as highly reflecting; a 10kΩ equivalent load
is used for the sake of accounting for potential losses in the
transformers. The probe used for monitoring the occurrence
of fault transient signals is here modeled by measuring the
voltage induced at the terminations with tag no. 0, shown in
Fig. 5. Only single-phase lines are considered, since the ability

of EMTR to discriminate between different phases was already
well established in [5].

The propagation of fault-induced signals along these three
distribution networks was simulated using EMTP-RV, by mod-
eling the fault using an equivalent Thevenin circuit, with
a voltage generatorvf (t) representing the voltage transient
(cf. Fig. 1(a)), with a fault impedanceZF = 10 Ω, thus
much smaller than the typical characteristic impedance of the
lines. This last choice, which is consistent with the idea of
shunt faults, also leads to high-reflectivity conditions. Alarge
number of positions for the fault were considered, by movingit
along every line in the three NUTs, with a spatial step of 1 km.
The rationale is to assess whether EMTR locates faults with
the same accuracy independently from their distance from the
probe. Numerical tags in Fig. 5 allow to identify the position
of each fault studied. For each fault position, a simulation
was run, covering a maximum frequency of 1 MHz. The fault
equivalent generatorvf (t) was modeled as discussed in Sec.
II, as an exponential transient with a typical rise time of 10µs.

Transient voltagesvm(t) were computed with EMTP-RV
for each fault position. All the metrics discussed in Secs. II to
IV generate results for every positionxg, with tags given in
Fig. 5, peaking at a position̂xf , ideally corresponding to the
fault positionxf . Due to the sheer number of combinations of
fault positionsxf and test fault positionsxg, a compact matrix
representation was chosen, instead of standard cartesian plots,
with columns and rows referring toxf andxg, respectively.
This choice allows to easily spot an ideal location estimator,
since it would present a diagonal standing out from a lower
background.

Before going through the overall comparison of metrics,
the argument presented in Sec. II pushing for limiting EMTR
metrics to be only based on the peak amplitude att = 0
are validated in Fig. 6, by comparing the metrics issued
from L∞(xg) andP (xg) norms, for a frequency bandwidth
[10, 1000] kHz. These results prove that metrics looking for
the peak amplitude att 6= 0 significantly increase the risk of
incorrect fault location, withP (xg) featuring a rate of accurate
location up to twice that of theL∞ norm. The main reason
for the poorer performance ofL∞ is that EMTR does not
correspond to standard TR, where time-reversed signals are
injected back into the same system that generated them in the
first place. EMTR expects signal focusing to be maximized
when the test fault positionxg = xf , consistently with
standard TR. But in casexg 6= xf , there is no way of ensuring
that L∞(xg) < L∞(xf ), ∀t 6= 0, since the two associated
NUTs will be different in this case. Moreover, only att = 0
standard TR would lead to focusing or, in other terms, to
maximal coherence and therefore minimum dependence from
the characteristics of a NUT.

Fig. 6 clearly show the appearance of wrong fault positions
with L∞, i.e., outside the main diagonal, corresponding in
the vast majority of cases to branches close to the one
containing the actual fault. Limiting theL∞ metric to t = 0,
i.e., switching toP , effectively reduces the number of such
instances; each plot in Fig. 6 reports the percentage of fault
positions accurately located by the two norms. The risk of
an erroneous location appears to significantly depend on the



8

L2
2

10 20 30

5

10

15

20

25

30

35
P

10 20 30

5

10

15

20

25

30

35
norm. ρV H

10 20 30

5

10

15

20

25

30

35
ρHH

 

 

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

T
es

t p
os

iti
on

s 
ta

gs

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

Fault position tags
10 20 30

5

10

15

20

25

30

35

10 20 30

5

10

15

20

25

30

35

0 0.25 0.5 0.75 1

34 % 100 %

100 %

100 %100 %

100 %

100 %

100 %

71 %

43 %

34 % 89 %

Fig. 7. Performance of the four EMTR metrics applied to the three-junction network in Fig .5(a), for three different frequency bandwidths: 10-100 kHz (top
row), 100-1000 kHz (middle row) and 10-1000 kHz (bottom row). The rate of accurate location is shown on each graph. Results for ρV H are normalized in
order to simplify their comparison.

network complexity, forL∞, while P is less sensitive to it.
This observation implies that as a network becomes more
complex, the probability of appearance of spurious peaks in
time-reversed signals increases. Following these observations,
theP norm will be used instead of theL∞ norm.

Fig. 7 presents a thorough analysis of the performance of
four metrics: 1)L2

2, 2) P , 3) ρV H and 4) ρHH . The first
observation is that theL2

2 norm has the worst performance,
with a large number of erroneous fault locations. As discussed
in Sec. III, when refocusing on the fault position, time-
reversed signals produce two contributions: a coherent one,
associated to the largest amplitude peak and typically weaker
background fluctuations, with a much longer duration that
depends on the reverberation decay time of the NUT (cf. Sec.
VI). Therefore, sinceL2

2 requires integrating the entire signal
intensity, background fluctuations, even though locally weaker
than the coherent part, have a non-negligible contribution.
Since they are by definition orthogonal to the coherent part
[19], they do not provide useful information about the fault
position, and rather behave as random noise.

The normP can be expected to perform better, since it only

uses the coherent contribution, reaching its peak att = 0,
which is the best approximation of the original fault transient
signal, in a matched-filter sense. The rate of correct location
is indeed much higher than for theL2

2 norm. Yet,L2
2 andP

share another kind of error: as faults get farther away from
the probe, faults location may be erroneously estimated to
be at a closer distance from the probe. This phenomenon is
observed in Fig. 7, where faults with a position tag above
10 are wrongly located mainly at position tag 3, otherwise
at 4, 5 and 9. The most likely reason for these errors is the
fact thatL2

2, P and alsoL∞ norms cannot separate similarity
and scale contributions, as discussed in Sec. III. In practical
terms, time-reversed signals do focus on the fault position,
but as soon as signals need to propagate across multiple
junctions, their intensity weakens, potentially resulting in a
lower energy or peak amplitude with respect to other positions
tested. Indeed, passing to locally normalized estimators,such
asρVH , all but totally removes spurious locations, resulting in
an ideal location performance. Scale effects due to propagation
attenuation driven by junctions, discussed at the end of this
section, confirm this interpretation.
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order to simplify their comparison.

The last norm tested,ρHH , has a performance similar
to ρVH for the NUT in Fig. 5(a). The main difference is
in the strong reduction of residual local maxima that could
potentially be interpreted as alternative fault locations. The
results in Fig. 7 forρV H present several such maxima, in the
0.7-0.8 range, which should not be neglected, in particularin
case of data affected by noise, occurring less frequently for
ρHH .

Results in Fig. 7 were computed for three different choices
of frequency bandwidths, in order to illustrate how frequency
selection affects location accuracy. It can be noticed how fault
location improves when passing from a bandwidth10 − 100
kHz to 100 − 1000 kHz, for all four metrics considered. In
particular, spurious maxima become less intense and likely.
Conversely, extending tests at lower frequencies, for a band-
width 10 − 1000 kHz, results inL2

2, P andρV H performing
worse than for a100 − 1000 kHz, with results very similar
to those obtained for the10 − 100 kHz bandwidth. This
issue apparently does not occur forρHH . The reason for this
behavior is found in the spectrum of the fault transient,Vf (ν),
which highly emphasizes lower frequencies to the expense

of high-frequency information, as discussed in Secs. II and
III. In practice, depending on the choice of bandwidth for
the tests, the highly dispersive nature ofVf (ν) can strongly
undermine EMTR performance, but forρHH , which is ideally
independent fromVf (ν). These results confirm the practical
interest of mitigating the effects ofVf (ν) in EMTR metrics, in
order to benefit from the whole available bandwidth. Previous
implementations of EMTR were based on a time-domain
description [5], [8], thus even more strongly sensitive to the
fault spectrumVf (ν), since in this case no attempt was made
in reducing the dominance of low-frequency contributions.

In practical terms, the results in Fig. 7 also demonstrate that
there is no need to consider wide-band tests in order for EMTR
to accurately locate faults, as locally-normalized metrics ρVH

andρHH outperformL2
2, L∞ andP even when testing below

100 kHz.
The effects of an increased complexity in the NUT can

be appreciated from results in Figs. 8 and 9. The same
conclusions described for the three-junction NUT are also
reached for these two further cases. But as the complexity
increases, the number and intensity of spurious peaks follow
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Fig. 9. Performance of the four EMTR metrics applied to the ten-junction network in Fig .5(c), for three different frequency bandwidths: 10-100 kHz (top
row), 100-1000 kHz (middle row) and 10-1000 kHz (bottom row). The rate of accurate location is shown on each graph. Results for ρV H are normalized in
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suit, posing a higher risk of erroneous fault location. The
performance ofL2

2 and P norms is strongly affected, with
location rates as low as 8 %, in particular when using data
extending over several decades. Results forP are much less
affected when working on a flatter portion ofVf (ν), e.g., 100-
1000 kHz.

The results for the five- and ten-junction cases clearly show
that evenρVH becomes increasingly sensitive to the choice of
test bandwidth, as opposed toρHH , which is 100 % accurate
in all tested cases. Again, the negative effects ofVf (ν) explain
the worsening performance forρVH , supporting the proposal
presented in Sec. IV-B for a blind inverse filtering of the fault
transient recorded by the probe.

All the results pertaining toρHH in Figs. 7 to 9 were com-
puted by assumingVf (ν) known. In practice, such assumption
may not hold, and a blind inverse filtering would be necessary,
as discussed in Sec. IV-B. Fig. 10 shows how the estimated
ρ̂HH changes when using a guessV̂f (ν) with a wide variation
of choices for a guess rise timêTr, from 0.1 µs to 1 ms,
while the actual fault transient had a 10µs rise time. As
predicted by Fig. 4, forT̂r/Tr ≥ 1, the estimated̂ρHH is

weakly dependent from the actual choice ofT̂r, even when
T̂r/Tr ≫ 1. Conversely, asT̂r/Tr ≪ 1 the main effect
is that ρ̂HH may become significantly smaller than one even
over the fault position. This last scenario could be avoided
by a posteriori normalization, as in previous work on EMTR
norms [8], but such an approach would result in the loss of
quantitative interpretation of̂ρHH, i.e., the ability to decide at
any test positionxg, whether it represents a good candidate
for the fault position,without relying on any comparison with
other test positions.

Finally, Sec. III suggested that the main reason for the
appearance of spurious peaks inL2

2 and P norms is the
non-uniform spatial distribution of the intensity of transfer
functions, depending on the position of a fault with respectto
the probe. Fig. 11 shows this distribution for the three NUTs,
confirming that transfer functions see their intensity broadly
reducing when moving through a junction. Therefore, faults
more deeply embedded into a NUT will be characterized by a
lower focusing energy/amplitude, fostering the conditions for
spurious fault locations.
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VI. REVERBERATION, RELAXATION TIME AND MINIMUM

BANDWIDTH REQUIREMENTS FOREMTR

This section discusses under what conditions EMTR-based
location metrics can be expected to be reliable. By this terms,
it is meant the property of EMTR to generate a coherent
focusing, thus ideally deterministic. To this end, it is necessary
to recall that Sec. III argued that a power grid with high-
impedance terminations is basically a collection of coupled
resonators. An example of transfer functions shown in Fig.
12, for the five-junction network, effectively confirms this
expectation: a large dynamic range spanned by the transfer
functions, with a maximum-to-minimum ratio exceeding 100,
is a clear indication of a strong resonant behavior.

Time-domain statistics such as the power-delay profile3

shown in Fig. 13 confirm that the three NUTs in Fig. 13 are
more than resonant, as they are actually reverberating, with
a relaxation (or decay) timeτ just above 0.55 ms. With a
typical length of roughly 20 km, the propagation delay for a
signal to cross these networks is about 60µs, implying that
signals reverberate through the networks hundreds of times
before dissipating.

Being highly reverberant systems, the necessary conditions
for TR to be reliable were derived and verified in [19], [22]
to require that the ratioBT /Bc ≫ 1, with Bc ≃ 1/τ the
coherence time of the medium, here power grids. Hence, a
minimum bandwidth requirement reads

BT ≫ 1/τ, (28)

i.e., BT ≫ 1.8 kHz for the three networks studied in this
paper. The ratioBT /Bc measures the number of degrees

3defined as the average of the squared impulse responses of a system
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of freedom, or independent information collected across the
bandwidthBT ; thesegrains of information underlie the most
important property of TR, i.e., self averaging [19], [23], [24].

Fig. 14 shows a clear example of self averaging, where
the location accuracy ofP and ρHH norms improve asBT

increases. Notice howρHH can already provide reliable results

even atBT = 15 kHz, for whichBT /Bc ≃ 8.3, i.e., below
the limit of validity of (28), thus showing signs of loss of
location accuracy in the shape of extended regions around the
actual fault position where evenρHH is no longer accurate.
The much poorer performance ofP is explained by a reduced
effective bandwidth due to the low-frequency emphasis of
Vf (ν), with (28) only partially met.

VII. C ONCLUSION

This paper has investigated how EMTR performs in case
of complex power-distribution networks, with a particular
attention at how the relative position of the fault with respect
to the probe affects the results. It has confirmed that current
metrics based on energy and peak-amplitude focusing may
present a non-negligible bias caused by the non-uniform distri-
bution of high-frequency electrical energy throughout complex
networks, as excited by the fault.

The reformulation of the EMTR processing in the frequency
domain has led to an original interpretation of EMTR as a
correlation estimator, highlighting the reasons for potential
failure with current energy and peak-amplitude metrics. Two
local normalization approaches were proposed, in order to take
into account the non-uniform propagation of transient-signal
energy in complex networks. These new metrics reinstate
quantitative reading of EMTR results, without relying on a
posteriori peak normalization, which would be intrinsically
dependent on the tested fault positions. Both new metrics were
shown to dramatically reduce the occurrence of erroneous fault
location.

In particular, the blind inverse filtering behind̂ρHH was
confirmed as very effective in exploiting all the information
available from transient signals, systematically yielding 100 %
correct estimates of the fault position, even when deeply
embedded into complex networks. Its remarkably low sensi-
tivity to the characteristics of the fault transient makes it a
promising location criterion, even more so considering that
it strongly reduces the need for large bandwidths appearing
in previous EMTR work, an important feature when dealing
with realistic distribution lines that may significantly attenuate
higher frequencies.

APPENDIX

Given a smooth functionS(ν) and a random processR(ν),
with a coherence bandwidthBc, the integral

I =

∫ f2

f1

dν S(ν)R(ν) (29)

can be computed by first solving it by parts

I =

[

S(ν)CR(ν)

]f2

f1

−
∫ f2

f1

dν S′(ν)CR(ν), (30)

where S′(ν) is the first derivative ofS(ν) and CR(ν) a
primitive of R(ν), and

CR(ν) =

∫ ν

f1

dξR(ξ) = R̄(ν)(ν − f1), (31)
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with R̄(ν) the average value ofR(ξ) over the frequency range
[f1, ν]. This reformulation of (29) has an important advantage:
by introducing the averagēR(ν), as soon as

(ν − f1) ≫ Bc, (32)

R̄(ν) will closely approximate its average value〈R(ν)〉 com-
puted over the frequency range[f1, f2], as defined in (12).
Since applications of TR to complex media call for the
condition (32) as necessary (cf. Sec. VI),R̄(ν) ≃ 〈R(ν)〉.

Considering this approximation, (30) can be recast as

I / 〈R(ν)〉 = S(f2)(f2 − f1)−
∫ f2

f1

dν S′(ν)(ν − f1), (33)

and developed into

I / 〈R(ν)〉 = [S(f2)f2 − S(f1)f1]−
∫ f2

f1

dν νS′(ν). (34)

The last integral can be integrated by part,
∫ f2

f1

dν νS′(ν) = [S(f2)f2 − S(f1)f1]−
∫ f2

f1

dν S(ν)

= [S(f2)f2 − S(f1)f1]− 〈S(ν)〉 (f2 − f1),
(35)

with 〈S(ν)〉 the average value ofS(ν) over [f1, f2].
Substituting (35) into (34) yields

I =

∫ f2

f1

dν S(ν)R(ν) ≃ 〈S(ν)〉 〈R(ν)〉BT , (36)

with BT = f2 − f1.
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